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Abstract

This paper presents a model-aided approach to the development of catalysts for CO
oxidation. This is in contrast to the traditional methodology whereby experiments are
guided based on experience and intuition of chemists. The proposed approach oper-
ates in two stages. To screen a promising combination of active phase, promoter and
support material, a powerful “space-filling” experimental design (specifically, Hammer-
sley sequence sampling) was adopted. The screening stage identified Au-ZnO/Al2O3

as a promising recipe for further optimization. In the second stage, the loadings of
Au and ZnO were adjusted to optimize the conversion of CO through the integra-
tion of a Gaussian process regression (GPR) model and the technique of maximizing
expected improvement. Considering that Au constitutes the main cost of the cata-
lyst, we further attempted to reduce the loading of Au with the aid of GPR, while
keeping the low-temperature conversion to a high level. Finally we obtained 2.3%Au-
5.0%ZnO/Al2O3 with 21 experiments. Infrared reflection absorption spectroscopy and
hydrogen temperature-programmed reduction confirmed that ZnO significantly pro-
motes the catalytic activity of Au.

Keywords: Carbon monoxide oxidation, Design of experiments, Heterogeneous
catalysis, Model-aided process optimization, Model uncertainty, Response surface
methodology

1. Introduction

CO is a highly noxious gas that needs to be removed, usually through catalytic
oxidation, in many applications, such as gas masks, indoor air quality control systems
and automobile exhaust treatment devices. CO is also known to deactivate the electro-
catalysts in hydrogen fuel cells [1]. In addition, CO oxidation is regarded as a general
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reaction for investigating the activity of oxidation catalysts [2]. Low-temperature activ-
ity is preferred in this study, since low-temperature reaction is environmentally friendly
and cost effective in terms of equipment requirements.

The catalysts that have been developed for CO oxidation so far may be classified
into two categories: (1) noble metal catalysts and (2) transition metal oxide catalysts
[3]. Noble metal catalysts often use Pt, Ru, Rh, Pd or Au as active phase, with support
materials ranging from Al2O3, SiO2, zeolite and CeO2. A few catalysts were demon-
strated to present high activity, such as Ru/Al2O3 [4], Rh/Al2O3 [5], Au-ZnO/SiO2

[6], Au/TiO2 [7] and Pt/Al2O3 [8]. Transition metal catalysts have great potential
due to the low cost, though their performance is generally inferior to that of the noble
metals. Co3O4 [9], MoO3/CeO2 [10] and CuO/CeO2 [11] are the most important transi-
tion metal catalysts with demonstrated high activity. In addition, CuO was shown as a
cost-effective active phase in CuO-CeO2/Al2O3 [12] and CuO-ZnO/TiO2 [13] catalysts.

Currently, the development of catalysts is usually based on experiments under the
guidance of experience and intuition of chemists. In the presence of multiple factors
that affect the activity, usually one factor is varied with other factors being fixed for
conducting experiments. Subsequently, this procedure is repeated for each factor to
search for the “optimal” performance. This one-factor-at-a-time method has long been
recognized as ignorant of the correlation between factors, resulting in ineffective explo-
ration of the factors’ space [14]. As a result, a more rational and systemic approach,
based on mathematical models, is needed for the design and optimization of catalysts.

Data-based models (also termed empirical models) play an important role in model-
aided catalyst development and interpretation [15, 16, 17, 18]. They are developed
purely based on experimental data, with the possibility to incorporate prior knowl-
edge (though not compulsory). Due to limited experimental resources, the procedure
for developing a new catalyst usually includes two stages: screening for metal/support
combinations and then adjusting the loading of the components. The statistical method
of design of experiments (DoE) can be applied to the screening step with limited experi-
ments. At the second stage, DoE, data-based modeling and mathematical optimization
approaches can be applied to adjust the loading of catalyst components (and sometimes
the reaction conditions). This model-aided technique is also termed response surface

methodology (RSM) [14].
The general model-aided process design has been investigated in recent years with

emerging applications in catalysis [19, 20, 21, 17, 22, 23, 24, 25, 26, 27]. The main
components in these previous reports include quantitative property activity relationship
(QSAR), genetic algorithms (GA) and artificial neural network (ANN), generally based
on high-throughput experimentation (HTE). When HTE is not available (as in our
laboratory) and thus nor are the large amount of data, the principle of QSAR and the
use of ANN may be questionable [28].

In the current study, we integrate several state-of-the-art computational methods to
search for optimal catalysts for CO oxidation. The catalyst screening stage was facili-
tated by the application of Hammersley sequence sampling, a space-filling DoE method
that has been shown to provide better coverage of design space than traditional DoE
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methods [29]. The screening experiments suggested to focus on Au-ZnO/Al2O3, a
catalyst that has not be intensively investigated previously for CO oxidation. To fur-
ther optimize the catalyst performance, a Gaussian process regression (GPR) model
is developed from experimental data to relate the CO conversion to the loadings of
Au and ZnO. GPR has been shown to attain both accurate prediction and reliable
quantification of its own prediction uncertainty (in terms of variance) [30, 31]. The lat-
ter property is especially important for our model-aided optimization strategy, namely
maximization of expected improvement (EI), since a large variance suggests that the
experimental data around this point are not sufficient to give a reliable prediction and
thus more experiments should be allocated. The criterion of EI jointly considers the
predictive mean and variance leading to a theoretically guaranteed global optimum
[32]. The effectiveness of the optimization methods, in particular the use of GPR and
EI, has been demonstrated elsewhere through both experiments and computer simula-
tions [30, 31, 32]. This work is the first to report the application of such an integrated
framework for the optimization of catalysis systems. The proposed approach suc-
cessfully identified a high-performance catalyst 4.9%Au-5.0%ZnO/Al2O3. The other
contribution of this paper is to demonstrate that the GPR model can also be used
to help reduce the loading of Au with marginal deterioration of catalyst activity, a
strategy to reduce the cost of catalyst.

This is a powerful tool to aid the decision with regard to the compromise between
performance and cost in practice.

2. Experimental

2.1. Catalyst preparation

Catalysts were prepared by the single-step co-precipitation method [33]. First,
certain amount of corresponding precursors of active phase (noble metal), promoter
(metal oxide) and support (another metal oxide) were loaded into a round-bottomed
flask (capacity: 50 ml), followed by adding sufficient amount of urea and 20 ml of
deionized (DI) water. The mixture was gradually heated to 90 ℃ and maintained for
6 h under continuous agitation by magnetic stirrer. Subsequently, the flask was cooled
down to room temperature and aged overnight. The precipitate was filtered, thoroughly
washed with DI water for three times, and then dried at 100 ℃ overnight. The ground
powder was then calcined in air at 300 ℃ for 4 h (the calcination temperature was
reached from room temperature with a heating rate of 2 ℃ · min−1). Finally, the
calcined sample was naturally (without control) cooled to room temperature.

2.2. Catalyst characterization

X-ray diffraction (XRD) patterns were obtained by a Bruker D8 advance powder
diffractometer equipped with a monochromatic Cu-Kα radiation source (lambda =
0.15406 nm), operating at 40 kV and 40 mA. Diffraction data were collected in the
range of 2θ from 10° to 80°with a resolution of 0.05° (2θ).
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Nitrogen physiorption isotherms were carried out on a Quantachrome Autosorb-6b
static volumetric instrument. The calcined samples were degassed at 250 ℃ under
high vacuum for 3 h prior to the adsorption-desorption isotherm measurement at −196
℃ . The specific surface area was estimated by the five-point BET method.

The in-situ infrared reflection absorption spectroscopy (IRAS) was collected on a
PerkinElmer Spectrum One FT-IR spectrometer using CO as probe molecules. The
sample was mixed with KBr in a 1:2 mass ratio then pressed into pellet. The pellet was
then placed into an in-situ IR cell with CaF2 windows. A thermal pretreatment was
conducted in He flow at 250 ℃ for 2 h with a heating rate of 2 ℃ · min−1 to remove
the moisture. After cooled down to room temperature, the sample cell was switched to
pure CO flow (99.5%) and maintained for 0.5 h. The adsorption spectra were recorded
at room temperature with parameters: 4000-900 cm−1, resolution of 1 cm−1, and scan
for 1 min.

The reducibility of the sample was investigated by hydrogen temperature-programmed
reduction (H2-TPR) using Autosorb-1C (Quanta Chrome), equipped with a thermal
conductivity detector (TCD). Before running the H2-TPR, 300 mg of the sample was
loaded in a quartz reactor, pretreated by ultra zero grade air at 300 ℃ for 1 h and then
cooled down to room temperature to form a clean surface. Thereafter, the gas flow
was switched to 5 vol.% hydrogen with argon balance and the baseline was monitored
until stable. After baseline stabilization, the sample cell was heated to 1000 ℃ with
a heating rate of 10 ℃ · min−1 and kept for 1 h to ensure complete reduction.

Transmission electron microscopy (TEM) was conducted on a JEOL JEM-2010
operated at 200 kV. The samples were suspended in ethanol and dried on holey carbon-
coated Cu grids before observation.

2.3. Activity test

The catalytic activity was evaluated in a fixed-bed flow reactor. The pretreatment
was conducted in a gas mixture of H2 (6 ml min−1) and He (20 ml min−1) at 300 ℃

for 3 h. One hundred mg of catalyst was used for each test with the gas flow mixed of
CO (2 ml min−1), O2 (10 ml min−1) and He (100 ml min−1). The composition of the
effluent gas was analyzed using an online GC-6890N (Agilent Technologies) equipped
with a 10 ft × 1/8 in × 2.1 mm 100/120 Carbosieve SII column. The CO conversion
was calculated on a molar basis.

3. Data-based modeling and model-aided optimization

The proposed model-aided catalyst design methodology includes the following three
components:

1. DoE to allocate appropriate initial experiments for catalyst screening.

2. Development of an empirical model from the experimental data.

3. Model-based optimization to search for next-iteration experiment(s) that give
(predicted) maximal conversion.
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This is an iterative approach and should terminate when the improvement of catalyst
performance becomes small. A brief overview of these components is given in the rest
of this section.

3.1. Design of Experiments

DoE is widely used to allocate experimental points for data-based modeling, since
it provides good coverage in the factors space and results in a more accurate model.
In model-aided catalyst design, DoE can be applied to help screen catalysts in terms
of metal/support combinations, as well as to design experiments for optimizing the
loading of components and reaction conditions.

Based on the randomization, replication and blocking principles of DoE, the clas-
sical fractional factorial and central composite designs were proposed to estimate the
correlation between process factors based on polynomial models [14]. Typically, two or
three pre-determined levels are assigned for each process factor, and then experiments
are conducted at the combinations of the levels of these factors. Factorial designs are
favorable in simple cases in which the factors are difficult to change. Nevertheless,
these approaches perform poorly in complex processes due to limited levels of the fac-
tors being studied, giving a less reliable data-based model [34]. The recognition of this
disadvantage of classical DoEs has motivated the concept of “space-filling” designs that
allocate design points to be uniformly distributed within the range of each factor [34].

One straightforward space-filling design is to generate Monte Carlo random samples,
which requires a large number of experiments. To overcome this problem, stratified
and deterministic sampling methods have been investigated to provide a good coverage
of the input space with minimal number of design points, such as Latin hypercube
sampling (LHS) [35], uniform design (UD) [34] and Hammersley sequence sampling
(HSS) [29]. In this study, the HSS design is adopted, because it has been shown to
attain improved uniformity over random sampling and LHS, and its implementation is
significantly easier than that of UD. In addition, empirical comparison demonstrated
that HSS and UD usually achieve comparable results [36].

The basis of HSS design is that any integer n can be rewritten in a radix notation
of another integer R as follows:

n ≡ n0n1n2 · · ·nm−1nm

= nm + nm−1R + nm−2R
2 + · · ·+ n1R

m−1 + n0R
m (1)

where m is the integer part of logR n. A function of n, defined as inverse radix number,
can be constructed by reversing the order of the digits of n and concatenating them
behind a decimal point:

ψR(n) = 0.nmnm−1 · · ·n2n1n0

= nmR
−1 + nm−1R

−2 + · · ·+ n1R
−m + n0R

−m−1 (2)
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Therefore, if n design points, each being a vector of dimension d, need to be allocated
by HSS design, the first d − 1 prime numbers should be selected as the integer R in
Eq. (1): R1, R2, · · · , Rd−1. The design points are given by

xi = 1−

[

i

n
, ψR1

(n), ψR2
(n), · · · , ψRd−1

(n)

]T

(3)

where i = 1, 2, · · · , n and 1 is a unity vector.

3.2. Gaussian process regression

GPR, originally initiated in the statistical community, has gained significant atten-
tion as a powerful modeling tool for general scientific and engineering tasks [30, 31, 37,
38]. Compared with other popular modeling methods like ANN, GPR has been demon-
strated to give more reliable predictive performance [31, 39]. In addition, the Bayesian
origin of GPR automatically provides the uncertainty (variance) of prediction, which
is indispensable to robust model-aided optimization [30, 31, 32]. In this study, GPR
was implemented to develop a data-based model to relate the CO conversion to Au
and ZnO loadings, and it formed the basis of model-based optimization.

Specifically, GPR aims at relating the scalar process response y to the d-dimensional
factor x. Given a set of experimental data of size n: {xi, yi; i = 1, . . . , n}, a GPR is
defined such that the regression function y(x) has a Gaussian prior distribution with
zero mean, or in discrete form:

y = (y1, . . . , yn)
T ∼ G(0,C) (4)

where C is an n× n covariance matrix, whose ij-th element is defined by a covariance
function: Cij = C(xi,xj). A widely used covariance function is:

C(xi,xj) = a0 + a1

d
∑

k=1

xikxjk + v0 exp

(

−

d
∑

k=1

wk(xik − xjk)
2

)

+ σ2δij (5)

where xik is the k-th variable of xi; δij = 1 if i = j, otherwise δij = 0. The covariance
function is parameterized by θ = (a0, a1, v0, w1, . . . , wd, σ

2)T, which is termed “hyper-
parameters” due to the origin in Bayesian non-parametric statistics. As such, GPR
may also be derived from the principle of Bayesian non-parametric regression; see [39]
for more details together with discussion of other forms of covariance functions.

For a new data point with factor x∗, the predicted response y also follows a normal
distribution, of which the mean (ŷ∗) and variance (σ2

ŷ∗) are

ŷ∗ = kT(x∗)C−1y (6)

σ2
ŷ∗ = C(x∗,x∗)− kT(x∗)C−1k(x∗) (7)

where k(x∗) = [C(x∗,x1), . . . , C(x
∗,xn)]

T.
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The hyper-parameters can be estimated by maximizing the logarithm of the like-
lihood function defined in Eq. (4): L = log p(y|θ,X). A Matlab implementation
of GPR, based on the conjugate gradient method, is publicly available from http:

//www.gaussianprocess.org/gpml/code/matlab/doc/ [39], and it is used in this
study. In addition, to ensure numerical stability, the data may be linearly transformed
to the range of [−1, 1] at each process factor.

3.3. Model-based optimization

The developed GPR forms the basis for catalyst optimization. A straightforward
method is to find the input x∗ that gives the best predicted process response, and then
conduct new experiment at x∗. Subsequently, the model is updated by including all
available data. The procedure continues until the improvement of process response
becomes smaller than a threshold. However, this approach ignores the fact that model
prediction is not perfect and carries uncertainty, which is represented by prediction
variance of GPR. A large variance suggests that the experimental data around this
point are not sufficient to give a reliable prediction. Therefore, both predictive mean
and variance must be jointly considered in the optimization algorithm. Otherwise, the
algorithm is likely to find only a local, not global, optimum [32]. In the literature, a few
methods have been suggested to handle prediction uncertainty, including maximization
of lower or upper prediction bound [30, 31], minimization of information free energy
[40], maximization of relative information gain [41], and maximization of expected im-
provement (EI) [32]. The criterion of EI incorporates the predictive mean and variance
in a rigorous statistical framework, as opposed to user-determined weighting of the
impact of mean and variance in other methods. Therefore, EI is adopted in this study
to identify the loading of components that are likely to improve the process response
and/or prediction accuracy.

Specifically, let y(x) be the prediction at x from a GPR model. For a maximization
problem, the predicted improvement over the best response obtained through experi-
ments so far (denoted fbest) at x is thus I(x) = y(x) − fbest. Since y(x) is Gaussian
distributed with mean ŷ and variance σ2

ŷ , the improvement I(x) is also Gaussian dis-
tributed with mean ŷ − fbest and the same variance. Therefore, the expectation of
improvement at x is [32]:

EI(x) = E[max{0, I(x)}] =

∫

∞

0

Ip(I)dI

= σŷ[uΦ(u) + φ(u)] (8)

where u = (ŷ − fbest)/σŷ, Φ(·) and φ(·) denote the cumulative distribution function
and density function of standard normal distribution, respectively. Note that both ŷ
and σŷ, obtained from the prediction using the GPR, are functions of process factors x.
Thus EI is also a function of x. EI will increase if the mean prediction is greater than
fbest and/or the predictive variance is large, and thus further experiments should be
conducted at this region. Therefore, we search for process factors x that maximizes EI,
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a task that can be accomplished by standard mathematical optimization technology
(e.g. gradient based methods).

4. Results and discussion

4.1. Catalyst screening

For the CO oxidation reaction, the attention was restricted to developing a catalyst
whose active phase is a noble metal, promoter is a metal oxide and support is another
metal oxide. Based on available resources, four choices were assigned to each compo-
nent, as given in Table 1. The precursors of these chemicals were also listed in Table
1, while SiO2 was directly purchased (Cab-osilrM5, Riedel-de Haën). In addition,
(C4H9O)4Ti is titanium n-butoxide and (C5H8O2)2Co is cobalt acetylacetonate.

(Table 1 about here)

HSS was applied to allocate 12 experimental points (n = 12), with five factors
(d = 5): choice of active phase, promoter and support, and the loading of active
phase and promoter. The choice of active phase, promoter and support are discrete
factors, which can only be assigned to four distinct values, corresponding to four choices
of each factor. The range of the two loading factors was set to 1.0 wt.%-5.0 wt.%.
The 12 experiments designed by HSS are shown in Table 2, which does not include
all possible combinations of the three discrete factors, since doing so would require
4 × 4 × 4 = 64 experiments even with fixed loadings of active phase and promoter.
To consider five factors simultaneously, even more experiments are needed and this is
not feasible due to the limited resources in this work. In this regard, HSS, and DoE
methods in general, may miss some potentially highly active catalysts. Nevertheless,
under the same constraint of resources, statistical DoE methods have been shown to
be more desirable than the one-factor-at-a-time method [14].

(Table 2 about here)

The catalyst activity is presented in Fig. 1. Since the objective is to find a maximal
CO conversion at low temperature, Au-ZnO/Al2O3 (No. 3 in Table 2) was chosen for
further optimization since it performed significantly better than the others.

(Fig. 1 about here)

4.2. Adjust loading of components

A GPR model was developed to optimize the loadings of Au (active phase) and
ZnO (promoter) in order to reach a maximal CO conversion at low temperature. The
loadings of active phase and promoter were considered as factors (x) and the activity
as response (y). In this case study, activity was defined as the average conversion
under 40 ℃ , 60 ℃ and 80 ℃ , as a catalyst with superior low-temperature activity
is preferred. Clearly, a single data point (3.4%Au-2.7%ZnO/Al2O3) is not enough to
develop a reasonable model. In addition, the interaction between Au and ZnO is worthy
studying. Hence, two additional catalysts, 1.0%Au/Al2O3 and 5.0%Au/Al2O3, were
tested. The resultant activity is shown in Fig. 2.
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(Fig. 2 about here)

With these three data points1, a GPR model was developed and EI was applied
to search for the next experimental point that has the potential to further improve
the activity. The results are summarized in Table 3. The next experiment, 4.9%Au-
5.0%ZnO/Al2O3, was selected because it maximized the EI (max(EI)=1.56). This
catalyst turned out to present close to 100% conversion at all temperatures between
40 to 220 ℃ (thus by above definition its activity is also close to 100 %). After
incorporating this data point to update the GPR model, the maximal value of EI
decreased dramatically to 7.57×10−5, suggesting that further improvement in activity
is unlikely and the optimization procedure may terminate. The same conclusion may
be reached by observing the almost full CO conversion, and thus it is unlikely to further
improve the catalyst activity.

(Table 3 about here)

Considering that Au is a noble metal and constitutes the main cost of the catalyst,
we further attempted to reduce the loading of Au while keeping the conversion under
low temperature at a high level. Note that the loading of ZnO was also considered
as a factor instead of being fixed at 5.0 %. The following model-aided approach was
applied for this purpose:

1. Develop a GPR model using all available data to relate the catalyst activity
(response) to the loadings of Au and ZnO (factors).

2. Search for the lowest Au-loading that still gives the predicted mean conversion
higher than 95 %. Conduct experiment to test the actual activity.

3. Use the obtained data to validate the model accuracy. Terminate when the model
prediction is close to the actual activity; otherwise go to step 1.

Table 3 (Run 5-10) presents the results by following the above approach. In the
entire Au-loading reduction procedure, ZnO loading was set by the optimization algo-
rithm to the upper bound (5 %), indicating the importance of having sufficient ZnO.
The poor prediction at Run 7 is largely because the region of low Au and high ZnO
loading was not well explored in the previous experiments. This is the fundamental
limitation of data-based modeling whereby prediction at unvisited space is poor. How-
ever, this is also important information to suggest that more data should be collected
around these regions to improve the model. The iterative Au-loading reduction proce-
dure terminated after Run 10 since the actual activity was very close to the prediction,
resulting in the desirable catalyst 2.3%Au-5.0%ZnO/Al2O3.

1A more rigorous method is to apply statistical DoE method, e.g. HSS, to allocate initial data
points, followed by developing GPR model and model-based optimization. Incidentally, we found
in this study that initiating from these three data points resulted in excellent catalyst. In general,
rigorous initial DoE should be adopted in practice.
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Clearly, the choice of tolerable activity degradation (from 100 % to 95 %) is rather
subjective. The reduction of gold content is at the expense of reduction of activity.
Whether this is financially justifiable needs to be carefully examined in practice. Never-
theless, this study demonstrated a viable model-based solution, if the trade-off between
catalyst cost and process profit is to be investigated.

To further investigate the interaction between Au and ZnO, two more catalysts,
2.3%Au/Al2O3 and 5.0%ZnO/Al2O3, were tested (Fig. 3). Clearly, ZnO significantly
promotes the catalytic activity of Au since 2.3%Au-5.0%ZnO/Al2O3 performs better
than 2.3%Au/Al2O3, while 5.0%ZnO/Al2O3 presents very low activity.

(Fig. 3 about here)

4.3. Characterization

Three catalyst, 2.3%Au-5.0%ZnO/Al2O3, 5.0%ZnO/Al2O3 and 2.3%Au/Al2O3, were
characterized by BET, XRD, TEM, H2-TPR and IRAS, for component validation and
interaction investigation purposes.

The specific surface area of 2.3%Au-5.0%ZnO/Al2O3, 5.0%ZnO/Al2O3 and
2.3%Au/Al2O3 is 53.4, 268.5 and 458.2 m2· g−1, respectively. Compared with the
corresponding activities, specific surface area does not show strong correlation with
the catalytic activity.

XRD patterns are presented in Fig. 4, where the peak at 2θ = 37° corresponds to
the typical pattern of Au species [42]. The results confirm that Au species only exist
in (a) and (c). The peaks of ZnO species are not observable in the XRD patterns,
suggesting that they are highly dispersed over the support and cannot be detected by
XRD.

(Fig. 4 about here)

Fig. 5 shows the TEM images of the three catalysts. The particles on Au-
ZnO/Al2O3 (Fig. 5(a)) and Au/Al2O3 (Fig. 5(c)) had uniform size and distribution,
while TEM image of ZnO/Al2O3 (Fig. 5(b)) presents no observable particle. This
is consistent with the XRD result, which indicates that the ZnO species were highly
dispersed. In addition, the Au species were confirmed to be particles by TEM images.

(Fig. 5 about here)

Fig. 6 gives the TPR patterns. In the curves of Au-ZnO/Al2O3 and ZnO/Al2O3,
the peak around 510 ℃ corresponds to the reduction of ZnO [43] and the shift of
peak was marginal. TPR patterns of Au-ZnO/Al2O3 and Au/Al2O3 reveal that the
peak around 300 ℃ , corresponding to the reduction of gold species, shifts to lower
temperature when ZnO is added. This peak shift phenomenon suggests the existence
of significant interactions between Au and ZnO.

(Fig. 6 about here)
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Results of IRAS are shown in Fig. 7. By comparing these three patterns, we suggest
that the peaks between 2100 and 2200 cm−1 are part of the baseline, while the peak at
2060 cm−1 presents the absorbance strength of IR. Since the IR absorbance strength is
proportional to the adsorption amount of CO, the figure indicates that Au-ZnO/Al2O3

and Au/Al2O3 present significantly stronger adsorption of CO than ZnO/Al2O3. This
observation confirms that Au is the active phase and adsorbs CO in the reaction.
The higher absorbance strength of Au-ZnO/Al2O3 than that of Au/Al2O3 indicates
that ZnO promotes the CO adsorption capacity of Au. This hypothesis has also been
verified by the higher activity of Au-ZnO/Al2O3 during reactions, since the adsorption
capacity of active phase is generally proportional to catalytic activity.

(Fig. 7 about here)

In summary, the characterization studies demonstrate that Au species are in par-
ticle form while ZnO species disperse uniformly over the support; there is significant
interaction between Au and ZnO, and the CO adsorption capacity of Au is significantly
promoted by introducing ZnO, resulting in improved activity for CO oxidation.

5. Conclusions

This paper presents a suite of computational tools, including HSS for space-filling
DoE, GPR for modeling and EI for model-based optimization with uncertainty, to aid
the development of high-performance catalysts for CO oxidation. These tools have
been shown to be useful for catalyst screening, optimization and other related deci-
sion making (e.g. making a compromise between catalyst activity and cost). Finally,
2.3%Au-5.0%ZnO/Al2O3 was successful identified for cost-effective low-temperature
CO oxidation with a total of 21 experiments. Furthermore, XRD and TEM confirmed
the form of chemical species in this catalyst. The other two characterization techniques,
H2-TPR and IRAS, suggested the existence of significant interaction between Au and
ZnO. Adding ZnO clearly promotes the CO adsorption capacity of Au, resulting in
improved activity for CO oxidation.

In a broader perspective, the methodology of data-based modeling and optimization
has seen a rapid development in recent years, and the proposed approach falls within
this family. A rigorous and comprehensive assessment of current methods is clearly
needed, and it will be pursued in the future.
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Table 1: Catalyst components considered in the screening stage.

Component Component choice Corresponding precursor MW of precursor
Au HAuCl4 · 3H2O 393.83
Ru RuCl3 · nH2O 207.43

Active Phase Pd Cl2Pd · 2HCl 250.32
Pt H2PtCl6 · 6H2O 517.90

MnO2 Mn(NO3)2 · 4H2O 251.01
CuO Cu(NO3)2 · 2.5H2O 232.59

Promoter ZnO Zn(NO3)2 · 6H2O 297.48
MgO Mg(NO3)2 · 6H2O 256.41
Al2O3 Al[OCH(CH3)2]3 204.25
Co3O4 (C5H8O2)2Co 257.15

Support TiO2 (C4H9O)4Ti 340.50
SiO2 – –
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Table 2: Screening experiments designed by HSS.

No. Noble metal (loading, wt.%) Promoter (loading, wt.%) Support
1 Au (1.8) CuO (1.6) Co3O4

2 Au (2.6) MnO2 (2.1) TiO2

3 Au (3.4) ZnO (2.7) Al2O3

4 Ru (4.2) MnO2 (3.3) Co3O4

5 Ru (1.2) ZnO (3.9) SiO2

6 Ru (2.0) CuO (4.4) Al2O3

7 Pd (2.8) MgO (1.1) TiO2

8 Pd (3.6) MnO2 (1.7) SiO2

9 Pd (4.4) ZnO (2.2) Al2O3

10 Pt (1.3) CuO (2.8) Co3O4

11 Pt (2.1) MgO (3.4) TiO2

12 Pt (2.9) MnO2 (3.9) Al2O3

Table 3: Further investigation on Au-ZnO/Al2O3 catalyst (y: actual activity; ŷ: mean prediction
from GPR).

Step Run No. Composition y(%) ŷ(%)
1 3.4%Au-2.7%ZnO/Al2O3 95.9 –

Initial 2 1.0%Au/Al2O3 4.8 –
3 5.0%Au/Al2O3 91.8 –

Iterative 4 4.9%Au-5.0%ZnO/Al2O3 100.0 112.2
optimization – 2.3%Au-5.0%ZnO/Al2O3 – 45.9

5 3.2%Au-5.0%ZnO/Al2O3 100.0 98.2
6 2.8%Au-5.0%ZnO/Al2O3 100.0 97.6

Au-loading 7 1.0%Au-5.0%ZnO/Al2O3 3.5 95.3
reduction 8 2.5%Au-5.0%ZnO/Al2O3 100.0 96.0

9 2.1%Au-5.0%ZnO/Al2O3 80.8 95.9
10 2.3%Au-5.0%ZnO/Al2O3 95.4 95.7

Interaction 11 5.0%ZnO/Al2O3 1.5 –
investigation 12 2.3%Au/Al2O3 84.9 –
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Figure 1: CO conversion versus temperature for the catalysts listed in Table 2 for screening.
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Figure 2: CO conversion versus temperature for two Au/Al2O3 catalysts.
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Figure 3: CO Conversion versus temperature for Au-ZnO/Al2O3, ZnO/Al2O3 and Au/Al2O3.
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Figure 4: XRD pattern of (a) Au-ZnO/Al2O3, (b) ZnO/Al2O3 and (c) Au/Al2O3.
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Figure 5: TEM image of (a) Au-ZnO/Al2O3, (b) ZnO/Al2O3 and (c) Au/Al2O3.
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Figure 6: H2-TPR pattern of (a) Au-ZnO/Al2O3, (b) ZnO/Al2O3 and (c) Au/Al2O3.
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Figure 7: IRAS pattern of (a) Au-ZnO/Al2O3, (b) ZnO/Al2O3 and (c) Au/Al2O3.
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