A note on generalized absolute Cesàro summability

W.T. SULAIMAN ${ }^{\oplus *}$
(1) Department of Computer Engineering, College of Engineering, University of Mosul, Iraq
E-mail: waadsulaiman@hotmail.com
Received: 11-02-2011; Accepted: 12-20-2011 *Corresponding author

Abstract In the present paper, we give several improvements to the result of [2] concerning absolute Cesàro summablity of infinite series.

Key Words Cesàro summability, summability factor
MSC 2010 40D15

1 Introduction

Let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers, $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$, and let t_{n}^{α} we denote the n-th Cesàro means of order $\alpha>-1$ of the sequence $\left(n a_{n}\right)$, that is

$$
\begin{equation*}
t_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha}=O\left(n^{\alpha}\right), \quad \alpha>-1, \quad A_{-n}^{\alpha}=1, \quad n>0 \tag{1.2}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geqslant 1, \alpha>-1$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{1.3}
\end{equation*}
$$

and it is summable $\varphi-|C, \alpha|_{k}, k \geqslant 1, \alpha>-1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{1.4}
\end{equation*}
$$

$\varphi-|C, \alpha|_{k}$ summability reduces $\varphi-|C, 1|_{k}$ by taking $\alpha=1$ and $\varphi-|C, 1|_{k}$ reduces $|C, 1|_{k}$ summability by taking $\varphi_{n}=n$.

The following result has been proved by Özarslan [2]

Theorem 1.1. Let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers. If the conditions

$$
\begin{gather*}
\lambda_{m}=o(1) \text { as } m \rightarrow \infty, \tag{1.5}\\
\sum_{n=1}^{\infty} n \log n\left|\Delta^{2} \lambda_{n}\right|=O(1), \tag{1.6}\\
\sum_{v=1}^{m} \frac{\varphi_{v}^{k-1}}{v^{k}}\left|t_{v}^{\alpha}\right|^{k}=O(\log m), \text { as } m \rightarrow \infty, \tag{1.7}\\
\sum_{n=v}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha}}=O\left(\frac{\varphi_{v}^{k-1}}{v^{k+\alpha-1}}\right) \tag{1.8}
\end{gather*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, \alpha|_{k}, 0<\alpha \leqslant 1, k \geqslant 1$.
The object of the present paper is that to give three improvement to the theorem 1.1 as follows

1. Extending the scope by replacing logm in (1.7) by an almost increasing sequence X_{m},
2. Weakening the condition (1.7).
3. Weakening the condition (1.8).

2 Lemmas

The following lemmas are needed for our aim
Lemma 2.1. Let $\left(X_{n}\right)$ be an almost increasing sequence, then the condition

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}\left|t_{n}^{\alpha}\right|^{k}}{n^{k} X_{n}^{k-1}}=O\left(X_{m}\right) \tag{2.1}
\end{equation*}
$$

is weaker than the condition

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}\left|t_{n}^{\alpha}\right|^{k}}{n^{k}}=O\left(X_{m}\right) \tag{2.2}
\end{equation*}
$$

Proof. Let (2.2) satisfied, then

$$
\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}\left|t_{n}^{\alpha}\right|^{k}}{n^{k} X_{n}^{k-1}}=O\left(\frac{1}{X_{1}^{k-1}}\right) \sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}\left|t_{n}^{\alpha}\right|^{k}}{n^{k}}=O(1) \sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}\left|t_{n}^{\alpha}\right|^{k}}{n^{k}}=O\left(X_{m}\right)
$$

On the other hand if (2.1) is satisfied, then

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}\left|t_{n}^{\alpha}\right|^{k}}{n^{k}} & =\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}\left|t_{n}^{\alpha}\right|^{k}}{n^{k} X_{n}^{k-1}} X_{n}^{k-1} \\
& =\sum_{n=1}^{m-1}\left(\sum_{v=1}^{n} \frac{\varphi_{v}^{k-1}\left|t_{v}^{\alpha}\right|^{k}}{v^{k}}\right) \Delta X_{n}^{k-1}+\left(\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}\left|t_{n}^{\alpha}\right|^{k}}{n^{k}}\right) X_{m}^{k-1} \\
& =O(1) \sum_{n=1}^{m-1} X_{n}\left|\Delta X_{n}^{k-1}\right|+O(1) X_{m}^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) X_{m-1} \sum_{n=1}^{m-1}\left(X_{n+1}^{k-1}-X_{1}^{k-1}\right)+O(1) X_{m}^{k} \\
& =O(1) X_{m-1} X_{m}^{k-1}+O(1) X_{m}^{k}=O\left(X_{m}^{k}\right)
\end{aligned}
$$

Therefore (2.2) implies (2.1) but not conversely.
Lemma 2.2. Let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers. Then the condition

$$
\begin{equation*}
\sum_{n=v}^{m+1} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha k}}=O\left(\frac{\varphi_{v}^{k-1}}{v^{\alpha k+k-1}}\right) \tag{2.3}
\end{equation*}
$$

is weaker than (1.8).

Proof. Suppose that (1.8) is satisfied, then

$$
\sum_{n=v}^{m+1} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha k}}=\sum_{n=v}^{m+1} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha+\alpha(k-1)}}=O\left(\frac{1}{v^{\alpha(k-1)}}\right) \sum_{n=v}^{m+1} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha}}=O\left(\frac{\varphi_{v}^{k-1}}{v^{\alpha k+k-1}}\right)
$$

Now suppose that (2.3) is satisfied, then

$$
\sum_{n=v}^{m+1} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha}}=\sum_{n=v}^{m+1} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha k+\alpha-k \alpha}}=O\left(m^{\alpha(k-1)}\right) \sum_{n=v}^{m+1} \frac{\varphi_{n}^{k-1}}{n^{k+k \alpha}}=O\left(m^{\alpha(k-1)} \frac{\varphi_{v}^{k-1}}{v^{\alpha k+k-1}}\right) \neq O\left(\frac{\varphi_{v}^{k-1}}{v^{k+\alpha-1}}\right)
$$

Lemma 2.3. Let $\left(X_{n}\right)$ be an almost increasing sequence such that the conditions (1.5) and

$$
\begin{equation*}
\sum_{n=1}^{\infty} n X_{n}\left|\Delta^{2} \lambda_{n}\right|<\infty \tag{2.4}
\end{equation*}
$$

are satisfied, then

$$
\begin{gather*}
X_{n}\left|\lambda_{n}\right|=O(1), \quad \text { as } n \rightarrow \infty \tag{2.5}\\
\sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty \tag{2.6}\\
n X_{n}\left|\Delta \lambda_{n}\right|=O(1) \text { as } n \rightarrow \infty \tag{2.7}
\end{gather*}
$$

Proof. As $\Delta \lambda_{n} \rightarrow 0$, therefore we have

$$
\begin{aligned}
n X_{n}\left|\Delta \lambda_{n}\right| & =n X_{n} \sum_{v=n}^{\infty} \Delta\left|\Delta \lambda_{v}\right|=O(1) \sum_{v=n}^{\infty} v X_{v}|\Delta| \Delta \lambda_{v}| | \\
& =O(1) \sum_{v=n}^{\infty} v X_{v}\left|\Delta^{2} \lambda_{v}\right|=O(1)
\end{aligned}
$$

This proves (2.7). To prove (2.6), we observe that

$$
\sum_{v=1}^{m} X_{v}\left|\Delta \lambda_{v}\right|=\sum_{v=1}^{m-1}\left(\sum_{r=1}^{v} X_{r}\right) \Delta\left|\Delta \lambda_{v}\right|+\left(\sum_{v=1}^{m} X_{v}\right)\left|\Delta \lambda_{m}\right|
$$

$$
=O(1) \sum_{v=1}^{m-1} v X_{v}\left|\Delta^{2} \lambda_{v}\right|+O(1) m X_{m}\left|\Delta \lambda_{m}\right|=O(1) .
$$

Finally,

$$
X_{n}\left|\lambda_{n}\right|=X_{n} \sum_{v=n}^{\infty} \Delta\left|\lambda_{v}\right|=O(1) \sum_{v=n}^{\infty} X_{v}\left|\Delta \lambda_{v}\right|=O(1) .
$$

3 Main Result

We prove the following
Theorem 3.1. Let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers. If the conditions (1.5), (2.1), (2.3) and (2.4) are all satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, \alpha|_{k}, 0<\alpha \leqslant 1, k \geqslant 1$.

Proof. Let T_{n}^{α} be the n -th (C, α) means of the sequence ($n a_{n} \lambda_{n}$). Then by (1.1), we have for $0<\alpha \leqslant 1$,

$$
\begin{equation*}
T_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \lambda_{v} . \tag{3.1}
\end{equation*}
$$

Abel transformation gives

$$
\begin{aligned}
T_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{r=1}^{v} A_{n-r}^{\alpha-1} r a_{r}+\frac{\lambda_{n}}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \\
& =\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{v}^{\alpha} t_{v}^{\alpha} \Delta \lambda_{v}+\lambda_{n} t_{n}^{\alpha} \\
& :=T_{n 1}^{\alpha}+T_{n 2}^{\alpha} .
\end{aligned}
$$

To prove the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n r}^{\alpha}\right|^{k}<\infty, \quad j=1,2 .
$$

Now, applying Hölder's inequality, we have by Lemma 2.3

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n 1}^{\alpha}\right|^{k} & =\sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{v}^{\alpha} t_{v}^{\alpha} \Delta \lambda_{v} \frac{X_{v}}{X_{v}}\right|^{k} \\
& \leqslant \sum_{n=1}^{\infty} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha k}} \sum_{v=1}^{n-1} v^{\alpha k}\left|t_{v}^{\alpha}\right|^{k}\left|\Delta \lambda_{v}\right| X_{v}^{1-k}\left(\sum_{v=1}^{n-1} X_{v}\left|\Delta \lambda_{v}\right|\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \frac{\varphi_{v}^{k-1}}{X_{v}^{1-k}} v^{\alpha k}\left|t_{v}^{\alpha}\right|^{k}\left|\Delta \lambda_{v}\right|^{k} \sum_{n=v}^{m} \frac{\varphi_{n}^{k-1}}{n^{k+\alpha k}}
\end{aligned}
$$

$$
\begin{aligned}
&= O(1) \sum_{v=1}^{m} \frac{v\left|\Delta \lambda_{v}\right| \varphi_{v}^{k-1}}{v^{k} X_{v}^{k-1}}\left|t_{v}^{\alpha}\right|^{k} \\
&= O(1) \sum_{v=1}^{m}\left(\left(v\left|\Delta \lambda_{v}\right|\right)\right) \sum_{r=1}^{m-1} \frac{\varphi_{r}^{k-1}}{r^{k} X_{r}^{k-1}}\left|t_{r}^{\alpha}\right|^{k}+O(1)\left(m\left|\Delta \lambda_{m}\right|\right) \sum_{v=1}^{m} \frac{\varphi_{v}^{k-1}}{v^{k} X_{v}^{k-1}}\left|t_{v}^{\alpha}\right|^{k} \\
&= O(1) \sum_{v=1}^{m} v X_{v}\left|\Delta^{2} \lambda_{m}\right|+O(1) \sum_{v=1}^{m} X_{v}\left|\Delta \lambda_{v}\right|+O(1) m X_{m}\left|\Delta \lambda_{m}\right| \\
&=O(1) \\
&= \\
& \begin{aligned}
& \sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|T_{n 2}^{\alpha}\right|^{k}=\sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}}{n^{k}}\left|\lambda_{n} t_{n}^{\alpha}\right|^{k} \\
&=O(1) \sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}\left|t_{n}^{\alpha}\right|^{k}}{n^{k} X_{n}^{k-1}}\left(X_{n}\left|\lambda_{n}\right|\right)^{k-1}\left|\lambda_{n}\right| \\
& n^{k} X_{n}^{k-1}\left|t_{n}^{\alpha}\right|^{k} \mid \\
&=O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \frac{\varphi_{v}^{k-1}\left|t_{v}^{\alpha}\right|^{k}}{v^{k} X_{v}^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \frac{\varphi_{n}^{k-1}\left|t_{n}^{\alpha}\right|^{k}}{n^{k} X_{n}^{k-1}} \\
&=O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
&=O(1),
\end{aligned}
\end{aligned}
$$

in view of Lemma 2.3. This completes the proof of the theorem.

References

1 T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London. Math. Soc., 7 (1957), 113-141.
2 H. S. Özarslan, A note on generalized absolute Cesàro summability, Journal of Computational Analysis and Applications, 12 (2010), 581-585.

