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1 Introduction

Let (ϕn) be a sequence of positive real numbers,
∑

an be a given infinite series with the sequence

of partial sums (sn), and let tαn we denote the n-th Cesàro means of order α > −1 of the sequence (nan),

that is

tαn =
1

Aα
n

n
∑

v=1

Aα−1
n−v

vav, (1.1)

where

Aα

n = O(nα), α > −1, Aα

−n = 1, n > 0. (1.2)

The series
∑

an is said to be summable |C, α|
k
, k > 1, α > −1, if (see [1])

∞
∑

n=1

1

n
|tαn|

k
< ∞ (1.3)

and it is summable ϕ − |C, α|
k
, k > 1, α > −1, if (see [2])

∞
∑

n=1

ϕk−1
n

nk
|tαn |

k
< ∞. (1.4)

ϕ−|C, α|
k

summability reduces ϕ−|C, 1|
k

by taking α = 1 and ϕ−|C, 1|
k

reduces |C, 1|
k

summability

by taking ϕn = n.

The following result has been proved by Özarslan [2]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357597004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


W.T. Sulaiman: A note on generalized absolute Cesàro summability

Theorem 1.1. Let (ϕn) be a sequence of positive real numbers. If the conditions

λm = o(1) as m → ∞, (1.5)

∞
∑

n=1

n log n
∣

∣∆2λn

∣

∣ = O(1), (1.6)

m
∑

v=1

ϕk−1
v

vk
|tαv |

k
= O(log m), as m → ∞, (1.7)

m
∑

n=v

ϕk−1
n

nk+α
= O

(

ϕk−1
v

vk+α−1

)

(1.8)

then the series
∑

anλn is summable ϕ − |C, α|
k
, 0 < α 6 1, k > 1.

The object of the present paper is that to give three improvement to the theorem 1.1 as follows

1. Extending the scope by replacing logm in (1.7) by an almost increasing sequence Xm,

2. Weakening the condition (1.7).

3. Weakening the condition (1.8).

2 Lemmas

The following lemmas are needed for our aim

Lemma 2.1. Let (Xn) be an almost increasing sequence, then the condition

m
∑

n=1

ϕk−1
n

|tα
n
|
k

nkXk−1
n

= O(Xm), (2.1)

is weaker than the condition
m
∑

n=1

ϕk−1
n |tαn|

k

nk
= O(Xm). (2.2)

Proof. Let (2.2) satisfied, then

m
∑

n=1

ϕk−1
n |tαn|

k

nkXk−1
n

= O

(

1

Xk−1
1

) m
∑

n=1

ϕk−1
n |tαn|

k

nk
= O(1)

m
∑

n=1

ϕk−1
n |tαn |

k

nk
= O(Xm)

On the other hand if (2.1) is satisfied, then

m
∑

n=1

ϕk−1
n

|tα
n
|k

nk
=

m
∑

n=1

ϕk−1
n

|tα
n
|k

nkXk−1
n

Xk−1
n

=
m−1
∑

n=1

(

n
∑

v=1

ϕk−1
v

|tα
v
|k

vk

)

∆Xk−1
n

+

(

m
∑

n=1

ϕk−1
n

|tα
n
|k

nk

)

Xk−1
m

= O(1)
m−1
∑

n=1

Xn

∣

∣∆Xk−1
n

∣

∣+ O(1)Xk

m

74
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= O(1)Xm−1

m−1
∑

n=1

(

Xk−1
n+1 − Xk−1

1

)

+ O(1)Xk

m

= O(1)Xm−1X
k−1
m + O(1)Xk

m = O
(

Xk

m

)

.

Therefore (2.2) implies (2.1) but not conversely.

Lemma 2.2. Let (ϕn) be a sequence of positive real numbers. Then the condition

m+1
∑

n=v

ϕk−1
n

nk+αk
= O

(

ϕk−1
v

vαk+k−1

)

(2.3)

is weaker than (1.8).

Proof. Suppose that (1.8) is satisfied, then

m+1
∑

n=v

ϕk−1
n

nk+αk
=

m+1
∑

n=v

ϕk−1
n

nk+α+α(k−1)
= O

(

1

vα(k−1)

)m+1
∑

n=v

ϕk−1
n

nk+α
= O

(

ϕk−1
v

vαk+k−1

)

.

Now suppose that (2.3) is satisfied, then

m+1
∑

n=v

ϕk−1
n

nk+α
=

m+1
∑

n=v

ϕk−1
n

nk+αk+α−kα
= O

(

mα(k−1)
)

m+1
∑

n=v

ϕk−1
n

nk+kα
= O

(

mα(k−1) ϕk−1
v

vαk+k−1

)

6= O

(

ϕk−1
v

vk+α−1

)

.

Lemma 2.3. Let (Xn) be an almost increasing sequence such that the conditions (1.5) and

∞
∑

n=1

nXn

∣

∣∆2λn

∣

∣ < ∞, (2.4)

are satisfied, then

Xn |λn| = O(1), as n → ∞ (2.5)

∞
∑

n=1

Xn |∆λn| < ∞ (2.6)

nXn |∆λn| = O(1) as n → ∞. (2.7)

Proof. As ∆λn → 0, therefore we have

nXn |∆λn| = nXn

∞
∑

v=n

∆ |∆λv| = O(1)

∞
∑

v=n

vXv |∆ |∆λv||

= O(1)

∞
∑

v=n

vXv

∣

∣∆2λv

∣

∣ = O(1).

This proves (2.7). To prove (2.6), we observe that

m
∑

v=1

Xv |∆λv| =
m−1
∑

v=1

(

v
∑

r=1

Xr

)

∆ |∆λv | +

(

m
∑

v=1

Xv

)

|∆λm|
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= O(1)
m−1
∑

v=1

vXv

∣

∣∆2λv

∣

∣+ O(1)mXm |∆λm| = O(1).

Finally,

Xn |λn| = Xn

∞
∑

v=n

∆ |λv| = O(1)
∞
∑

v=n

Xv |∆λv| = O(1).

3 Main Result

We prove the following

Theorem 3.1. Let (ϕn) be a sequence of positive real numbers. If the conditions (1.5), (2.1), (2.3) and

(2.4) are all satisfied, then the series
∑

anλn is summable ϕ − |C, α|
k
, 0 < α 6 1, k > 1.

Proof. Let T α
n

be the n-th (C, α) means of the sequence (nanλn). Then by (1.1),we have for 0 < α 6 1,

T α

n
=

1

Aα
n

n
∑

v=1

Aα−1
n−v

vavλv. (3.1)

Abel transformation gives

T α

n =
1

Aα
n

n−1
∑

v=1

∆λv

v
∑

r=1

Aα−1
n−rrar +

λn

Aα
n

n
∑

v=1

Aα−1
n−vvav

=
1

Aα
n

n−1
∑

v=1

Aα

v tαv ∆λv + λntαn

: = T α

n1 + T α

n2.

To prove the theorem, by Minkowski’s inequality, it is sufficient to show that

∞
∑

n=1

ϕk−1
n

nk
|T α

nr|
k

< ∞, j = 1, 2.

Now, applying Hölder’s inequality, we have by Lemma 2.3

∞
∑

n=1

ϕk−1
n

nk
|T α

n1|
k

=

∞
∑

n=1

ϕk−1
n

nk

∣

∣

∣

∣

∣

1

Aα
n

n−1
∑

v=1

Aα

v tαv ∆λv

Xv

Xv

∣

∣

∣

∣

∣

k

6

∞
∑

n=1

ϕk−1
n

nk+αk

n−1
∑

v=1

vαk |tα
v
|k |∆λv|X

1−k

v

(

n−1
∑

v=1

Xv |∆λv|

)k−1

= O(1)
m
∑

v=1

ϕk−1
v

X1−k
v

vαk |tα
v
|k |∆λv|

k

m
∑

n=v

ϕk−1
n

nk+αk
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= O(1)

m
∑

v=1

v |∆λv |ϕ
k−1
v

vkXk−1
v

|tαv |
k

= O(1)
m
∑

v=1

((v |∆λv|))
m−1
∑

r=1

ϕk−1
r

rkXk−1
r

|tα
r
|k + O(1) (m |∆λm|)

m
∑

v=1

ϕk−1
v

vkXk−1
v

|tα
v
|k

= O(1)
m
∑

v=1

vXv

∣

∣∆2λm

∣

∣+ O(1)
m
∑

v=1

Xv |∆λv| + O(1)mXm |∆λm|

= O(1).

m
∑

n=1

ϕk−1
n

nk
|T α

n2|
k

=

m
∑

n=1

ϕk−1
n

nk
|λntαn|

k

=

m
∑

n=1

ϕk−1
n

|tα
n
|k

nkXk−1
n

(Xn |λn|)
k−1

|λn|

= O(1)
m
∑

n=1

ϕk−1
n

|tα
n
|
k

nkXk−1
n

|λn|

= O(1)
m−1
∑

n=1

∆ |λn|
n
∑

v=1

ϕk−1
v

|tα
v
|
k

vkXk−1
v

+ O(1) |λm|
m
∑

n=1

ϕk−1
n

|tα
n
|
k

nkXk−1
n

= O(1)
m−1
∑

n=1

|∆λn|Xn + O(1) |λm|Xm

= O(1),

in view of Lemma 2.3. This completes the proof of the theorem.
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