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Transient Dynamic Analysis of 
Rotors Using the Combined 
Methodologies of Finite Elements 
and Transfer Matrix 
A new approach is proposed to predict the dynamic behavior of rotor-bearing 
systems in time domain using the combined methodologies of finite elements and 
transfer matrices. This approach makes use of the finite element method to model 
symmetric shafts and then transforms the system properties to transfer matrix 
mode. The formulation provides flexibility to include both linear and nonlinear 
system models, often encountered in rotor dynamic applications. Few example rotor 
cases had been studied and the results were compared with those obtained using 
finite element method. This establishes that considerable savings in computational 
effort can be achieved without losing any accuracy. 

Introduction 

Transfer matrix approach had been adopted by many 
researchers in the past (Lund, 1974; Rao, 1983) to solve rotor-
dynamic problems in the frequency domain. While this ap­
proach is adequate to study the steady state behavior of the 
rotor, sometimes, it is important to obtain the information 
concerning the instantaneous behavior of the subsystems, 
especially for those regions close to the rotor instability condi­
tion. Under this situation, a time domain approach will be 
most appropriate to obtain the system informations precisely. 
Towards this, a combined time domain finite element transfer 
matrix method, namely Transient Property Transfer Ap­
proach (TPTA), is introduced here. 

At the current state of rotor dynamic technology, the finite 
element method (FEM) is the only validated tool available for 
nonlinear time domain analysis (Ruhl et al., 1972; Nelson et 
al., 1976). For large rotor systems, however, the use of finite 
element method leads to prohibitively higher computation 
time and costs. In order to minimize this, a continuing effort is 
made by various researchers to limit the dynamic degrees of 
freedom without reducing the accuracy of the results. Of 
these, the combined finite element transfer matrix technique 
introduced by Dokainish (1972) is of importance since it 
results in an exact condensation of matrix size without any loss 
of accuracy. In recent years, other researchers (Chiatti et al., 
1979; Mucino et al., 1981; Ohga et al., 1983; Degan et al., 
1985) have improved and generalized this methodology for 
other applications. Inspite of this, because of the nature of 
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transfer matrix relations used in the formulation, the use of 
this combined methodology is still limited to linear frequency 
domain analysis only. Moreover, a rotor system supported on 
hydrodynamic bearings is nonconservative, nonsymmetric, 
and possibly nonlinear due to the asymmetric cross coupled 
stiffness and damping properties of the oil film bearings. 
Thus, the Dokainish's combined finite element transfer matrix 
methodology, as it is, cannot be directly used for rotor-
dynamic applications. Under these circumstances, it will be 
more appropriate to develop a combined finite element 
transfer matrix method. 

In this respect the Discrete Time Transfer Matrix Method 
(DT-TMM), introduced recently by Kumar et al. (1986) for 
general structural dynamics response calculations, is of impor­
tance. They showed that with the use of appropriate time 
marching numerical integration algorithms, the application of 
transfer matrix methods can be extended to time domain and 
nonlinear analysis of dynamic systems. Following this, Sub­
biah et al. (1987) applied this method for transient nonlinear 
rotor dynamic applications and found that even for a simple 
rotor system the response results obtained using finite element 
method and discrete time transfer matrix method showed little 
discrepancy. The reason for such discrepancy can be at­
tributed to the fact that the transfer matrix model for a shaft 
section is formulated using cantilever beam theory whereas the 
finite element model is developed with consistent property of 
the system (Archer, 1963). This observation led to the develop­
ment of the present work wherein, following the strategy used 
by Dokainish, the finite element methodology and discrete 
time transfer matrix methodology are combined. This for­
mulation provides flexibility to include both linear and 
nonlinear system models, often encountered in rotor-dynamic 
applications. 

In the following sections the formulation of the proposed 
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BEAMN8 SUPPORTS - SCHEMATIC 

Fig. 1 Model rotor system 

combined methodology is first presented. A comparison of the 
response results obtained using the proposed method with 
those obtained using finite element method is also carried out 
to establish the validity of the method. 

Theory 

Finite Element Formulation. Consider the three station 
rotor model which is discretized into shaft, disk and bearing 
elements as shown in Fig. 1. Based on this finite element 
model the matrix equations of motion for the element 1 with 
nodes 1 and 2 can be written as (Nelson et al., 1976): 

W\[q(t)} + [C]{q(t)) + [Ke] lg(t)} = {F{t)} (1) 

where Me, Ce and Ke are the element mass, damping and stiff­
ness matrices (8 x 8), respectively, and are defined as, 

Me 

my 

C^ = 
c 21 CZ 

Ke 
k,< k] 

K-) I Ky 

and the generlized force and displacement vectors (8x1) are 
given by 

\F{t) ) = (/, l/2 

and 

f9 (01 = l*i. 0i..Vi. 0i 1*2. #2.^2. d i s ­
similarly, the matrix equations of motion for all the elements 
in the model, including the point elements at unbalance loca­
tions, bearing locations, etc., can be derived. In the conven­
tional finite element method these component element equa­
tions of motions are assembled into a large global matrix 
equation of motion which is then solved using any suitable 
time marching integration scheme. 

Discrete Time Transfer Matrix Method Formulation. The 
DT-TMM (Kumar et al., 1986) is based on the assumption that 
at any given time instant, say, th the acceleration and velocity 
in any given degree of freedom, say, q„ of subsystem n, can be 
expressed as a linear function of the displacement qn with 
reasonable accuracy. That is, 

qn(ti)=An(ti)qnUi)+B„(ti) (2) 

q„(ti)=Dn(ti)qn(ti)+EnUi) (3) 

Derivation of these types of relationships can generally be car­
ried out based on truncated Taylor series as given below. 

The starting point for most of the numerical integration 
schemes used in structural response analysis is the truncated 
Taylor series of order 3. That is, 

? „ ( / i ) = ? „ ( / , , , ) + A r ? „ ( / / _ 1 ) 

AT2 . AT3 ... 
(4) 

2 • " - ' " ' 6 

where interval AT = (i, — ^,_i). Different integration 
schemes with varying sophistication and accuracy are then 

derived by replacing the derivatives in equation (4) by finite 
differences. Here, one of the simplest finite difference 
schemes available is chosen to explain the methodology. In ad­
dition, it is assumed that the acceleration is constant during 
the time interval (/,• — *,-_,) and is equal to the average of the 
acceleration values at tt and /,•_ x. Thus, 

Qn(ti)+qn(ti^) ... 
q„=a = (5) 

q„=aAT= 

2 

QnUi)+qnUi-l) AT 

(6) 

(7) 

Substitution of these relationships into equation (4) results in, 

qAti)=qn(ti-l) + ATqn(ti^) + AT> ^nW+qAh-i) ( g ) 

which can be rewritten in the form equation (2), as, 

qn(ti)=A„(ti)qn(ti)+Bn(ti) (9) 

where 

A„Ui) 
AT2 (10) 

and 

B,Ati) = -An(ti)[qn(ti_l) + ATqn(ti_l) + —qn(ti„l)\ 

(11) 
Similarly, by substituting equation (9) into equation (7), it can 
be rewritten in the form of equation (3), as, 

where 

qn(ti)=DJti)qn(ti)+E„(ti) 

2 
A , ( ' / )= • AT 

and 

r AT 1 
En{t,) = -Dn(ti)\qAti-i) + ^-qAh-\)\ 

(12) 

(13) 

(14) 

From equations (10), (11), (13), and (14), it can be seen that 
the coefficients A„ (tj), B„ (tj), Dn (tj), and E„ (tj) are all func­
tions of the system properties at time th and the response 
quantities q„ (t,_ x), q„ (?,•„ 0 , and q„ (tt_i) at the previous time 
instant which are all known at time instant tr Thus, the coeffi­
cients A„ (tj), B„(tj), Dn(tj), and En(tt) are all definable for 
any subsystem n for the time interval (/,• — tt_{). It should be 
noted that the simple finite difference scheme and the constant 
average acceleration assumption used here in the formulation 
are only for explanatory purposes. Instead, any of the many 
more accurate and commonly available numerical integration 
procedures can be used. 

The coefficients A„, B„, D„, and En for various commonly 
used integrating procedures are tabulated by Kumar et al., 
(1986). They developed and employed this technique to 
replace the time derivative quantities in the subsystem equa­
tions of motion. The resulting relationships were then rewrit­
ten as transfer relations leading to discrete time transfer 
matrix of each subsytem. Then, following the conventional 
transfer matrix solution procedure, they computed the overall 
transfer matrix and solved for the unknown state vector quan­
tities by applying the proper boundary conditions. For details 
refer to Kumar et al., (1986). This novel approach led to the 
development of a useful transient analysis tool for large 
dynamic systems. However, subsequent application of this 
technique to rotor dynamic analysis (Subbiah et al., 1987) 
showed that the lumped parameter characteristics and the 
massless cantilever beam theory used in this formulation led to 
some errors in response calculations. In order to eliminate this 
source of error the following methodology is proposed. 
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Transient Property Transfer Approach (TPTA) Formula­
tion. The formulation of TPTA, as given below, combines 
the finite element formulation and the discrete time transfer 
matrix formulation. Consider the element matrix equation of 
motion given by the equation (1) at time t = t:. 

[Me}{qUi)} + [Ce]lq{ti)} + {Ke}{q(ti)] = {F(ti)} (15) 

Substitution of the equations (2) and (3) into equation (15) will 
result in, 

[Ms]{A„(ti)qn(ti)+Sn(ti)}+[Ce]{Dn(ti)q„(ti) + En(ti)} 

+ [Ke]{q(ti)} = {F(ti)} (16) 

or 

[[Me\An (f,) + [Ce]D„ (f,) + [K"\] {qn (t,))+ [Me] {B„{t,)) 

+ [C][EH(t,)) = [F(tl)) (17) 

Expansion of this equation in terms of submatrices gives, 

K\i Kn v{ 1 
•**21 -^22 V2 
0 0 1 

fM qi \ 
I 1 J 

r/, = \h 
l i 

(18) 

where, 

Kn=mnA„ + cuD„ + ku 

Kl2 = ml2A„ + cl2Dn+kl2 

K2i=m2lAn + c2lDn+k2l 

K22 = m22A„+c21D„+k22 

v{ = muBl +ml2B2 + cuEl +cl2E2 

v2 = m2lBl + m22B2 + c2iEt + c22E2. 

Equation (18) can then be rewritten in terms of left and right 
nodal displacements and forces such that, 

(19) 
[Qz] 
\ fl = 
1 1 J 

- •^12 -^n j Kn l 

Ki\ ~K21Kn Kn K22KI2 

[o o 

*i 

s7 
1 J 

r*. 1 -;' 
l i 

where 
si = -Kr2

l(mnBi+mnB2 + cuEl +ci2E2) 

-K12K^(m„Bx +mi2B2 + cuEi +c12E2) 

+ m21Bl + m22B2 + c21£, + c22E2 

("]£ = -[S]{u}f (20) 

Thus, for an uniform shaft element with nodes 1 and 2, the 
matrix [S] in equation (20) gives the transfer matrix and vector 
|wj gives the state vector. Similarly, starting from point ele­
ment equations of motion, the following point element 
transfer matrix relation can be derived, such that, 

{u)f- [P][u] (21) 

The transfer matrix [7] for a general rotor-bearing finite ele­
ment can then be formulated by combining equations (20) and 
(21). That is, 

where 
[« j i = m i " i i 

m=[s\[p\. 

(22) 

Repetitive application of the transfer matrix relation (22) 
results in the following transfer relation for the entire rotor-
bearing system: 

{u}L = m,<[T\n-i m2mi{u)\ (23) 
With the application of proper boundary conditions and the 
initial conditions corresponding to time t = t-,_ x, the unknown 
generalized displacements and forces at the left end of the 

Table 1 Details of the rotor-bearing system shown in Fig. 1 

Type of bearings Plain cylindrical 
Bearing diameter (m) 0.0254 
Bearing L/D ratio 1.0 
Viscosity of oil at 25.5 degree C(N.s/m2) 0.024 
Disk mass (kg) 11.82 
Disk diameter (m) 0.2032 
Disk eccentricity (m) 0.001 
Shaft diameter (m) 0.022 
Totallength of rotor (m) 0.5105 
Modulus of elasticity for the shaft material (N/m2) 2.145 x 1011 

RPM 
MAX. AMPL1TUD 
AT TIME 
TIME RANGE 

Fig. 2 Orbital response of rotor at bearing location (TPTA) 

rotor can be solved for. Knowing this, at time t = /,-, the 
displacements at all the subsequent nodes can be obtained with 
the use of the equation (23). The nodal displacements at subse­
quent time instants (i.e., t = ti+l onwards) can be solved for 
by repetitively following the same steps. 

In the foregoing formulation, the model has been obtained 
by the transfer system properties and hence this approach is 
named as transient property transfer approach (TPTA). Equa­
tions (18) and (19) correspond to Dokainish's (1972) frequency 
domain finite element transfer matrix formulation. 

It should be noted that , as with the discrete time transfer 
matrix formulation, the TPTA can be used with any suitable 
time marching integration scheme which can be rewritten in 
the form of equations (2) and (3). In this study, the well 
known Houbolt's algorithm is used. This selection is based on 
the detailed sensitivity tests carried out by Subbiah et al., 
(1987). They tested different time marching algorithms (Bathe 
et al., 1976; Kumar et al., 1986) with different rotor con­
figurations and concluded that for rotor dynamic applications 
the Houbolt's algorithm provides required high stability and 
rapid convergence even with a time step of AT = period/30. 

Results and Discussion 

The TPTA has been used to study the dynamic response of a 
single rotor system supported on fluid film bearing which is 
shown in Fig. 1. The details of the rotor are given in Table 1. 
The transient orbital response obtained by the present in­
vestigation has been compared with those obtained using finite 
element method. In all the test cases considered, the number 
Of elements, the type of elements, and the time step used are 
all kept the same for both the TPTA and the finite element ap­
proach. And as mentioned earlier, Houbolt's method is 
employed here as the integrating procedure. Coincidentally, 
the finite element code used, namely ANSYS, also employs 
Houbolt's method for integration. The initial conditions re­
quired to start the analysis are obtained using/!,, = -co2, and 
Bn = Dn = E„ = 0. This helps to reach steady state condi-
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Rpy, = 1000 
MAX. AMPLITUDE = 0.301E -04 
AT TIME = 05115 SEC, 
TIME RANGE - 0,0 - 0.5985 SEC 

Fig. 3 Orbital response of rotor at bearing location (FEM) 

150 - ( - 150-1 

BEARING: 1 

D I S K ; 

T W0 

1 2 3 1 5 

Fig. 4 Five-disk and three-bearing rotor (Kikuchi, 1970) 

dons fast, resulting in considerable savings in computation 
time. 

The orbital plots obtained for the rotor, using the present 
method and the finite element method, are shown in Figs. 2 
and 3 for a rotor speed of 1000 rpm. The steady state of the 
rotor has been obtained within 5 cycles in both the cases. The 
discrepancy between these two results is almost negligible. In 
order to demonstrate the applicability of this approach to 
multi-span rotor-bearing system analysis, the multi rotor 
model of Kikuchi (1970) has been studied using the present ap­
proach. This rotor system consists of five disks and three bear­
ings as shown in Fig. 4. The results obtained for this rotor us­
ing TPTA and finite element approach shows negligible 
discrepancy. Hence, only one such orbital plot obtained by 
TPTA is shown in Fig. 5. Finally, the nonlinear bearing model 
developed by Hashish et al. (1982a, 1982b), has been adapted 
to study dynamic response of the single rotor system shown in 
Fig. 1 and the nonlinear orbital response is shown in Fig. 6. 
For small amplitude motions, the total orbital amplitude in 
Fig. 6 closely corresponds to the linear result as shown already 
in Fig. 2. 

The computational efficiency of TPTA is not appreciable in 
comparison with finite element approach when smaller rotor 
systems were studied. However, in the case of larger systems, 
the TPTA will lead to smaller computational effort. For ex­
ample, in the case of Kikuchi's rotor, the computational time 
on a PRIME 950 comptuer was worked out to be 5.37 CPU 
minutes for TPTA and 7.35 CPU minutes for FEM. 

Conclusions 

1 A transient property transfer approach has been 
developed to study the linear and nonlinear dynamic 
behavior of complex rotor-bearing systems in both space 
and time using the combined methodologies of FEM, 
transfer matrix method and time marching numerical in­
tegration techniques. 

2 The method presented in this investigation is capable of 
accommodating other subsystems such as pedestals, 
foundations, and mechanical couplings, etc. 

!P>1 = 1800 
.••'.AX. AMPLITUDE = 0.196E -01 
AT TIME = 0,1181 SEC. 
TIME RANGE = 0,0 - 0,125 SI 

Fig. 5 Orbital response of Kikuchi rotor at disk location #4 (TPTA) 

RPM 
MAX. AMPLITUDE 
AT TIME 
TIME RANGE 

= 
= = = 

1000 
n 
i) 
0 

289E -01 
snq 
u -

SEC. 
0.599 SEC 

Fig. 6 Nonlinear orbital response of rotor at bearing location (TPTA) 

3 The gyroscopic effects can be easily included in the 
model. System nonlinearities due to asymmetric shafts, 
nonlinear bearings and random pedestal motions can be 
studied by including their effects appropriately in the 
system model. 

4 The method not only provides an excellent correlation 
with the finite element method, but also handles small 
and manageable forms of matrices and, hence, the com­
puter effort is reduced to the largest extent possible. 
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