
Mobile Networks and Applications 9, 151–161, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Approximation Algorithms for the Mobile Piercing Set Problem
with Applications to Clustering in Ad-Hoc Networks

HAI HUANG ∗ and ANDRÉA W. RICHA ∗,∗∗
Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85287-5406, USA

MICHAEL SEGAL
Communication Systems Engineering Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Abstract. The main contributions of this paper are two-fold. First, we present a simple, general framework for obtaining efficient constant-
factor approximation algorithms for the mobile piercing set (MPS) problem on unit-disks for standard metrics in fixed dimension vector
spaces. More specifically, we provide low constant approximations for L1 and L∞ norms on a d-dimensional space, for any fixed d > 0, and
for the L2 norm on two- and three-dimensional spaces. Our framework provides a family of fully-distributed and decentralized algorithms,
which adapt (asymptotically) optimally to the mobility of disks, at the expense of a low degradation on the best known approximation factors
of the respective centralized algorithms: Our algorithms take O(1) time to update the piercing set maintained, per movement of a disk. We
also present a family of fully-distributed algorithms for the MPS problem which either match or improve the best known approximation
bounds of centralized algorithms for the respective norms and space dimensions.

Second, we show how the proposed algorithms can be directly applied to provide theoretical performance analyses for two popular 1-hop
clustering algorithms in ad-hoc networks: the lowest-id algorithm and the Least Cluster Change (LCC) algorithm. More specifically, we
formally prove that the LCC algorithm adapts in constant time to the mobility of the network nodes, and minimizes (up to low constant
factors) the number of 1-hop clusters maintained. While there is a vast literature on simulation results for the LCC and the lowest-id
algorithms, these had not been formally analyzed prior to this work.

We also present an O(log n)-approximation algorithm for the mobile piercing set problem for nonuniform disks (i.e., disks that may have
different radii), with constant update time.

Keywords: distributed algorithms, wireless networks

1. Introduction

The mobile piercing set (MPS) problem is a variation of the
(classical) piercing set problem that arises in dynamic dis-
tributed scenarios. The MPS problem has many applications
outside its main computational geometry domain, as for ex-
ample in mobile ad-hoc communication networks, as we will
see later.

We start by formalizing some basic definitions. A disk D
of radius r with center q in �d with respect to Lp norm1 is
given by the set of points D = {z ∈ �d : ‖z − q‖p � r}. Let
q(D) denote the center of a disk D. A piercing set of a given
collection of disks D is a set of points P such that for every
disk D ∈ D, there exists a point p ∈ P such that p ∈ D –
i.e., P pierces every disk D ∈ D. The (classical) k-piercing
set problem seeks to find whether a piercing set P of cardi-
nality k of D exists, and if so, produces it. If the value of k
is minimal over all possible cardinalities of piercing sets of
D then the set P is called a minimum piercing set of D. The
minimum piercing set problem asks for the minimum piercing

∗ This work was supported in part by NSF CAREER Award CCR-9985284.
∗∗ Corresponding author.

1 The Lp norm, for any fixed p, of a vector z = (z1, z2, . . . , zd) in �d

is given by ‖z‖p = (|z1|p + |z2|p + · · · + |zd |p)1/p; if p = ∞, then
‖z‖∞ = max(|z1|, |z2|, . . . , |zd |).

set of a given collection D.
We consider a dynamic variation of the classical piercing

set problem, which arises in mobile and distributed scenarios,
where disks are moving in space. In the mobile piercing set
(MPS) problem, we would like to maintain a dynamic pierc-
ing set P of a collection of mobile disks D such that, at any
time t , P is a minimum piercing set of the current configura-
tion of the disks. In other words, P must adapt to the mobility
of the disks. Moreover, we would like to be able to devise a
distributed algorithm to solve this problem, where the indi-
vidual disks can decide in a distributed fashion (with no cen-
tralized control) where to place the piercing points. In this
scenario, we assume that the disks are able to detect whether
they intersect other disks. We can think about a disk as being
the communication range of a given mobile device (node),
which resides at the center of the disk: A disk can commu-
nicate with all of its adjacent nodes by a broadcast operation
within O(1) time. Below, we will present applications of the
mobile piercing set problem in mobile networks.

In this paper, we focus on the case when the disks are all
of the same radius r – or equivalently, of same diameter 2r .
Hence, without loss of generality, in the remainder of this
paper, unless stated otherwise, we assume that 2r = 1, and
therefore that we have a collection of unit-diameter disks, or
unit-disks for short. In section 5, we address an extension of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357596672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

152 H. HUANG ET AL.

our algorithms to the nonuniform case, where the disks may
not all have the same radius.

In recent years, the technological advances in wireless
communications have led to the realization of ad-hoc mobile
wireless networks, which are self-organizing and which do
not rely on any sort of stationary backbone structure. These
networks are expected to significantly grow in size and usage
in the next few years. For scalability, specially in order to be
able to handle updates due to the constant changes in network
topology, clustering becomes mandatory.

As hinted above, mobile unit-disks can be used to model
an ad-hoc network where all mobile wireless nodes have the
same range of communication. Each mobile node’s commu-
nication range is represented by a disk in �2 (or �3) cen-
tered at the node with radius equal to 1; a mobile node A can
communicate with mobile node B if and only if B is within
A’s communication range. The ad-hoc network scenario is
a direct application scenario for the unit-disk MPS problem,
since an ad-hoc network is fully decentralized and any algo-
rithm running on such a network must adapt to mobility in an
efficient way.

If all disks are of the same size, then the k-piercing set
problem is equivalent to the decision version of a well-known
problem: the geometric k-center problem [2]. The geomet-
ric k-center problem under Lp metric is defined as follows:
Given a set S of n demand points in �d , find a set P of k
supply points so that the maximum Lp distance between a
demand point and its nearest supply point in P is minimized.
The corresponding decision problem is to determine, for a
given radius r , whether S can be covered by the union of k
Lp-disks of radius r , or in other words, to determine whether
there exists a set of k points that pierces the set of n Lp-disks
of radius r centered at the points of S. In some applications,
P is required to be a subset of S, in which case the problem is
referred to as the discrete k-center problem. When we choose
the L2 metric, the problem is called the Euclidean k-center
problem, while for L∞ metric the problem is called the rec-
tilinear k-center problem. Since the Euclidean and rectilinear
k-center problems in �2 are NP-complete (see, e.g., [26,29])
when k is part of the input, the planar unit-disk k-piercing
set problem in �2 under L1, L2 or L∞ norms is also NP-
complete. Unfortunately, an approximation algorithm for the
k-center problem does not translate directly into an approxi-
mation algorithm for the unit-disk piercing set problem (and
vice-versa), since an algorithm for the former problem will
give an approximation on the radius of the covering disks,
while for the latter problem we need an approximation on the
number of piercing points. Still, the two approximation fac-
tors are highly related [2].

The remainder of this paper is organized as follows. In
section 1.1, we state our main contributions in this work. In
section 2, we discuss more related work in the literature. Sec-
tion 3 proves some geometric properties of the piercing set
problem. We use the results in section 3 to develop the ap-
proximation algorithms presented in sections 4 and 5: The al-
gorithm introduced in section 4 leads to lower approximation
factors, for the norms and dimensions considered, while the

one in section 5 adapts optimally to the movement of disks.
In section 6, we relate the algorithms presented for the MPS
problem to clustering in ad-hoc networks. Finally, we present
some future work directions in section 7.

1.1. Our results

In this paper we propose fully distributed (decentralized) ap-
proximation algorithms for the unit-disk MPS problem for
some fixed norms and dimensions. All of the approximation
factors presented in this paper are with respect to the number
of points in a minimum piercing set.

For each algorithm, we are interested in computing the
cost associated with building an initial approximate pierc-
ing set for the given initial configuration of the collection of
disks – which we call the setup cost of the algorithm – and
the cost associated with updating the current piercing set due
to the movement of a disk – which we call the update cost
of the algorithm. Actually we charge the update costs per
event, as we explain below. We assume that all the costs that
do not involve communication between disks are negligible
when compared to the cost of a disk communicating with its
neighbors (through a broadcast operation). Therefore we will
only consider communication costs when evaluating the algo-
rithms.

In order to maintain an optimal or approximate piercing
set of the disks, there are two situations which mandate an
update on the current piercing set. The first situation is when
the movement of a disk D results in having at least one disk
D′ of D unpierced (note that D′ may be D itself). The second
situation is when some piercing points in the set maintained
become “redundant”, and we may need to remove them from
the set. Thus, we say that an (update) event is triggered (or
happened) whenever one of the two situations just described
occurs.

The main contributions of this paper are two-fold. First,
we present a family of constant-factor approximation algo-
rithms – represented by the M-algorithm – for the unit-disk
MPS problem with (asymptotically) optimal setup and up-
date costs, for all the norms and space dimensions considered.
Moreover, we achieve this without a significant increase in
the approximation factor of the corresponding best known ap-
proximation algorithms for the classical piercing set problem.
Let P ∗ be a minimum piercing set. More specifically, in d di-
mensions, we devise a 2d -approximation algorithm under L1
or L∞. For L2 norm, we devise a 7-approximation algorithm
in �2, and a 21-approximation algorithm in �3. All these
algorithms have O(|P ∗|) setup cost and O(1) update cost.
Note that any dynamic algorithm that approximates the min-
imum piercing set of a collection of mobile disks has setup
cost �(|P ∗|), and update cost �(1). These algorithms are
the first constant-approximation algorithms for the unit-disk
MPS problem, with asymptotically optimal setup and update
costs. We summarize these results in table 1.2

2 All the results are for unit-disks; Lp is equivalent to L∞ for any p in one
dimension.

APPROXIMATION ALGORITHMS FOR THE MOBILE PIERCING SET PROBLEM 153

Table 1
Main results for 1D, 2D, and 3D with optimal update costs.

Space/Norm Approximation factor, Setup/Update cost

1D 2-approximation, O(|P ∗|)/O(1)
2D/L1, L∞ 4-approximation, O(|P ∗|)/O(1)

2D/L2 7-approximation, O(|P ∗|)/O(1)
3D/L1, L∞ 8-approximation, O(|P ∗|)/O(1)

3D/L2 21-approximation, O(|P ∗|)/O(1)

Table 2
Main results for 2D and 3D with better approximation factors.

Space/Norm Approximation factor, Setup/Update cost

2D/L1, L∞ 2-approximation, O(|P ∗|)/O(|P ∗|)
2D/L2 4-approximation, O(|P ∗|)/O(|P ∗|)

3D/L1, L∞ 4-approximation, O(|P ∗|)/O(|P ∗|)
3D/L2 11-approximation, O(|P ∗|)/O(|P ∗|)

We also present a second family of fully distributed al-
gorithms – represented by the A-algorithm – for L1 or L∞
norms in any space �d , and for L2 norm in �2 and �3. These
algorithms achieve the same, or better, constant approxima-
tion factors as the best known centralized algorithms with
comparable running times for the corresponding norm and
space dimension, but have a poorer update cost of O(|P ∗|).
These algorithms are, to the best of our knowledge, the first
fully distributed (decentralized) approximation algorithms
which achieve the same approximation factors as their cen-
tralized counterparts. We summarize these results in table 2
(see also footnote 2).

The simple framework presented for the M-algorithm,
which can handle mobility efficiently in a dynamic scenario,
is an important contribution of this work on its own. It avoids
the use of involved data structures, which in general cannot
avoid the use of some sort of “centralization” (even if implic-
itly). In order to be able to apply the given framework to
a particular norm and dimension, one needs only to be able
to compute a set of piercing points which are guaranteed to
pierce the immediate neighborhood of any disk D: The num-
ber of such points will be used in bounding the approximation
factor of the algorithms proposed.

The second main contribution of this work is the appli-
cation of the algorithms developed for the MPS problem to
the problem of finding an efficient self-organizing 1-hop un-
derlying clustering structure for (wireless and mobile) ad-hoc
networks, as seen in section 6. In fact, one can use the al-
gorithms developed for the MPS problem to derive the first
theoretical performance analyses of the popular Least Cluster
Change (LCC) algorithm proposed by Chiang et al. [7], and of
the lowest-id algorithm (discussed by Gerla and Tsai in [15]),
both in terms of the number of 1-hop clusters maintained and
in terms of update and setup costs, thus providing a deeper
understanding of these two algorithms and validating the ex-
isting simulation results for the same. No previous formal
analysis of either algorithm exists in the literature. Namely,
we show that the LCC algorithm has the same approximation
factor, setup and update costs as the M-algorithm for L2 in

�2 (or �3), and that the lowest-id algorithm also maintains
the same approximation factor as the M-algorithm, while in-
curring higher update costs.

Another contribution of our work addresses the MPS prob-
lem on nonuniform radius disks. If the ratio between the
maximum and minimum disk radii is bounded by a polyno-
mial on n = |D|, we present a fully-distributed O(logn)-
approximation algorithm for this problem, with constant up-
date cost.

2. Related work

The k-center and k-piercing problems have been extensively
studied. In d dimensions, a brute-force approach leads to an
exact algorithm for the k-center problem with running time
O(ndk+2). For the planar case of the Euclidean k-center prob-
lem, Hwang et al. [24] gave an nO(

√
k) time algorithm improv-

ing Drezner [9] solution which runs in time O(n2k+1). An al-
gorithm with the same running time was presented in Hwang
et al. [23] for the planar discrete Euclidean k-center problem.
Recently, Agarwal and Procopiuc [1] extended and simplified
the technique by Hwang et al. [24] to obtain an nO(k1−1/d) time
algorithm for computing the Euclidean k-center problem in d
dimensions.

Sharir and Welzl [32] explain a reduction from the rectilin-
ear k-center problem to the k-piercing set problem (underL∞
metric), using a sorted matrix searching technique developed
by Frederickson and Johnson [13]. Ko et al. [26] proved the
hardness of the planar version of the rectilinear k-center and
presented an O(n logn) time 2-approximation (on the cov-
ering radius) algorithm. (In fact, Ko et al. [26] proved that,
unless P = NP, the best approximation factor that can be
achieved in polynomial time for the rectilinear k-center prob-
lem is 2.) Several approximation results (on the radii of the
disks) have been obtained in [11,17,20,21]. For more results
on the k-center problem, please refer to [2].

Regarding the k-piercing set problem in �d , Fowler et
al. [12] proved the NP-completeness of finding the minimum
value of k for a given set of n disks. Hochbaum and Maas [19]
gave an O(ldn2ld+1) polynomial time algorithm for the mini-
mum piercing set problem underL1 orL∞ norm with approx-
imation factor (1 + 1/l)d for any fixed integer l � 1. Thus,
for l = 1, their algorithm yields an O(n3) time (sequential)
algorithm with performance ratio 2d . Hochbaum and Maas
also present a (1 + 1/l)d -approximation algorithm, for any
fixed integer l > 0, for Ld norm in Rd , whose running time
depends on nd(l

√
d)d . For the one-dimensional case, Katz et

al. [25] presented an algorithm that maintains the exact pierc-
ing set of points for a collection of n intervals inO(|P ∗| logn)
time, where P ∗ is a minimum piercing set. Their solution
can be adapted to obtain an algorithm with distributed run-
ning time O(|P ∗|) for computing a minimum piercing set of
n intervals. Nielsen [30] proposed a 2d−1-approximation al-
gorithm that works in d-dimensional space under L∞ metric
in O(dn + n log c) time, where c is the size of the piercing

154 H. HUANG ET AL.

set found. This algorithm is based on the divide-and-conquer
paradigm.

Although not stated explicitly, the approximation on the ra-
dius of the k-center problem in [1] implies a 4-approximation
algorithm for the minimum piercing set problem for �2

and L2. Efrat et al. [10] introduced a dynamic data structure
based on segment trees which can be used for the piercing set
problem. They presented a sequential algorithm which gives
a constant factor approximation for the minimum piercing set
problem for “fat” objects with polynomial setup and update
time. See [10] for the definition of “fatness” and more de-
tails.

A large number of clustering algorithms have been pro-
posed and evaluated through simulations in the ad-hoc net-
work domain, as for example in [3,4,15,27,28,31]. Gerla
and Tsai in [15] considered two distributed clustering algo-
rithms, the lowest-id algorithm and the highest-degree algo-
rithm, which select respectively the lowest-id mobile or the
highest-degree mobile in a one-hop neighborhood as the clus-
terhead. A weight oriented clustering algorithm, more suit-
able to “quasi-static” networks, was introduced by Basagni
[4], where one-hop clusters are formed according to a weight-
based criterion that chooses the nodes that coordinate the
clustering process based on node mobility-related parameters.
In [27], Lin and Gerla described a non-overlapping clustering
algorithm where clusters are able to be dynamically reconfig-
ured.

The LCC algorithm proposed by Chiang et al. [7] aims to
maintain a one-hop clustering of a mobile network with least
number of changes in the clustering structure, where clusters
will be broken and re-clustered only when necessary. In fact,
our algorithm for the MPS problem, when translated to a clus-
tering algorithm in the ad-hoc scenario, is essentially the LCC
algorithm, as discussed in section 6.

Recently, researchers have investigated using geometric
centers as clusterheads in order to minimize the maximum
communication cost between a clusterhead and the cluster
members. Bepamyatnikh et al. [6] discussed how to compute
and maintain the one-center and the one-median for a given
set of n moving points on the plane (the one-median is a point
that minimizes the sum of all distances to the input points).
Their algorithm can be used to select clusterheads if mobiles
are already partitioned into clusters.

Gao et al. [14] proposed a randomized algorithm for main-
taining a set of clusters based on geometric centers, for a fixed
radius, among moving points on the plane. Their algorithms
have expected approximation factor on the optimal number
of centers (or, equivalently, of clusters) of c1 logn for inter-
vals and of c2

√
n for squares3, for some constants c1 and c2.

The probability that there are more than c ln n times the op-
timal number of centers is 1/n�(c2) for the case of intervals;
for squares, the probability that there are more than c

√
n lnn

times the optimal number of centers is 1/n�(c2) lnn, for con-
stant c. An extension of this basic algorithm led to a hierar-

3 Disks in 1D correspond to intervals on the line; in 2D, disks under L∞ or
L1 are called squares.

chical algorithm, also presented in [14], based on kinetic data
structures [5]. The hierarchical algorithm admits an expected
constant approximation factor on the number of discrete cen-
ters, where the approximation factor also depends linearly on
the constants c1 and c2. The dependency of the approximation
factor and the probability that the algorithm chooses more
than a constant times the optimal number of centers is sim-
ilar to that of the non-hierarchical algorithm for the squares
case. The constants c1 and c2, which have not been explicitly
determined in [14], can be shown to be very large (certainly
more than an order of magnitude larger than the correspond-
ing approximation constant presented in this paper), even if
we allow the probability of deviating from the expected con-
stant approximation on the number of centers (which depends
linearly on c1 and c2) not to be close to one. Their algorithm
has an expected update time of O(log3.6 n) (while the update
cost is constant in our algorithm), the number of levels used
in the hierarchy is O(log logn), with O(n logn log logn) to-
tal space.

Har-Peled [18] found a scheme for determining centers
in advance, if the degree of motion of the points is known:
More specifically, if in the optimal solution the number of
centers is k and r is the optimal radius for the points moving
with degree of motion �, then his scheme guarantees a 2�+1-
approximation (of the radius) with k�+1 centers chosen from
the set of input points before the points start to move.

3. Geometry for the piercing set problem

In this section, we prove some geometric properties of the
minimum piercing set problem. More specifically, we solve
the minimum piercing set problem on the neighborhood of a
disk, which will provide the basic building block for our ap-
proximation algorithms presented in the following sections.
The main step of the approximation algorithms is to select
an unpierced unit-disk and pierce all of its neighbors. By
repeating this procedure, we will eventually pierce all unit-
disks and form a piercing set. The approximation factors are
determined by the number of piercing points chosen for each
selected unpierced unit-disk.

If two disks D and D′ intersect, we say that D is a neigh-
bor of D′. The neighborhood of a disk D, denoted by
N (D), is defined as the collection of all disks that intersectD,
N (D) = {D′: D ∩D′ �= ∅,D′ ∈ D}. Note that D ∈ N (D).

We are interested on the minimum number of points that
pierce all disks in the neighborhood of a given disk. However,
this number may vary, depending on the distribution of the
disks in the particular neighborhood in consideration. Thus,
we compute the minimum number (along with the fixed po-
sitions) of points needed to pierce any possible neighborhood
of a disk. This number is called the neighborhood piercing
number. The neighborhood piercing number is tight in the
sense that for any set of points with smaller cardinality, we
can find some configuration of the neighborhood of a disk
which has an unpierced disk. The corresponding piercing
points are called the neighborhood piercing points. Clearly,

APPROXIMATION ALGORITHMS FOR THE MOBILE PIERCING SET PROBLEM 155

(a) (b)

Figure 1. Piercing points for neighborhood of (a) an arbitrary disk, (b) a top disk.

the piercing number is a function of both dimension d and
norm index p. Hence, we denote the neighborhood piercing
number for dimension d and norm index p as N(d, p), and
we use PN(D, d, p) to denote a corresponding set of neigh-
borhood piercing points of a unit-disk D. 4 We prove in this
section that N(d, 1) = N(d,∞) = 2d for all d � 1, and that
N(2, 2) = 7. We also place an upper bound of 21 on N(3, 2).
For each of the norms and dimensions considered, we give a
corresponding set of neighborhood piercing points.

First we reduce the minimum piercing set problem into an
equivalent disk covering problem. Let D be a collection of
unit-disks and P be a set of points. Let P ′ be the set of centers
of all disks in D, and D′ be a collection of unit-disks centered
at points in P . Then P pierces D if and only if D′ covers P ′.
Moreover, P is a minimum piercing set for D if and only if
D′ is a minimum set of disks (with respect to cardinality) that
covers P ′. We define the unit-disk covering problem to be
the problem of finding the minimum k such that there are k

unit-disks whose union covers a given point set.
We now reduce the problem of finding the neighborhood

piercing number to a unit-disk covering problem as follows.
For a unit-disk D, all the centers of unit-disks in N (D) are
located in the region G = G(D) = {z: ‖z − q(D)‖p � 1},
where q(D) is the center of D. Conversely, a disk centered at
any point in G must intersect D. Therefore, we seek for the
minimum number of unit-disks that cover region G. The cen-
ters of those disks serve as the set of neighborhood piercing
points PN(D). The tightness of N can be seen from the fact
that in the disk covering problem, we cannot cover the entire
region G with less than N disks, as proven in the following
lemma. Note that the region G is a disk of radius 1, and that
all of the disks that we use to cover G are unit-disks (i.e., of
radius 1

2).

Lemma 1. The neighborhood piercing number is equal to 2d

for a d-dimensional space under L1 or L∞ norm. The neigh-
borhood piercing number for two dimensions and L2 is equal
to 7.

4 In general, we omit the parameters p, d, or D, whenever clear from the
context.

Proof. For any Lp norm, in a d-dimensional space, the ratio
of the area of G to the area of a unit-disk is 2d . Thus, we need
at least 2d disks to cover G – i.e., N � 2d for any dimension
d � 1 and any normLp . The lower bound of 2d is in fact tight
for p = 1 or p = ∞, since in any dimension d , the unit-disk
D has 2d “corners” under these norms, and the set of unit-
disks centered at those “corners” cover the entire region G.

The case p = 2 is more involved since we cannot pack
“spheres” as tightly as “hypercubes” without leaving uncov-
ered points in the region G, if no intersection of disks is al-
lowed. Without loss of generality, assume that we are cov-
ering the neighborhood of a disk D centered at the origin.
Any given point p ∈ G can be represented by (�, α), where
0 � � � 1 and 0 � α � 2π are the radius and angle on
the polar axis coordinates of p, respectively. A set PN(D)

is given by the points with polar coordinates (0, 0), (
√

3
2 , π6),

(
√

3
2 , π2), (

√
3

2 , 5π
6), (

√
3

2 , 7π
6), (

√
3

2 , 3π
2), (

√
3

2 , 11π
6), as shown.

(If we assume that point q represents the origin in figure 1(a),
then PN(D) is given by the points q, r, s, t, u, v and w.) Con-
sider the sector 0 � α � π

3 . For the other sectors, analogous
arguments apply after a rotation. Let p = (�, α), 0 � � � 1,
be a point in G such that 0 � α � π

3 . If � � 1/2, then p

is covered by D. The boundary of the unit-disk centered at

(
√

3
2 , π6) intersects the boundary of region G at points (1, 0)

and (1, π3). It also intersects the boundary of D at points
(1

2 , 0) and (1
2 ,

π
3). Clearly, p is located in the unit-disk cen-

tered at (
√

3
2 , π6), if 1/2 < � � 1.

The perimeter of the boundary of region G is 2π , and one
unit-disk can cover at most π

3 of this perimeter. Thus we need
at least six unit-disks to cover the boundary of G – i.e., seven
is the minimum number of unit-disks covering the entire re-
gion G. Hence N(2, 2) = 7. �

Figure 1(a) shows an optimal seven-disk covering with
disks centered at q, r, s, t, u, v and w, for the region G un-
der L2 norm in �2. If q = (x, y) is the center of the unit-
disk D, the Cartesian coordinates of the six other points are

(x ± 3
4 , y ±

√
3

4), (x, y ±
√

3
2).

For L2 norm in �3, we were only able to place an upper
bound on the number of unit-disks needed to cover a disk of

156 H. HUANG ET AL.

Table 3
Neighborhood piercing number and that on halfspace in 1D and 2D.

1D 2D/L1 2D/L∞ 2D/L2

N 2 4 4 7

PN 2 endpoints 4 “corners” 4 “corners” {(0, 0), (± 3
4 ,±

√
3

4), (0,±
√

3
2)}

N 1 2 2 4

PN left endpoint left & top “corners” 2 bottom “corners” {(0, 0), (± 3
4 ,−

√
3

4), (0,
√

3
2)}

�n −1 (1,−1) (0,−1) (0,−1)

Figure 2. Piercing points for neighborhood of a rightmost interval and an
arbitrary interval.

diameter 2, hence placing an upper bound on N(3, 2). A sim-
ple argument [22] suffices to verify that 20 unit-disks centered
at some evenly spaced points on the surface of G plus a unit-
disk D centered at the origin cover a disk G of diameter two
also centered at the origin. Hence we have N(3, 2) � 21.
It remains an open problem to compute the exact value of
N(3, 2). The neighborhood piercing number for L2 is closely
related to the sphere packing and sphere covering problems
described in [8].

When compared to the results in the literature, the approx-
imation factors based on the neighborhood piercing points
are not the best known. For example, we have shown that
N(1, ·) = 2, which leads to a two-approximation algo-
rithm for piercing unit-intervals on the line (see section 5).
In [16, p. 193] (see also [25]), an exact solution (i.e., 1-
approximation) for piercing unit-intervals is proposed. The
idea there, shown in figure 2, is to start from the rightmost in-
terval D, where only one endpoint of D – the left endpoint l
– is enough for piercing all neighbors of D (since D has no
neighbor to its right). In order to be able to extend and gen-
eralize this idea to other norms and higher dimensions, we
need to define, the halfspace of a disk D with orientation �n,
denoted by HD(�n): HD(�n) = {z: (�z − �q(D)) · �n � 0}. For
the one-dimensional case, all of the centers of the neighboring
disks of the rightmost interval D are located in the halfspace
HD(−1) (to the “left” of D), and only half of the neighbor-
hood piercing points (i.e., only N(1)/2 points) are enough for
piercing N (D). More generally, in any d-dimensional space,
there exists an orientation �n, such that we need roughly half of
the neighborhood piercing points to pierce all the neighbors
of disk D located in HD(�n). The minimum number of pierc-
ing points needed for the halfspace HD(�n), over all possible
orientations �n, is called the halfspace neighborhood pierc-
ing number, and is denoted by N . The set of corresponding
piercing points are called the halfspace neighborhood pierc-
ing points of D and are denoted by PN(D).

If PN(D) is symmetric with respect to the center of the
unit-disk D, then N = �N/2� if the center of D does not be-
long to PN, or N = �(N + 1)/2� otherwise. Note that this
is the case for PN(d, 1), PN(d,∞) and PN(2, 2). The set of
piercing points which correspond to the upper bound of 21

for N(3, 2) is not symmetric, but we can still find an orien-
tation such that 11 points are enough to pierce the halfspace
neighborhood of a disk with respect to the orientation. Fig-
ure 1(b) illustrates halfspace neighborhood piercing points –
points q, r, s and t – for �2 under L2 norm. The orientation
considered is �n = (0,−1). Table 3 summarizes some values
of neighborhood piercing number and that on halfspace for
lower dimensions and norms L1, L∞ and L2, where we de-
note the minimum of N(�n) as N and corresponding PN(�n) as
PN. It follows from the upper bound on N(3, 2) that N � 11
for L2 and �3. The corresponding halfspace neighborhood
piercing points are also a subset of the points used for estab-
lishing the upper bound on N(3, 2). It also remains an open
question to determine the exact value of N for L2 and �3.

For an orientation �n, if we order all unit-disks D in D ac-
cording to the values �q(D) · �n, then a unit-disk D bearing the
smallest �q(D) · �n value satisfies the property that all its neigh-
bors are located in the halfspace HD(�n). Thus, by carefully
choosing the order in which we consider the neighborhoods
of disks to be pierced, we can use the halfspace neighborhood
piercing points as the basis of the fully-distributed algorithms
for the MPS problem presented in section 4, which match or
improve the best known approximation factors of the respec-
tive centralized algorithms.

The problem of computing N for other Lp metrics is
more involved and may not have many practical applications.
A method to estimate an upper bound on N and compute the
corresponding set of neighborhood piercing points for arbi-
trary Lp metrics is discussed in [22] for completeness.

4. Better approximation factors

In this section we present a family of constant-factor fully-
distributed (decentralized) approximation algorithms for the
piercing set problem, which at least match the best known
approximation factors of centralized algorithms with com-
parable running times for the respective norms and di-
mensions. (Note that Hochbaum and Maas [19] present
centralized PTAS’s for the minimum piercing set problem
with approximation factor of (1 + 1/l)d , for any fixed inte-
ger l > 0 and dimension d; however, the running time of their
algorithms depends on n2ld , which makes them of rather lim-
ited practical application.) This algorithm introduces some
basic concepts which will be useful when developing the al-
gorithms in section 5. The algorithms in this section all
follow a general algorithmic framework, which we call the
A-algorithm (for having better approximation factors) in con-

APPROXIMATION ALGORITHMS FOR THE MOBILE PIERCING SET PROBLEM 157

trast with the slightly looser approximation factors of the
other family of algorithms presented in section 5 (represented
by the M-algorithm) which can better handle mobility.

Consider a set of unit-disks in a d-dimensional space under
norm Lp . As shown in section 3, we need at most N piercing
points to pierce the neighborhood of a unit-diskD bearing the
smallest �q(D) · �n among the (unpierced) disks in its neighbor-
hood, where �n is an orientation that gives N . We call such a
diskD a top disk. Thus, at each step of the algorithm, each top
unpierced diskD elects itself as a piercing disk and selects the
points in PN(D) as piercing points. Since all the unpierced
disks in N (D) are now pierced by PN(D), we mark all the
unpierced disks in N (D) as pierced, and repeat the procedure
above. After repeating this step for at most |P ∗| times, all the
unit-disks in D are pierced and a piercing set with cardinal-
ity at most N times |P ∗| is produced, as shown in theorem 1.
Provided that broadcasting has O(1) cost, the running time
of the distributed A-algorithm is O(|P ∗|). Theorem 1 states
the main properties of the A-algorithm. This theorem actually
extends the results in [25] and in [30] – for L1 and L∞ norms
in d-dimensional spaces – to a more general distributed sce-
nario, and also to the L2 norm in two- and three-dimensional
spaces.

We re-invoke the A-algorithm to maintain the piercing set
every time an event (as defined in section 1.1) happens. In
a distributed scenario, this can be done by flooding a reset
message to unpierce all disks. Thus the update cost of the
A-algorithm is also O(|P ∗|).

Theorem 1. The approximation factor of the distributed
A-algorithm is N , and its setup and update costs are both
O(|P ∗|).

Proof. For each piercing unit-disk D, we need at least one
point in the minimum piercing set P ∗ to pierce D. For any
two distinct piercing unit-disks D and E, the point in P ∗ that
pierces D cannot pierce E since no two (distinct) piercing
disks intersect. Thus we have at most |P ∗| piercing unit-
disks. For each piercing unit-disk, we select N piercing
points. Hence the approximation factor follows. It takes con-
stant time to pierce the neighborhood of each piercing unit-
disk using a broadcast operation. Hence the running time for
both setup and update operations is O(|P ∗|). �

5. Better handling of mobility

We now present the M-algorithm, a fully distributed constant
approximation algorithm for the mobile piercing set problem
that adapts optimally to the mobility of disks: The update
cost of the M-algorithm is O(1). We break the M-algorithm
into two parts: the M-Setup algorithm, which builds an initial
piercing set, and the M-Update algorithm, which is in charge
of adapting the piercing set maintained in response to the mo-
bility of disks (we will see later that the M-Update algorithm
may initiate a local call to M-Setup as a subroutine at some
of the disks). The M-algorithm is more suitable for highly
dynamic ad-hoc mobile network scenarios.

Figure 3. The movement of the rightmost interval changes all piercing points.

The key idea behind the M-algorithm is to break the
sequential running fashion of the A-algorithm. In the A-
algorithm, an ordering of the unit-disks is mandatory (even
if implicitly). As shown in figure 3, in the worst-case, the
movement of one disk (the rightmost one in the figure) could
lead to a global update of all selected piercing disks, while the
cardinality of the minimum piercing set does not change. In
order to maintain a relatively stable piercing set, the desired
algorithm needs to be able to sever this “cascading effect” –
i.e., the algorithm needs to be able to keep the updates local.
Lemma 2 shows that the cardinality of an optimal piercing
set cannot change by much, due to the movement of a single
disk. This property suggests that an update can be kept local.
The proof of this lemma, while trivial, is presented here for
completeness.

Lemma 2. If at one time only one unit-disk moves, then
||P ∗|−|P ∗∗|| � 1, where P ∗ denotes a minimum piercing set
before the movement, and P ∗∗ denotes a minimum piercing
set after the movement.

Proof. If the cardinality of the minimum piercing set
changes, then it can either increase or decrease. Since the re-
verse of a movement that increases the cardinality of the min-
imum piercing set is a movement that decreases it, we only
need to show that the cardinality of the minimum piercing set
cannot be increased by more than 1. Let D be the moving
disk. Since only D moves, D is the only disk which may be-
come unpierced. Let P = P ∗ ∪ {q(D)}. Then P is a piercing
set after the movement. Let P ∗∗ be a minimum piercing set
after the movement of D, |P ∗∗| � |P | = |P ∗| + 1. Hence
||P ∗| − |P ∗∗|| � 1. �

In the M-Setup algorithm, instead of choosing a disk with
respect to the ordering given by a direction �n, we select ar-
bitrary unpierced disks as piercing disks in each step, then
pierce the neighborhood of each selected disk D using the
points in PN(D). By repeating this procedureO(|P ∗|) times,
we will generate a piercing set for D: Since now we use N

points to pierce the neighborhood of each selected piercing
disk, the approximation factor is roughly doubled compared
to that of the A-algorithm. However, this small degradation in
the approximation factor pays for an optimal update strategy,
as will be shown later.

In order to implement the above idea in a distributed fash-
ion, we repeat the following procedure. Each disk D first

158 H. HUANG ET AL.

M-Setup
For each unmarked unit-disk D:
1. Repeat
2. If there is piercing unit-disk in N (D) then
3. IsMarked= True
4. Elseif D bears the lowest label among all its neighbors which

attempt to become a piercing disk then
5. For each unmarked neighbor D′ of D
6. D’.IsMarked= True
7. End
8. End
9. Until the disk becomes marked

M-Update
When a unit-disk D moves
1. If D is a piercing unit-disk, then
2. If D’s boundary meets that of another piercing unit-disk E, then
3. remove the neighborhood piercing points of D from P

4. Unmark D and all normal unit-disks that were marked by D
5. End
6. If D’s boundary separates from that of a normal unit-disk D′, then
7. Unmark D′
8. End
9. Else (D is a normal unit-disk)
10. If D’s boundary separates from that of D’s piercing unit-disk, then
11. Unmark D
12. End
13. Call M-Setup

Figure 4. The M-Setup and M-Update algorithm.

checks if there are any piercing disks in its neighborhood. If
so, then D marks itself as pierced. Otherwise, each unpierced
disk tries to become a piercing disk itself. In order to guaran-
tee that only one disk becomes a piercing disk in an unpierced
disk’s neighborhood – this is a key property for proving the
approximation factor of this algorithm – a mechanism such as
“lowest labeled neighbor wins” (assuming that each disk has
a unique identification label) is required. Note that, unlike the
A-algorithm, in the M-Setup algorithm disks do not need to
know their coordinates (since no comparisons of the �q(D) · �n
values are required), which may be desirable in an ad-hoc net-
work scenario. The proof of theorem 2 is analogous to that of
theorem 1, and is therefore omitted.

Theorem 2. The M-Setup generates a piercing set of cardi-
nality within a factor of N of |P ∗| in O(|P ∗|) time.

As disks start moving in space, each disk needs to be able
to trigger an update procedure whenever an update is neces-
sary. To facilitate the following discussion, we call a disk that
is not a piercing disk a normal disk. When a disk moves,
the following events may make the current piercing set in-
valid and trigger an update: (i) the boundaries of two piercing
disks D and E meet (thus D may become a redundant pierc-
ing disk); (ii) the boundaries of one piercing disk D and some
normal disk D′ pierced by D separate (thus at least one of the

disks becomes unpierced). An M-Update procedure is initi-
ated at disk D in events of type (i), or at disks D and D′ for
events of type (ii). The M-Update procedure can be divided
into two phases: In the first phase, we will unmark some of
the disks as to be now unpierced; in the second phase, we
select piercing disks for those unpierced disks. The second
phase is executed by a local call to M-Setup initiated at each
unpierced disk.

The details of the M-Update procedure are as follows. If
we have an event of type (i), the M-Update will degrade disk
D to a normal disk and unpierce all disks that were currently
pierced by D (including D itself). Otherwise, if case (ii) ap-
plies, the M-Update will simply unpierce disk D′. Each node
that is marked unpierced by the M-Update procedure will in-
voke M-Setup locally. The M-Setup procedure invoked at an
unpierced disk F will first check if any of its neighbors is a
piercing disk. If so, it marks itself pierced. Otherwise, if F
has the lowest label among its unpierced neighbors, it elects
itself as a piercing disk and marks all its unpierced neighbors
as pierced. The M-Setup and M-Update algorithms are shown
in figure 4.

As proven in theorem 3, all unit-disks will be pierced at
the end of the calls to M-Setup, and the approximation factor
on the size of the piercing set maintained is still guaranteed to
be N .

APPROXIMATION ALGORITHMS FOR THE MOBILE PIERCING SET PROBLEM 159

Theorem 3. The M-Update procedure maintains an N-ap-
proximation of the MPS, with update cost of O(1) for each
event.

Proof. First we show that the running time of M-Update is
constant per event. Assume that at one time only one event
occurs. All the disks possibly affected by the event are lo-
cated in the neighborhood of a disk D. Thus the operation
of marking disks as unpierced (in the first phase) takes con-
stant time. Since all nodes that invoked a call to M-Setup
were neighbors of a former piercing disk D, it follows that
the calls to M-Setup will have at most a constant number, N ,
of rounds of “lowest labeled neighbor wins” until a valid set
of piercing disks is restored. Therefore the total time taken by
each of the invoked M-Setup calls also takes constant time. If
several events occur at the same time, then the final effect is
the same as if a sequence of events occurs in a row, and the
update cost per event remains the same.

Now we show that the approximation factor maintained is
equal to N . Clearly the resulting piercing set is determined
by the collection of selected piercing unit-disks. We will
show that the updated collection of piercing disks produced
by the M-Update procedure could have been the initial col-
lection of piercing disks produced by the M-Setup algorithm
(for a given ordering of the labels of the disks), thus proving
the claimed approximation factor. Assume that the collection
E = {D1, . . . ,Dm} of selected piercing unit-disks before the
call to M-Update is invoked is an N-approximation on the
MPS. Let E ′ be the collection of selected piercing unit-disks
after the call to M-Update is completed at all nodes (which
may involve calling the M-Setup algorithm locally). One of
the following four cases may occur:

Case 1. A normal unit-disk D′ moves and after the move-
ment, it is still pierced by some piercing unit-disk in E . In
this case, the M-Update procedure never invokes M-Setup at
a node, and E ′ = E . Since we still need at least one pierc-
ing point to pierce each of the selected piercing disks (no two
piercing disks overlap) and since E was an N-approximation
of the MPS, the approximation factor still holds.

Case 2. A normal unit-disk D′ moves, and after the
movement, D′ is no longer pierced by a piercing unit-disk
in E . In this case, the M-Setup procedure invoked by the
call to M-Update will upgrade D′ to a piercing disk. Thus
E ′ = E ∪ {D′}.

We prove the bound on the size of the piercing set main-
tained by showing that E ′ could have been obtained by a gen-
eral call to the M-Setup algorithm to the current configuration
(placement in space) of the disks if all disks were currently
unpierced, for a given assignment of labels to the disks. Sup-
pose that the labels of the disks in E ′ are smaller than the
labels of all other disks in D, and that label(D1) < · · · <
label(Dm) < label(D′). Thus, on or before step i � m, disk
Di will be selected by M-Setup to become a piercing disk
(since all Di ’s were unpierced disks in E initially, and no two
piercing disks intersect). After all disks D1, . . . ,Dm are se-
lected, only disk D′ is not pierced. Thus M-Setup must select
D′ to be a piercing disk. Hence E ′ is obtained, proving the

N-approximation factor on the cardinality of the set of pierc-
ing points produced.

Case 3. A piercing unit-disk D moves and after the move-
ment, D is pierced by some other piercing unit-disk E ∈ E .
Let D = Di , whereDi ∈ E . The M-Update will degradeD to
a normal disk and unpierce all unit-disks previously pierced
by D. The M-Update procedure then invokes local calls to
M-Setup at all unpierced disks. For each unit-disk D′ pre-
viously pierced by D, M-Setup will first check if there is
another piercing disk that pierces D′. If so, D′ will be
marked pierced. Otherwise, if there are neighbors of D

which still remain unpierced, then the M-Setup algorithm
will upgrade some normal disks to piercing disks. Let E ′′ =
{Dm+1, . . . ,Dm+k} be the collection of those upgraded pierc-
ing disks. Then we have E ′ = (E − {Di}) ∪ E ′′ as the
new set of piercing disks. As in case 2, if label(D1) <

· · · < label(Di−1) < label(Di+1) < · · · < label(Dm+k) <

label(E), for all disks E not in E ′, the M-Setup algorithm
when applied to the current configuration of the disks in D,
assuming all disks are unpierced at start, will produce E ′ as
the resulting set of piercing disks. Thus the N-approximation
factor follows.

Case 4. A piercing unit-disk D moves and after the move-
ment, D is not pierced by any other piercing unit-disk E ∈ E .
Essentially the same as case 3, but for the fact that we do not
degrade D to a normal disk. �

A simple extension of the M-algorithm provides a logarith-
mic approximation algorithm for the nonuniform case. If the
collection contains disks of various radii, then we can guaran-
tee an N-approximation if at each step we find the unpierced
disk of smallest radii in the collection and pierce all of its
neighborhood. However, we cannot guarantee having O(1)
update cost in this case. Without loss of generality, assume
that the minimum radius of a disk is equal to 1. If the largest
disk radius is bounded by a polynomial on n = |D|, then we
have the following corollary.

Corollary 1. By grouping the disks into O(logn) classes
such that each class contains disks of radii in [2i−1, 2i), we
have an O(logn) approximation for the MPS problem on
nonuniform disks with distributed update cost of O(1).

Proof. In each class, as we show below, N2 points are
enough to pierce an arbitrary neighborhood. Since we have
O(logn) classes, and the piercing set for each class is an
N2-approximation of the overall minimum piercing set, the
approximation factor is bounded by O(logn). Once a disk
moves, it only affects the piercing set selected for one class,
thus the update cost is still constant. We now show that N2

points are in fact enough for covering a disk of diameter 2i+2,
using disks of diameter in [2i, 2i+1). In the worst case, we
need to cover a region of diameter 2i+2 with disks of diam-
eter 2i . We can do this in two phases. First we cover the
region using N disks of diameter 2i+1. Then for each disk D

of diameter 2i+1, we coverD using N disks of diameter 2i . �

160 H. HUANG ET AL.

6. Applications to clustering in mobile networks

For the ad-hoc network scenario described in the introduc-
tion, where all nodes have equal range of communication, the
algorithms proposed for the mobile piercing set problem can
be directly applied in order to obtain a one-hop clustering of
the network. A clustering of a network G is a partition of the
nodes of G into subsets (clusters) Ci , where for each Ci , we
elect a node v ∈ Ci as its clusterhead. A 1-hop clustering
of G is a clustering of G such that every node in the network
can communicate in one-hop with the clusterhead of the clus-
ter it belongs to. We can view the network G as a collection
of unit-disks in �2 (respectively �3) under L2 (as discussed
in the introduction).

The algorithm in section 5 can be used to obtain an al-
most optimal (with respect to number of clusters) one-hop
clustering of a wireless network where all nodes have equal
communication range. We have that |P ∗|/N(2, 2) = |P ∗|/7
(respectively |P ∗|/N(3, 2) � |P ∗|/21) is a lower bound on
the minimum number of 1-hop clusters (and therefore on the
number of selected clusterheads) needed to cover the entire
network, since we need at least one piercing point for each
of the neighborhoods of a piercing disk, and since we use at
most seven (respectively 21) piercing points for each of these
neighborhoods in a MPS in �2 (respectively �3). The number
of piercing disks selected by the algorithm in section 5 is at
most |P ∗|. Since each of these piercing disks D corresponds
uniquely to a 1-hop cluster C in the network (given by all the
disks pierced by D), and since the union of all these clusters
covers the entire network, we have that the number of clus-
ters is at most |P ∗|, which is a 7-approximation (respectively
21-approximation) on the minimum number of 1-hop clusters
needed in �2 (respectively �3). This algorithm is also suit-
able for maintaining such an optimal structure as nodes start
moving in space, with optimal update costs. The algorithm
tends to keep the number of changes in the set of selected
clusterheads low.

In fact, the algorithm presented in section 5, when trans-
lated to a clustering algorithm on ad-hoc networks, is essen-
tially the same as the Least Cluster Change (LCC) algorithm
presented by Chiang et al. [7]. Therefore, in this paper we
provide a theoretical analysis of the performance of this popu-
lar clustering algorithm, validating the simulation results that
showed that the clusters maintained by this algorithm are rel-
atively stable. More specifically, we have proved that this
algorithm sustains a 7-approximation on the number of 1-hop
clusters maintained, while incurring optimal setup and update
costs.

A closer look at the lowest-id algorithm, investigated by
Gerla and Tsai in [15], shows that this algorithm corresponds
to several applications of the M-Setup procedure of section 5.
Every time a disk becomes unpierced, or two piercing disks
intersect, the lowest-id algorithm starts updating the cluster-
ing cover maintained in a fashion that may correspond to an
application of the M-Setup algorithm on the current configu-
ration of the disks if all disks were unpierced – in the worst-
case, the lowest-id algorithm may generate a “cascading ef-

fect” which correspond to an application of the M-Setup algo-
rithm on a collection of all unpierced disks, if the disk labels
are given by the node ids. Thus the setup and the worst-case
update costs of the lowest-id algorithm are both O(|P ∗|), and
the approximation on the number of clusters maintained is
equal to 7 and 21, for �2 and �3, respectively.

7. Future work

There are many natural extensions of the work in this pa-
per. We would like to extend the one-hop clustering struc-
ture to a full network clustering hierarchy. One idea would be
to apply the same algorithm presented to construct O(logn)
clustering covers of the network: Clustering i would be ob-
tained by assuming that all disks have radius equal to 2i , for
i = 0, . . . , log n, where n = |D|. One problem with this
strategy is that by artificially increasing the communication
ranges on the nodes in the network (radii of the disks), a re-
sulting cluster in the hierarchy may not even be connected.
Other directions for future work are (i) to develop constant
approximation algorithms for piercing a collection of disks of
different radii; (ii) to extend any results on nonuniform ra-
dius disks to ad-hoc network clustering – note that if we have
nonuniform radius disks, we can no longer guarantee sym-
metric communication between nodes in the network; and
(iii) to determine the exact neighborhood piercing number for
L2 norm in 3- (or higher) dimensional spaces.

Acknowledgement

We would like to express our thanks to Martin Ziegler for
valuable discussions on estimating N(3, 2).

References

[1] P.K. Agarwal and C.M. Procopiuc, Exact and approximation algorithms
for clustering, in: Proc. of 9th ACM–SIAM Sympos. on Discrete Algo-
rithms (1998) pp. 658–667.

[2] P.K. Agarwal and M. Sharir, Efficient algorithms for geometric opti-
mization, ACM Comput. Surv. 30 (1998) 412–458.

[3] S. Basagni, Distributed and mobility-adaptive clustering for multimedia
support in multi-hop wireless networks, in: Proc. of IEEE Vehicular
Tech. Conf. (1999) pp. 19–22.

[4] S. Basagni, Distributed clustering for ad-hoc networks, in: Proc. of
1999 Int. Sympos. on Parallel Architectures (1999) pp. 310–315.

[5] J. Basch, L.J. Guibas and J. Hershberger, Data structures for mobile
data, in: Proc. of 8th ACM–SIAM Sympos. on Discrete Algorithms
(1997) pp. 747–756.

[6] S. Bepamyatnikh, B. Bhattacharya, D. Kirkpatrick and M. Segal, Mo-
bile facility location, in: Proc. of ACM Int. Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications
(2000) pp. 46–53.

[7] C.-C. Chiang, H.-K. Wu, W. Liu and M. Gerla, Routing in clustered
multihop, mobile wireless networks with fading channel, in: Proc. of
IEEE Singapore Int. Conf. on Networks (1997) pp. 197–211.

[8] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices, and Groups
(Springer, 1999).

[9] Z. Drezner, The p-center problem: heuristic and optimal algorithms,
J. Oper. Res. Soc. 35 (1984) 741–748.

APPROXIMATION ALGORITHMS FOR THE MOBILE PIERCING SET PROBLEM 161

[10] A. Efrat, M.J. Katz, F. Nielsen and M. Sharir, Dynamic data structures
for fat objects and their applications, in: Proc. of Workshop on Algo-
rithms and Data Structures (1997) pp. 297–306.

[11] T. Feder and D.H. Greene, Optimal algorithms for approximate clus-
tering, in: Proc. of 20th Annu. ACM Sympos. on Theory of Computing
(1988) pp. 434–444.

[12] R.J. Fowler, M.S. Paterson and S.L. Tanimoto, Optimal packing and
covering in the plane are NP-complete, Inform. Process. Lett. 12(3)
(1981) 133–137.

[13] G.N. Frederickson and D.B. Johnson, Generalized selection and rank-
ing: sorted matrices, SIAM J. Comput. 13 (1984) 14–30.

[14] J. Gao, L.J. Guibas, J. Hershburger, L. Zhang and A. Zhu, Discrete mo-
bile centers, in: Proc. of 17th ACM Sympos. on Computational Geom-
etry (2001) pp. 188–196.

[15] M. Gerla and J.T.C. Tsai, Multicluster mobile multimedia radio net-
works, ACM–Baltzer J. Wireless Networks 1(3) (1995) 255–256.

[16] M. Golumbic, Algorithmic Graph Theory (Academic Press, New York,
1980).

[17] T. Gonzalez, Covering a set of points in multidimensional space, In-
form. Process. Lett. 40 (1991) 181–188.

[18] S. Har-Peled, Clustering motion, in: Proc. of 42nd Annu. IEEE Sympos.
on Foundations of Computer Science (2001) pp. 84–93.

[19] D.S. Hochbaum and W. Maas, Approximation schemes for covering
and packing problems in image processing and vlsi, J. of the ACM 32
(1985) 130–136.

[20] D.S. Hochbaum and D. Shmoys, A best possible heuristic for the
k-center problem, Math. Oper. Res. 10 (1985) 180–184.

[21] D.S. Hochbaum and D. Shmoys, A unified approach to approximation
algorithms for bottleneck problems, J. of the ACM 33 (1986) 533–550.

[22] H. Huang, A.W. Richa and M. Segal, Approximation algorithms for the
mobile piercing set problem with applications to clustering, Technical
Report TR-01-007, Department of Computer Science and Engineering,
Arizona State University, Tempe, AZ (2001).

[23] R.Z. Hwang, R.C. Chang and R.C.T. Lee, The generalized searching
over separators strategy to solve some NP-hard problems in subexpo-
nential time, Algorithmica 9 (1993) 398–423.

[24] R.Z. Hwang, R.C.T. Lee and R.C. Chang, The slab dividing approach
to solve the Euclidean p-center problem, Algorithmica 9 (1993) 1–22.

[25] M.J. Katz, F. Nielsen and M. Segal, Maintenance of a piercing set for
intervals with applications, in: Proc. of 11th Int. Symp. on Algorithms
and Computation (2000) pp. 552–563.

[26] M.T. Ko, R.C.T. Lee and J.S. Chang, An optimal approximation al-
gorithm for the rectilinear m-center problem, Algorithmica 5 (1990)
341–352.

[27] C.R. Lin and M. Gerla, Adaptive clustering for mobile wireless net-
works, IEEE J. Selected Areas Commun. 15(7) (1997) 1265–1275.

[28] A.B. McDonald and T. Znati, A mobility-based framework for adaptive
clustering in wireless ad-hoc networks, IEEE J. Selected Areas Com-
mun. 17(8) (1999).

[29] N. Megiddo and K.J. Supowit, On the complexity of some common
geometric location problems, SIAM J. Comput. 13(1) (1984) 182–196.

[30] F. Nielsen, Fast stabbing of boxes in high dimensions, in: Proc. of 8th
Canad. Conf. in Computational Geometry (1996) pp. 87–92.

[31] R. Ramanathan and M. Steenstrup, Hierarchically-organized, multihop
mobile wireless for quality-of-service support, Mobile Networks and
Applications 3 (1998) 101–119.

[32] M. Sharir and E. Welzl, Rectilinear and polygonal p-piercing and
p-center problems, in: Proc. of 12th Annu. ACM Sympos. on Com-
putational Geometry (1996) pp. 122–132.

Hai Huang is an M.S. candidate in the Department
of Computer Science and Engineering at Arizona
State University, under the supervision of Prof. An-
drea W. Richa. He received a B.A. and a M.A.
in the Mathematics Department at Tsinghua Univer-
sity, P.R. China, in 1996 and 1999, respectively. His
current research work focus on clustering and rout-
ing problems in mobile ad-hoc networks, and on the
chordal graph completion problem with applications
to scientific computing.

E-mail: hai@asu.edu

Andrea W. Richa joined the Department of Com-
puter Science and Engineering at Arizona State Uni-
versity as an Assistant Professor in August 1998. She
received her M.S. and Ph.D. degrees from the School
of Computer Science at Carnegie Mellon University,
in 1995 and 1998, respectively. She also earned an
M.S. degree in computer systems from the Graduate
School in Engineering (COPPE), and a B.S. degree
in computer science, both at the Federal University
of Rio de Janeiro, Brazil, in 1992 and 1990, respec-

tively. Prof. Richa’s main area of research is in network algorithms. Some
of the topics Dr. Richa has worked on include packet scheduling, distributed
load balancing, packet routing, mobile network clustering and routing proto-
cols, and distributed data tracking. Prof. Richa’s data tracking (or lookup)
algorithm has been widely recognized as the first benchmark algorithm for
the development of distributed databases in peer-to-peer networking, having
received over 114 academic journal or conference publications, and being
implemented as part of two of the current leading pojects in peer-to-peer net-
working. Dr. Richa’s was the recipient of an NSF CAREER Award in 1999.
For a selected list of her publications, CV, and current research projects,
please visit http://www.public.asu.edu/ aricha.
E-mail: aricha@asu.edu

Michael Segal was born at October 12, 1972 in
USSR. In 1991 he immigrated to Israel and started
to study Computer Science in Ben-Gurion University
of the Negev. He finished his B.Sc, M.Sc and Ph.D.
degrees in 1994, 1997, and 1999, respectively. Dur-
ing a period of 1999–2000 Dr. Michael Segal held a
MITACS National Centre of Excellence Postdoctoral
Fellow position in University of British Columbia,
Canada. Dr. Segal joined the Department of Com-
munication Systems Engineering, Ben-Gurion Uni-

versity, Israel in 2000 where he holds now a position of Senior Lecturer. His
primary research is algorithms (sequential and distributed), data structures
with applications to optimization problems, mobile wireless networks, com-
munications and security.
E-mail: segal@cse.bgu.ac.il

