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ABSTRACT 

The hydrodynamic interaction of waves with arrays of 
vertical elliptical cylinders is considered. The present paper 
aims at developing of an efficient calculation method for 
predicting the extreme elevation of the free surface, in the fluid 
domain between ship-shaped structures in close proximity. 
Linear potential theory is employed and the solution method is 
based on the semi-analytical formulation of the various velocity 
potentials in elliptical coordinates, using series expansions of 
Mathieu functions and the so-called addition theorem for 
Mathieu functions.     
 
INTRODUCTION 

The present paper deals with an important subject which is 
of both practical and academic interest. Namely, the extreme 
surface elevation, that is often observed by operators, between 
ship shaped structures in offshore applications into the open 
sea, which is apparently caused due to the resonant motion of 
the fluid confined between the vessels. It has been reported that 
the concerned impact is more pronounced in specific areas, the 
location of which with regard to length of the vessel, depends 
on the wave frequency and evidently, on the angle of heading.  
 

Relevant hydrodynamic problems can be treated by 
numerical models which commonly implement panel methods. 
Nevertheless, panel methods are admittedly time consuming 
tools and strongly depend on the density of the grid. An 
alternative procedure is to approximate the required solutions 
analytically in cases where this is possible, which usually 
results to more robust, accurate and faster solution 
methodologies.  In order to achieve this, several difficulties 
must be surmounted.  
 

In the past, several researchers adopted analytical methods 
as tools for solving the hydrodynamic interaction problem 
among multiple bodies, usually for arrays of vertical cylinders 
(for example Mavrakos & Koumoutsakos (1987) for arbitrarily 
shaped multiple bodies of revolution with vertical symmetry 
axes, Spring & Monkmeyer (1974) and Linton & Evans (1990) 
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for bottom fixed, free-surface piercing vertical cylinders). An 
extended review of the developed methods for analyzing the 
hydrodynamic interactions among multiple bodies has been 
presented by Newnan (2001), Linton & McIver (2001) and 
McIver (2002). With regard to elliptical cylinders, the 
implementation of analytical methods involves several 
challenges which mainly originate from the geometric 
complexity. The incident and the diffracted waves should be 
expressed with respect to elliptical coordinate systems and from 
the mathematical point of view, as series expansions of 
Mathieu functions. This can be traced back to the fact that the 
solutions of the Laplace equation (the governing field equation 
for inviscid, irrotational and incompressible flows), are the 
periodic and radial Mathieu functions (Moon and Spencer, 
1971). Admittedly, Mathieu functions are not as popular as, say 
Bessel functions. In addition, different notations exist in the 
literature for representing these functions. Mathieu functions 
are referred as periodic and radial Mathieu functions (Meixner 
and Schäfke, 1954; Særmark, 1959; Nigsch, 2007), or even and 
odd periodic and radial Mathieu functions (Moon and Spencer, 
1971; McLachlan, 1947; Abramowitz and Stegun, 1970). It 
appears however that the notation that has prevailed relies on 
the even and the odd periodic and radial Mathieu functions.   
  

The works reported in the literature that treat the 
hydrodynamic interaction problem of incident wave fields with 
elliptical bodies using semi-analytical formulations, limit the 
investigation to single bodies (Williams, 1985a and 1985b; 
Williams and Darwiche, 1988). In order to consider arrays of 
elliptical cylinders and to provide a solution for the associated 
hydrodynamic problem, which apparently will involve the 
effect of the hydrodynamic interactions among the elliptical 
bodies, it is necessary to apply an addition theorem for Mathieu 
functions which should be similar in concept, with the well-
known Graf’s addition theorem for Bessel functions. The 
existence of an addition theorem for Mathieu functions in the 
notation Meixner and Schäfke (1954) was shown by Særmark 
(1959). Here, the addition theorem is properly treated in order 
to be expressed in terms of the even and the odd Mathieu 
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functions, which in turn allows the use of the even and odd 
periodic and radial Mathieu functions for representing the 
velocity potentials of the incident and the diffracted waves. 

FORMULATION OF THE HYDRODYNAMIC PROBLEM 
The arrangement of the elliptical cylinders depicted in Fig. 

1 (overview) is investigated. All bodies are considered fixed on 
the bottom. The bodies are exposed to the action of 
monochromatic incident waves of frequency ω and linear 
amplitude H/2, propagating at angle α to the positive x 
direction. The bodies are fixed in water of depth h. The large 
and the small radii of the kth body are denoted by ak and bk 
respectively.   
 

 
Figure 1: General arrangement. Coordinate systems and 
geometrical definitions  
 
Elliptical cylindrical coordinates (u,v,z) are employed, 
u=constant, v=constant being orthogonaly intersecting families 
of confocal ellipses and hyperbolae, respectively. The z-axis is 
fixed on the bottom, pointing vertically upwards. The 
transformation from Cartesian to elliptical coordinates is  
 

vucx coscosh=  (1) 
 

vucy sinsinh=  (2) 
 
where c=(a2-b2)1/2=aε, ε being the elliptic eccentricity given by 
ε2=1-(b/a)2. 
 
Higher order effects are neglected and the assumption is made 
that the fluid is inviscid, incompressible and irrotational. Thus, 
linear potential theory can be employed, meaning that the 
fluid’s motion can be described by the first-order velocity 
potential, which in elliptical coordinates is expressed as  
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It follows that the velocity potential must satisfy the Laplace 
equation  
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anywhere in the fluid domain, the kinematical condition on the 
bottom 
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and the linearized condition on the free surface 
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where g is the gravitational acceleration. 
 
The velocity potential must also satisfy the kinematical 
conditions on the wetted surface of all bodies 
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where u0 stands for the radial boundary of any body with 
respect to its local elliptical coordinate system.   
  
In the context of the linear theory, the velocity potential is 
decomposed into the incident wave potential Iϕ  and the total 
scattered potential that involves the scattering of waves by all 
bodies Sϕ . Thus  

SI ϕϕϕ +=  (8) 
 
In addition to Eqs. (4)-(6), the total scattered potential must 
satisfy an appropriate radiation condition which allows only 
outgoing waves at infinity. In elliptical coordinates it is 
expressed as  
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where k0 is the wave number given by the dispersion relation  
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INCIDENT WAVE POTENTIAL 

When dealing with a multibody arrangement, all velocity 
potentials which are involved in the associated hydrodynamic 
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problem should be expressed with respect to the local 
coordinates of each constituent body.  
 
Let (xk,yk,z) be the Cartesian coordinates of any point in the 
reference field with respect to the local Cartesian coordinate 
system of body k. Then, the incident wave potential will be 
given by  
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and   
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k
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where Xk, Yk are the Cartesian coordinates of the center of body 
k with respect to the global Cartesian coordinate system (Fig.1).  
 
The incident wave potential is now expressed in terms of the 
local elliptical coordinate system of body k (uk,vk,z) (Meixner 
and Schäfke, 1954).  
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In Eqs. (15) and (16) 2

0 )2/( kk ckq =  is the Mathieu 
parameter, );(me kkm qv  is the periodic Mathieu function and 

);(M )1(
kkm qu  is the radial Mathieu function (also referred as 

modified Mathieu function) of the first kind, in the notation of 
Meixner and Schäfke (1954).  
 
The notation adopted in the present work is that of Abramowitz 
and Stegun (1970). This requires the transformation of the 
Mathieu functions and the Modified Mathieu functions to even 
and odd periodic Mathieu functions );(ce kkm qv , );(se kkm qv  

and to even and odd radial Mathieu functions );(Mc )(
kk

j
m qu , 

);(Ms )(
kk

j
m qu  respectively. To this end, the following 

transformation formulas are used (Meixner and Schäfke, 1954) 
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In the Eqs. (19) and (20) the index (j) denotes the kind of the 
radial Mathieu functions.  
 
Using Eqs. (17)-(20), the incident wave potential, Eq. (15), is 
recast to  
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Eq. (21) represents the incident wave potential with respect to 
the local elliptical coordinate system of the arbitrarily selected 
body k. In order to apply the zero velocity condition on the 
wetted surface of body k, the total scattered potential due to the 
scattering of waves by all bodies, should be expressed with 
respect to the same coordinate system and in particular with 
respect to the local elliptical system of body k. This 
requirement is achieved with the analysis outlined in the 
following section.  
 
TOTAL SCATTERED POTENTIAL 

The total scattered potential around the kth body should 
include the wave scattering components from all bodies of the 
arrangement. As a result, it holds that 
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where N is the number of bodies being considered.  
 
The scattered wave field around the kth body of the multi-body 
arrangement, ( )k

Sϕ , that satisfies Eqs. (4) - (6) and (9), can be 
expressed in the elliptical coordinate system of body k in terms 
of the Mathieu functions and the Modified Mathieu functions as 
follows:  
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Here, );(M )3(

kkm qu  is the modified Mathieu function of the 

third kind, );(iM);(M);(M )2()1()3(
kkmkkmkkm quququ +=  and 

)(k
mF denote unknown coefficients, which will be obtained by 

applying the zero velocity condition on the wetted surfaces of 
all bodies when the total wave field around the body k, see Eq. 
(22),  is properly formulated.  
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Next, using again the expressions (17) - (20), Eq. (23) is 
transformed into 
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Apparently, the Fourier coefficients )(k

mF  in Eq. (23), have 

been replaced in Eq. (24) by )(k
mA  and )(k

mB .  
 
For convenience, we choose to work with the following form of 
the scattered potential:  
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where the artificially introduced terms )(Kc k

m  and )(Ks k
m  are 

given by 
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The primes herein, denote differentiation with respect to the 
argument of the associated Mathieu function and uk0 is the 
radial boundary of body k with respect to its local elliptical 
coordinate system. Now, in accordance to (22) by superposing 
the individual scattered wave fields around each body, Eq. (25), 
the total scattered wave field around the body k due to all 
bodies of the arrangement can be formulated as: 
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The goal herein is to express the total scattered wave field 

with respect to the local elliptical coordinate system of body k, 
as was done previously for the incident wave potential. Thus, 
the products of Mathieu functions in the last two terms of the 
right hand side of Eq. (28), expressed with respect to the local 
elliptical coordinate systems (uj,vj,z) of each body of the 
arrangement, should be reduced with respect to (uk,vk,z) of body 
k. This will be performed in the following section using the so-
called addition theorem for Mathieu functions.  
 
ADDITION THEOREM FOR MATHIEU FUNCTIONS 

The existence of an addition theorem for Mathieu functions 
was shown by Særmark (1959) who extended the formulas 
reported in Meixner and Schäfke (1954) in terms of the Bessel 
functions. In particular, Særmark (1959) showed that the 
addition theorem for Mathieu functions is described through the 
following relation (for the geometrical definitions, see Fig. 1): 
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where Jm and Ym are the Bessel functions of the first and the 
second kind respectively and Hm

(1)=Jm+iYm, Hm
(2)=Jm-iYm are 

the Hankel functions 
 

In Eq. (30) the coefficients )(, qd ppn−′  and )(, qd mms−  are 
given in terms of the complex expansion coefficients C, of the 
periodic Mathieu functions (Meixner and Schäfke, 1954; 
Særmark, 1959), namely 
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According to Særmark (1959) 
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Since the scattered wave field are expressed in terms of the 
even and odd periodic and radial Mathieu functions, it is more 
appropriate for calculation purposes, to replace the d and d’ 
coefficients with the A and B expansion coefficients, which are 
related to the even and odd periodic Mathieu functions 
according to  
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To this end, the associated relations that can be found in 
Meixner and Schäfke (1954) will be employed. In particular, 
after short mathematical processing it can be shown that the d 
and d’ coefficients which are involved in Eq. (30) can be given 
by 
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for n-p and s-m, both even, otherwise d and d’ are zero.  
 

The transformation formulas (17)-(20) enable introducing 
Eq. (29) into Eq. (28), which after extensive mathematical 
manipulations will obtain the following form 
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Eq. (41) represents the velocity potential of the total scattered 
wave field  with respect to the local elliptical coordinate system 
of the arbitrarily selected body k. The zero velocity condition 
on the wetted surface of body k, requires that 
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After introducing Eqs. (21) and (41) into Eq. (42), separating 
even and odd terms and equating the same orders of 
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Eqs. (43) and (44) represent a 2×(M+1)×N complex 

truncated linear system, where M is the number of Fourier 
coefficients being considered and N is the number of bodies. 
This system can be solved using efficient methods of linear 
algebra. Finally, the total velocity potential is given by 
superposing the incident waves and the scattered waves by all 
bodies, both expressed with respect to the local elliptical 
coordinate system of body k. Thus, using Eqs. (21) and (41) to 
calculate SI ϕϕ +  and substituting Eqs. (43) and (44) into the 
resulting product, the following simple formula is derived: 
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RESULTS AND DISCUSSION 
The derivation of the total velocity potential allows the 

numerical calculation of all quantities that determine the 
hydrodynamic behavior of the multibody arrangement, namely, 
the hydrodynamic loading, the hydrodynamic pressure 
distribution and finally, the free surface elevation, which 
constitutes the scope of interest of the present contribution.  
The non-dimensional spatial dependence of the free surface 
elevation around any body with respect to its elliptical 
coordinate system is given by  
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hvuh

H
hvu
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η
=  (46) 

 
A single characteristic test case is examined, that could 

simulate the approach of two ship-shaped structures. The two 
elliptical cylinders have the same dimensions and they have 
been placed parallel, with a normal imaginable connection arm 
(Fig. 2). Thus, a1=a2=a, b1=b2=b. In addition the following 
dimensions are considered: b/a=0.25, h/a=1.5 and R/a=2. The 
numerical results examine two angles of wave heading, namely, 
0o and 90o, (Figs 3-6 and 7-10 respectively) with respect to the 
global Cartesian coordinate system shown in Fig. 2. Here the 
global Cartesian coordinate system has been placed in the 
center of body 1.  
 

For the 0o of heading, the investigated frequencies of the 
incident waves correspond to k0a=0.8 and 3.0 (Figs. 3-4 and 5-
6, respectively), while for the 90o of heading the values of k0a 
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were taken equal to 1.5 and 2.5 (Figs. 7-8 and 9-10, 
respectively). For all frequencies and wave headings, the wave 
elevation is plotted using local elliptical coordinate systems of 
bodies 1 and 2. The plots must be seen separately as they 
correspond to different systems and apparently the locations 
where the contours are given do not coincide. As expected, for 
the 0o heading, according to which the waves propagate from 
negative to positive y-axis, the contours of the wave elevation 
exhibit apparent similarities. In fact, the contours around body 
1 are nearly a specular reflection of the contours around body 2. 
Also, it is very important to note that the flow in the 
intermediate region between the bodies is not uniform. In 
addition, the flow is completely different for different 
frequencies (k0a=0.8 and 3.0 in the present case). Figs. 3 and 4 
show that notable elevations occur, to the right of the bow of 
body 1 and to the left of the bow of body 2. A respective 
phenomenon is observed for the higher wave frequency (Figs. 5 
and 6). Here the flow has been completely disturbed, while the 
maxima of the wave elevation are detected just in front of the 
sterns and behind the bows of the bodies. Finally, it is 
immediately apparent that the waves do not propagate freely 
between the bodies, even in the low frequency case, as the 
diffraction phenomena are dominant.  

 
Figure 2: Test case. Two similar parallel elliptical cylinders 
 

For the 90o of heading (Figs. 7-10) the contours are 
obviously non catoptrical. The diffraction phenomena are again 
dominant and cause pronounced elevations in both the outside 
areas and between the bodies. The principal hydrodynamic 
action is exerted on body 1 which faces the front of the 
incoming waves (Figs. 7 and 9). The waves here propagate 
from negative to positive x-axis. The left sides of Figs. 7 and 9 
show the initiation of the diffraction phenomena which are 
followed by pronounced disturbances in the area between the 
bodies. The flow starts to be normalized after it has passed the 
protected body 2 (right sides of Figs. 8 and 10). The diffraction 
phenomena are more influential for the higher wave frequency 
case (Figs. 9 and 10) where the simulacrum of symmetry with 
respect to y-axis, that can be observed for k0a=1.5, vanishes 
completely. Finally, the plots for the 90o of wave heading, 
demonstrate that the second elliptical cylinder (body 2) is not 
fully protected as the wave elevation between the bodies 
obtains significant values.   
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Figure 3: Body 1, 0o heading, k0a=0.8 
 
 

 
 
 
Figure 5: Body 1, 0o heading, k0a=3.0 
 
 

 
 
Figure 7: Body 1, 90o heading, k0a=1.5 
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Figure 4: Body 2, 0o heading, k0a=0.8 
 

 
 
 
Figure 6: Body 2, 0o heading, k0a=3.0 
 
 

 
 
 
Figure 8: Body 2, 90o heading, k0a=1.5 
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Figure 9: Body 1, 90o heading, k0a=2.5 
 

CONCLUSIONS 
The hydrodynamic diffraction by arrays of elliptical 

cylinders was considered. The solution method was based on 
the semi-analytical formulation of the incident wave and the 
scattered wave field that were expressed in elliptical coordinate 
systems. The final solution was achieved using the addition 
theorem for Mathieu functions which for the purposes of the 
present contribution was expressed in terms of the even and 
odd periodic and radial Mathieu functions.  
 

The goal of the present paper was to estimate the basic 
characteristics of the wave elevation in the fluid domain that 
encompasses ship-shaped structures in close proximity. The 
numerical results show that, depending on the wave frequency 
and the angle of incidence, the diffraction phenomena may 
cause pronounced elevations of the free surface, both in the 
area outside the bodies and in the intermediate domain. It 
should be stated that the proper evaluation of the elevation in 
the intermediate area is of paramount importance for practical 
applications as it can lead to several unwanted wave-structure 
interaction impacts which are related to the resonance of the 
water field between the bodies.  
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Figure 10: Body 2, 90o heading, k0a=2.5 
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