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In certain mixtures of fuel and oxidizer, propagating flame fronts may exhibit both stable and 
unstable cellular structures. Such flames represent spatially extended chemical systems, with 
coupling from diffusion of heat and reactants. A new algorithm is proposed that allows the 
stabilization and tracking of a steady, two-cell front through a bifurcation sequence that eventually 
leads to chaotic behavior. Periodic modes of the front can also be stabilized and tracked. The system 
is stabilized by monitoring one experimentally accessible variable and perturbing one boundary 
condition. No knowledge of the detailed dynamics of the system (i.e., the underlying governing 
equations) is required to implement the tracking method. The algorithm automatically provides 
information about the locations of the unstable steady states and periodic orbits and the magnitudes 
of the associated eigenvalues and Ploquet multipliers 

I. INTRODUCTION 

When a mixture of fuel and oxidizer is ignited, a wave of 
exothermic chemical reaction propagates through the mix- 
ture, producing heat and converting initial reactants into 
products. The planar front of a premixed flame, propagating 
through an initially motionless and homogeneous reaction 
mixture, may become unstable under certain conditions.‘-3 
Two different types of instabilities arise: the hydrodynamic 
flame instability and the thermo-diffusive flame instability.4 
Hydrodynamic instabilities are caused by changes in density 
due to thermal expansion of the burned gas and are always 
present in large-scale flames. Thermo-diffusive instabilities 
arise from small-scale perturbations and depend on the pres- 
ence of a reactant component with a sufficiently high mo- 
lecular diffusivity. 

We present an algorithm that can be used to stabilize 
steady flame fronts, suppressing the natural oscillatory be- 
havior. It can also be used to stabilize periodic oscillations of 
the front that would otherwise be unstable. The algorithm 
utilizes a map-based tracking scheme that allows adaptive 
control of the system under slowly varying conditions.5 To 
demonstrate the method we focus on the thermo-diffusive 
instability, neglecting the effects of thermal expansion by 
assuming the density of the gaseous mixture is everywhere 
constant. 

In the thermo-diffusive instability, the flame front be- 
comes nonplanar at a critical value of a system parameter 
such as the Lewis number. On further changing the param- 
eter, the cellular front loses its stability to display spatiotem- 
poral oscillations. The emergence of a period-doubling cas- 
cade in the two-cell front-and the control of such fronts--is 
the focus of this investigation. We study the control of two- 
dimensional premixed flames with a standard partial differ- 
ential equation (PDE) model and a one-variable reduction of 
this model given by the Kuramoto-Sivashinsky equation. A 
description of the dynamical behavior of each system by a 

one-dimensional map allows the application of the tracking 
algorithm. 

Several recent studies have reported control and tracking 
of unstable steady states in dynamical systems with many 
degrees of freedom. Gills et CZ~.~ reported tracking steady 
states in a chaotic multimode laser, thereby extending the 
range of stable lasing beyond that of the autonomous system. 
Unstable steady states and periodic orbits were tracked in a 
similar laser system by Glorieux and co-workers7 Hjelmfelt 
and Ross’ stabilized and tracked unstable stationary states in 
a spatially extended chemical system with a linear feedback 
method that relies on a model description. We recently used 
a model-independent method to track unstable periodic orbits 
in the Belousov-Zhabotinsky (BZ) reaction in both the cha- 
otic and complex-periodic parameter ranges.5 The adaptive 
tracking algorithm is an extension of a map-based control 
method”” that was previously used to control chaos in the 
BZ reaction.” The map-based scheme is a reduction of the 
Ott-Grebogi-Yorke (OGY) algorithm.‘2*‘3 

The tracking algorithm is modified in this study to sta- 
bilize steady states and periodic orbits in spatiotemporal 
flame systems. In Sec. II, we describe the model systems and 
discuss some features of the calculations. We show how the 
behavior of a system near a focus-type steady state can be 
described by a one-dimensional map in Sec. III. Stabilizing 
and tracking unstable steady states and periodic orbits in the 
Kuramoto-Sivashinsky system and in the full PDE system 
are described in Sets. IV and V. We conclude in Sec. VI by 
describing potential applications of the method. 

II. MODEL SYSTEMS 

A. Reaction-diffusion model 

Premixed flames with thermo-diffusive instabilities can 
be described by a system of two partial differential equa- 
tions, one for temperature and the other for the concentration 
of a stoichiometrically deficient reactant: 
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PC,; = Kv*T+qW, 0) 

2 = D,V*C- W. (2) 

Here, T is the temperature of the gaseous mixture, C is the 
concentration of the stoichiometrically deficient component, 
p is the density, c,, is the specific heat, K is the thermal 
conductivity of the mixture, V*=$/dX*+J’?dY* is the 2-D 
Laplacian operator, q is the heat release of the reaction, and 
D, is the diffusion coefficient for the reactant C. The tem- 
perature dependence of the rate of chemical reaction W  is 
given by an Arrhenius equation, 

W= KC exp( - EIRT), (3) 
where E is the activation energy, R is the universal gas con- 
stant, and the constant K includes the frequency factor and 
the concentration of the reactant in stoichiometric excess. 
The reaction zone is taken to be infinite in extent in the X 
coordinate (--oriCX<+m) but of finite width L in the Y co- 
ordinate (OGYc L). We assume zero-flux boundary condi- 
tions at Y=O and L. 

For convenience, we transform (1) and (2) into the di- 
mensionless equations 

$v*s+(l -e)&J, (4) 

~=(l/Z)V*s-w, (5) 

where e=T/T, is the dimensionless temperature scaled by 
the final temperature Tb behind the front (Tb= T,,+qC,,lc,p, 
with T,, the ambient temperature) and e=T,,/Tb ; s = C/Co is 
the dimensionless concentration scaled by the concentration 
of reactant Co ahead of the front; 7=Kt, x= (Kpc,l~)‘~X 
and y = (Kpc,l K) “*Y are dimensionless time and spatial co- 
ordinates; w=s exp(-NIB) is the dimensionless reaction rate 
with N = E/RTb ; and %= dpc,D, is the Lewis number. The 
boundary conditions appropriate for the propagating front are 

s= 1, I~=E as ~++a; 

s=o, 8=1 as x--+-m, (6) 

where the front is moving in the positive x direction. The 
zero-flux boundary conditions in the y coordinate are 

ds de 
-=&=O at y=O and L. 
f?Y (7) 

It is convenient to introduce a traveling coordinate system in 
the x direction with a speed of the flame front u. This trans- 
formation adds a new term, udldx, to Eqs. (4) and (5): 

;=v*B+U;+(l-e)w, 63) 

-$(m-)v*s+ &co. (9) 

The 1-D solution of Eqs. (8) and (9), calculated using 
finite differences for the dldx and V*=d2/&* operators, is 
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PIG. 1. Profiles of concentration s, temperature 0, and reaction rate o in the 
I-D propagating flame front. To visualize the profiles, the rate o was re- 
scaled by a factor of 10 and the dimensionless time and space coordinates 
were resealed by setting the reaction rate o= 10” s exp(-20/f?) [which re- 
scales time by a factor of 10” and space by a factor of (10’“)‘/2]. The 
asymptotic velocity of the front is 0.322; S=O.8, l =0.15, N=20. 

shown in Fig. 1. The limits of the grid in the x direction were 
set to cutoff values in order to carry out the integration. The 
boundary conditions become 

s=l, I~=E at x=x+; 

s=o, e=i at X=X-, 
(10) 

where the front is positioned near x=0, and x’ and x- are 
the positive and negative cutoff coordinates. The steepness of 
the rate profile o(x), which is due to the highly nonlinear 
Arrhenius temperature dependence, imposes a limit on the 
maximum value of the grid cell size. Both the grid cell size 
and the cutoff coordinates were varied to determine appro- 
priate values for the study, where the front behavior is inde- 
pendent of the particular values chosen. 

The 2-D solution was calculated using an operator split- 
ting method,14 a two-step technique with implicit integration 
of reaction and diffusion terms in the x direction and explicit 
integration of diffusion terms in the y direction. Four itera- 
tions were typically required in each step of the integration 
for convergence, where the solution was effectively un- 
changed with further iterations. The operator splitting 
method was found to be three times faster than a standard 
implicit algorithm, which required the solution of large 
sparse matrices. 

The 1-D wave profile shown in Fig. 1 is also a valid 
solution to the 2-D system, subject to the boundary condi- 
tions (6) and (7). Thus, steady planar fronts propagating in 
the x direction would be anticipated for the 2-D system. For 
certain experimental conditions, however, such planar flames 
become unstable, producing cellular structures that are either 
stationary or undergo periodic or chaotic motions.3 These 
instabilities usually occur in mixtures containing relatively 
light reactants that are stoichiometrically deficient, e.g., lean 
hydrogen-oxygen flames. Instabilities may also occur in rich 
hydrocarbon flames if light, mobile chain carriers such as 
H-atoms are produced, The system described by Eqs. (8) and 
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(9) exhibits instabilities similar to those observed in real 
flames over a range of parameter values. However, because 
the numerical integration of the PDE model is computation- 
ally intensive, calculations were also carried out using the 
reduced model described below. 

B. The Kuramoto-Sivashinsky equation 

The 2-D system described by Eqs. (8) and (9) can be 
reduced to a single equation by assuming that reaction takes 
place in an infinitely narrow zone. A stability analysis of the 
PDEs shows that the (infinitely narrow) front becomes un- 
stable when the diffusion of the fuel dominates over the heat 
conductance.‘5 The condition for instability in terms of the 
Lewis number is given by 

J%l-2/N(l-4. (11) 
The reduction of Eqs. (8) and (9) to a single equation was 
developed by Sivashinsky16 and Kuramoto.17 The 
Kuramoto-Sivashinsky equation gives the temporal evolu- 
tion of the front as a function of its spatial derivatives, 

a* a* 2 a29! a4w 
dt= ay i i -dy2-Tp 02) 

with the dependent variable IP(y ,t) representing the contour 
of the front. The evolution equation, as it is written here, 
already satisfies the condition for the onset of instability. The 
only bifurcation parameter is the width of the reaction zone 
in the y direction. 

An unusually rich sequence of bifurcations is exhibited 
by Eq. (12) as the width of the reaction zone is increased.18 
With no-flux boundary conditions, single- and multiple-cell 
structures are exhibited, each displaying spatiotemporal be- 
havior ranging from steady to chaotic. We focus on the two- 
cell structure observed over the range 16.5~C~18.5 of the 
reaction zone width. Profiles of the front for three different 
values of L are shown in Fig. 2. The relative position of the 
local minimum in the profile serves as a convenient observ- 
able and its time trace is also plotted for each value of L. 
Figure 2(a) shows the steady front for L=16.5 with a sym- 
metrical two-cell structure. This front shows no temporal 
variation. At L = 16.8, the steady two-cell front loses stability 
through a Hopf bifurcation and begins to oscillate. A snap- 
shot of the oscillatory front and the time trace of the local 
minimum are shown in Fig. 2(b) for L = 17.5. Simple oscil- 
lations are exhibited at this reaction width. As the width is 
increased, a series of period doubling bifurcations leads to 
chaotic behavior, which appears at L = 18.1. The front profile 
and the chaotic time series of the local minimum are shown 
in Fig. 2(c) for L= 18.3. At L= 18.33, the strange attractor is 
destroyed and randomly moving traveling waves in the pro- 
file are exhibited. The control method described in the next 
section allows suppression of the front oscillations over the 
entire range of L where the two-cell structure is observed. 

III. STABILIZATION AND TRACKING ALGORITHM 

A. Stabilization of the steady state 

The stabilization algorithm takes advantage of the linear 
evolution of a system in the proximity of a steady state. (The 
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FIG. 2. Solution of the Kuramoto-Sivashinsky equation with no-flux 
boundary conditions showing steady (a), periodic (b), and chaotic (c) two- 
cell fronts for t= 16.5, 17.5, and 18.3. The relative position of the local 
minimum in the profile is used to monitor the temporal evolution of the 
front. The time series in each figure shows the spatiotemporal motion of the 
minimum, with the vertical bar representing 100.0 dimensionless time units. 
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stabilization of periodic orbits is discussed below in Sec. IV.) 
For an unstable focus, oscillations initially grow in a plane 
defined by the unstable manifold. In the local vicinity of the 
steady state, the system can therefore be treated as two- 
dimensional since trajectories are attracted to and remain in 
this plane. (We assume that all other manifolds of the steady 
state are stable.) We assign the variables & and 6 to the 
plane and describe the state o_f the system by the vector {, 
with the focus steady state at tF: 

5’L - 51 2 ) ’ 5=( - F 0 0’ 1 
(13) 

The evolution near the steady state is governed by the system 
of linear equations 

;=A{, 
where A is a 2X2 matrix with a pair of complex-conjugate 
eigenvalues, cu+iw, giving solutions of the form 

i(t)=e”‘[bl sin(or)+i2 cos(~t)]. (15) 

The experimentally observable variable, Y(t), is some 
projection of 6. The measured motion of the system will 
therefore have the form 

Y(t)=e”‘cl sin(wt+@+YF, (16) 

for some C, and 13, with the observed focus at YF . We define 
y(t) = Y(t) - YF and 8~0, giving 

y(t)=en’CI sin(wt). (17) 

For cu>O, the system will spiral away from the focus with the 
exponential growth of y(t) modulated by sinusoidal oscilla- 
tions. It is natural to monitor the growing oscillations by 
measuring the maximum or minimum of y( t). From the time 
derivative of (17), 

aY(t) 
-=earC2 sin(ot+ f3,), dt 

(18) 

we see that the extrema of y( t) are equally spaced in time by 
At= r//w. The appearance of the maxima and minima is 
therefore subject to the recursion relation 

Yi+ I = ?lYi 7 (19) 

where yi and yi+, are the successive values and 7 
= -exp(cu?rlo). 

The trajectory of a two-variable, linear system is shown 
in Fig. 3, where the horizontal axis represents the measured 
variable )I( t). Note that the extrema of y(t) occur when the 
trajectory crosses axis M in the 5 plane. We assume that 
some system parameter p is used for control and that varia- 
tion of this parameter causes a shift of the steady state & 
along line P in the 5 plane. 

The steady state is stabilized by temporarily shifting its 
position in phase space such that the resulting trajectory 
(around the shifted steady state) passes through the position 
of the unperturbed steady state. When the system reaches this 
point along the trajectory, the perturbation is removed. In the 
targeting procedure used here, the perturbation is applied 
when the trajectory intersects P and is removed a half period 

,/ 

FIG. 3. The trajectory of a linear two-variable system near the stationary 
state. 4 is the phase difference between the appearance of the maximum in 
y(t) (at line M) and the direction of the steady state shift (along line P). The 
bold curve shows the trajectory that targets the steady state when the per- 
turbation is applied. 

later. The steady state is shifted to a point, indicated in Fig. 3 
by a square, around which the perturbed system evolves to 
target the unperturbed steady state. 

As shown in Fig. 3, the perturbation must be applied at a 
phase $ following the appearance of the maximum in the 
measured variable y(t). To synchronize the perturbation with 
the detection of the extremum, another variable, z(t), is in- 
troduced: 

z(t)=y(t) cos(+)+~sin(~~5) -at;sin(4). (20) 
1 1 JY(l) 1 

It follows from (17) and (20) that 

z(t)=earCl sin(wt-4). (21) 

Therefore, z(t) has the necessary phase shift with respect to 
y(t). The value of 4 can be determined by perturbing the 
steady state when the system is at CF. The trajectory will 
spiral out from the shifted steady state, reaching its extrema 
in y(t) at times (nr-+)/~ after the perturbation. 

Using the experimentally determined value of 4 with 
Eq. (20), perturbations are applied and removed at the ex- 
trema of the new variable z(t), which occur at the same 
phase of oscillation for all shifts of the steady state along P. 
The appearance of the extrema of z(t) is also governed by 
Eq. (18) and the recursion relation (19). The effect of the 
perturbation Ap is given by5 

When the perturbation is proportional to zi , 

Ap=Kzi, 
the steady state is targeted if 

(23) 

K=Ko= 
17 

(v- l)(dzF/+) ’ 
(24) 
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FIG. 4. Phase portrait showing a trajectory calculated from F.q. (12) at 
L = 17.5 during a targeting perturbation. The horizontal axis represents the 
position of the local minimum in the profile relative to the width of the 
reaction zone. The vertical axis represents the relative position of one of the 
neighboring local maxima in the profile. A perturbation imposed at point A 
and removed at point B shifts the steady state off the unstable manifold of 
the stationary state. The stationary state is accurately targeted, however, 
because the perturbation-free period allows the system to relax along the 
stable manifold. 

In multidimensional systems such as the Kuramoto- 
Sivashinsky equation, the stable manifolds may play an im- 
portant role in the control algorithm. Figure 4 shows a typi- 
cal trajectory arising from the application of the algorithm to 
Eq. (12). The system initially spirals out from the unstable 
focus. The perturbation was applied at point A and removed 
at point B. The resulting trajectory shows that although the 
steady state is shifted out of the plane of the unstable mani- 
fold, the focus is targeted after the perturbation is removed at 
point B. For accurate targeting, the system must have suffi- 
cient time to relax to the plane of the unstable focus after the 
perturbation is removed; otherwise, the next perturbation 
will be erroneously determined according to the system state 
at some position between point B and the steady state. The 
algorithm is therefore implemented with a perturbation-free 
period to allow the system to relax. The perturbation is ap- 
plied for half the period according to Eq. (23) when the 
extremum in z(t) is observed. It is removed for the next half 
period, letting the system relax along the stable manifold. 
The procedure is then repeated. In applying this technique to 
Eq. (12), the perturbations become very small (effectively 
approaching zero) as the system converges to the steady 
state. The targeting procedure therefore changes only the sta- 
bility of the steady state and not its position. It should be 
noted that essentially the same delay technique was first used 
by Hunt” to stabilize high-periodicity orbits in a driven di- 
ode system. It has since been used in a number of studies, 
including controlling chaos in a lase?’ and in the Belousov- 
Zhabotinsky reaction.” Other means of targeting that do not 
rely on a perturbation-free period have been proposed, in- 

eluding a recursive proportional feedback method by Rollins, 
Parmananda, and Sherard2’ and a multiparameter scheme by 
Petrov, Peng, and Showalter.” 

B. Stability analysis and tracking 

A stability analysis subroutine is used to interrogate the 
steady state. The stability of the steady state under control 
can be changed by varying the proportionality constant K, 
and the response of the system to a sequence of variations 
yields the stability of the autonomous steady state.5 For an 
arbitrary K, Eqs. (22) and (23) can be rewritten as 

Zi+l=SZi * (25) 

The slope S, which depends linearly on the proportionality 
constant K, defines the stability of the system under control: 

F* 
s=x+$K(i-A), 

where A= $=exp(2~&w) and 

az; JZF 77 -=-- 
dP ap 1+7’ (27) 

With the incorporation of a delay period to allow the system 
to relax between perturbations, zf is the effective shift of the 
fixed point over the full period of oscillation for a perturba- 
tion applied over half the period. The behavior of the system 
under control can therefore be described in terms of the zi+ , 
vs zi map. The ability to change the slope S of the map by an 
appropriate choice of K is an integral feature of the tracking 
algorithm.5 

In each step of the tracking, the proportionality constant 
K is set to a value, K,, that will produce a slightly unstable 
steady state. As the system diverges away from the steady 
state, points are collected for an accurate determination of 
the slope .S1. Before the system has evolved beyond the lin- 
ear control range, K is changed to a new value, K,, which 
corresponds to a mildly stable steady state. As the system 
converges to the steady state, values are again collected for 
an accurate determination of the corresponding slope S,. The 
proportionality constants and corresponding slopes are then 
used to calculate Ko, the proportionality constant that pro- 
duces a map of zero slope under control, and A, the slope of 
the map of the autonomous system? 

and 

A= 
S&I -SlK, 

K1--K, ' 

(28) 

The steady state becomes super-stable when the proportion- 
ality constant K, is used in the control algorithm. With each 
increment of the bifurcation parameter, the steady state is 
stabilized by repeating the stability analysis. 

J. Chem. Phys., Vol. 101, No. 8, 15 October 1994 

Downloaded 09 Jul 2002 to 141.14.151.181. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Petrov, Crowley, and Showalter: Controlling spatiotemporal dynamics 6611 

0.8 , 1 

0.6 

Y 

0.4 

0.02 

a 

0.00 

-0.02 
16.5 17.0 17.5 18.0 18.5 

L 

(a) !. ’ 
/fj 

:\g!Jj 
:- * .;i’T 

FIG. 5. (a) Bifurcation diagram of the autonomous system and the stabilized 
steady front calculated from the Kuramoto-Sivashinsky equation. Solid 
points give the relative maximum and minimum of oscillation of 
Y = (y,,,,/L) as a function of the bifurcation parameter L. The position of the 
stabilized steady front is shown by the solid line. (b) Value of the real part of 
the complex conjugate eigenvahres as a function of I,. 

IV. TRACKING STEADY AND PERIODIC FRONTS IN 
THE KURAMOTO-SIVASHINSKY SYSTEM 

The unstable states of the Kuramoto-Sivashinsky equa- 
tion provide an interesting testing ground for the tracking 
algorithm. We first demonstrate the method by stabilizing the 
steady two-cell front through the period-doubling and cha- 
otic ranges of the bifurcation parameter L. We then demon- 
strate the tracking of periodic orbits by stabilizing period-one 
oscillations through the same range. The position of the local 
minimum in the front profile was utilized as the “experimen- 
tal” observable for the tracking procedure. It is a convenient 
choice because the steady solution is symmetrical for all L, 
with the minimum exactly at the center of the reaction zone. 

The bifurcation diagram of the autonomous system is 
shown in Fig. 5(a). The solution is stable for LC16.8, with 
the position of the minimum in the front profile, Y=yti,,/L, 
remaining at the center of the reaction zone [cf. Fig. 2(a)]. A 
Hopf bifurcation occurs at L= 16.85, and the front begins to 
oscillate. The solid circles show the maximum and minimum 
of the oscillations [cf. Fig. 2(b)]. As the width is increased, a 
symmetry-breaking bifurcation occurs at L = 18.0 and two 
mirror-image, period-one solutions appear, each of which ex- 
hibit oscillations centered above or below the middle of the 
reaction zone. The symmetry-breaking bifurcation is neces- 
sary for this symmetrical system to develop a series of 
period-doubling bifurcations leading to a chaotic attractor.22 
(For clarity, only one of the solutions is shown in the bifur- 

z(t) 

0.5005 

0.4995 

o.4g85 % 
5300 5400 5500 5600 5700 5800 

FIG. 6. Time series showing one step of the tracking procedure at L= 17.5. 
A perturbation is first applied to determine 4. The following series of oscil- 
lations with increasing and decreasing amplitude is used to determine the 
stability of the steady state (see text). 

cation diagram.) As the width is increased, the oscillations 
become more complex through the period-doubling cascade 
to eventually become chaotic at L= 18.1 [cf. Fig. 2(c)]. At 
L = 18.33, the oscillatory chaos disappears and more complex 
behavior is exhibited, where minima in the front profile ran- 
domly appear only to coalesce with other minima and the 
system boundaries. 

The steady flame front is stabilized by varying the 
boundary conditions to simulate perturbations to the fuel 
supply. The no-flux boundary condition, a\llcYy=O in Eq. 
(12), was varied according to zi in Eq. (23) at one boundary. 
This control parameter corresponds to an experimental set- 
ting in which there are minute, asymmetric variations in the 
fuel supply. Since the system is symmetrical at the steady 
state, an asymmetric perturbation is necessary to affect the 
steady state position. 

Figure 6 shows a time series during one step of the 
tracking algorithm as the width of the reaction zone was 
changed from L= 17.4 to 17.5. A perturbation was first ap- 
plied at t =53 18 to calculate the phase 4 of the projected 
oscillations. This is used in Eq. (20) to transform to the vari- 
able z(t). The proportionality constant was then set to the 
value K, = -24.2 at t =5360 to produce a slightly unstable 
state. The resulting oscillations gradually increase in ampli- 
tude, as shown in Fig. 6. At t=5580, the proportionality 
constant is changed to a new value, K,= 178.9, which corre- 
sponds to a mildly stable state. Figure 6 shows these oscil- 
lations gradually decreasing in amplitude. The local slopes 
St and S2 corresponding to K, and K, are determined from 
the zi+ I vs zi return maps. Figure 7 shows the maps for the 
diverging and converging system. The values of K, , K,, S, , 
and S, allow the determination of K. from Eq. (28). The 
steady state is then targeted using the updated Ko, shown in 
Fig. 6 at t=5685. 

Due to the symmetry of the two-cell front (and the 
choice of the local minimum in the profile as the monitored 
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FIG. 7. Return maps for the tracking step in Fig. 6. Two different values of 
K cause the system to diverge away from the stationary state (1,2,3,...) and 
converge back to that state (a$,~,...). The proportionality constant was first 
set to K, = -24.2 and then to Ks= 178.9 to generate the divergent and con- 
vergent behavior. The corresponding values of St and S, in Eqs. (28) and 
(29) yield the values Ko=373.7 and A= 1.48. 

variable), the position of the steady state remains at 
Y =y,,,/L=O.5. The steady state position therefore does not 
require reevaluation by the tracking procedure when the bi- 
furcation parameter is changed. The solid line in Fig. 5(a) 
shows the stabilized front at Y=O.5 following the Hopf bi- 
furcation at L = 16.85. The steady-state stability of the au- 
tonomous system is also determined by the tracking algo- 
rithm. Figure 5(b) shows the real part of the complex 
conjugate eigenvalues of the focus plotted as a function of 
the reaction zone width. Both stable and unstable steady 
states can be examined, since the appropriate choice of K 
causes the system to either converge to or diverge from the 
steady state, thereby allowing the eigenvalues to be deter- 
mined from Eq. (29). 

The tracking algorithm can also be used to stabilize pe- 
riodic oscillations of the front. For periodic orbits, the algo- 
rithm relies on the saddle character of the corresponding 
fixed points in the Poincare section. As previously reported, 
periodic orbits with only one unstable manifold and highly 
attractive stable manifolds can be readily stabilized and 
tracked.5 The method is analogous to that for stabilizing 
steady states except no phase correction is necessary. The 
oscillatory behavior of Eq. (12) is described according to a 
1-D map by plotting the current minimum of oscillation with 
respect to the previous minimum. The period-l orbit is then 
stabilized and tracked by targeting the fixed point in the map. 
As in earlier applications,5’9-‘1 perturbations proportional to 
the deviation from the fixed point are applied. To allow time 
for the system to relax to the unstable manifold, the pertur- 
bations are applied for only half the oscillatory cycle. The 
tracking algorithm maintains the local stability of the peri- 
odic orbit by determining the proportionality constant K. and 
the Floquet multiplier X for each new value of the bifurcation 
parameter L. The amplitude of the period-l orbit changes as 
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FIG. 8. Stabilization and tracking of period-l oscillations. (a) Bifurcation 
diagram calculated from Eq. (12). where the solid points represent the os- 
cillation minimum of the local minimum in the front profile, Y = (y~“/~),,. 
The open circles show the locus of the tracked period-l orbit. (b) Value of 
the period-l Floquet multiplier as a function of L. 

the value of L is increased, and a corresponding shift of the 
fixed point occurs in the map. The position of the fixed point 
must therefore be redetermined (according to the method de- 
scribed in Ref. 5) for each new value of L. 

Figure 8(a) shows an enlargement of Fig. 5 near the first 
period-doubling bifurcation at L = 18.07. The locus of the 
period- 1 orbit determined by the tracking algorithm is shown 
by the open circles. Figure 8(b) shows the Floquet multiplier 
X of the period-l orbit as a function of L. The tracking algo- 
rithm determines the Floquet multiplier of the stable as well 
as the unstable orbits, since, like the stability of the steady 
state, the stability of the orbit can be varied by varying the 
value of K. A symmetry breaking bifurcation, where h= 1 .O, 
occurs at L= 18.0, and the algorithm switches to one of the 
new stable solutions. At L = 18.07, the period-doubling bifur- 
cation takes place with X= - 1.0. The unstable period-l orbit 
is then tracked through the period-doubling cascade and into 
the chaotic regime. 

V. TRACKING STEADY FRONTS IN THE PDE SYSTEM 

Equations (1) and (2) provide a more realistic descrip- 
tion of premixed flames than the Kuramoto-Sivashinsky 
equation. To simulate 2-D flame fronts undergoing thermo- 
diffusive instabilities, parameter values satisfying Eq. (11) 
were used in the numerical integration of Eqs. (8) and (9). 
The parameter values ;y?=O.8, e=0.15, and N=20 were cho- 
sen to reflect actual values in an experimental system.” 

J. Chem. Phys., Vol. 101, No. 6, 15 October 1994 

Downloaded 09 Jul 2002 to 141.14.151.181. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Petrov, Crowley, and Showalter: Controlling spatiotemporal dynamics 6613 

0.E 

0.6 

Y 

0.4 

0.2 

0.4 

0.3 

a.103 
0.2 

0.1 

0.0 

-0.1 
II 

I - 

(4 

, - 

/ P) 

08.1 0 112.0 116.0 120.0 124.0 128.0 1 32. 

L 

FIG. 9. Stabilization and tracking of the steady front calculated from F,qs. 
(8) and (9). (a) Bifurcation diagram of the front oscillations, where the solid 
points show the oscillation extrema of the local minimum in the front pro- 
file, Y =(y,,,/L.). The stabilized stationary state is shown by the open 
circles. (b) The real part of the complex conjugate eigenvalues as a function 
of L. Conditions are the same as in Fig. 1. 

The integration yields a two-cell front over a reaction zone 
width ranging from L = 106 to 116.2. As with the Kuramoto- 
Sivashinsky system, the behavior was characterized by 
monitoring the local minimum of the front contour, 
Y = y,.JL.. The bifurcation diagram of the autonomous sys- 
tem is shown in Fig. 9(a) by points representing the extrema 
in Y as a function of L. The behavior is qualitatively the 
same as that exhibited by the Kuramoto-Sivashinsky equa- 
tion. The two-cell front loses stability through a Hopf bifur- 
cation at L = 110.2, which is followed by a symmetry break- 
ing bifurcation at L = 114.6. At L = 114.9, a period-doubling 
cascade is initiated that gives rise to a strange attractor at 
L = 115.2. This attractor coexists with another, mirror-image 
attractor that arises from the symmetry-breaking bifurcation. 
At L = 116.2, both of these attractors are destroyed and the 
oscillatory behavior is replaced by an attractor with ran- 
domly appearing and disappearing minima in the front pro- 
file. The dynamical behavior governed by the new attractor is 
clearly more complex than the chaos arising from the period- 
doubling cascade. 

The application of the tracking algorithm to stabilize the 
steady two-cell front is shown in Fig. 9. The minimum in the 
front contour at Y=O.5 is shown in Fig. 9(a) by the open 
circles. The steady front was stabilized from where it loses 
stability at the Hopf bifurcation to a value of L far beyond 
where the low-dimensional chaos gives way to the complex 
nonoscillatory behavior. The real part of the complex conju- 

0 

gate eigenvalues for the focus steady state is shown by the 
circles in Fig. 9(b); the line at a=O.O separates the regions of 
stable and unstable behavior. A control parameter analogous 
to that used for the Kuramoto-Sivashinsky equation was 
chosen to stabilize the steady front. The fuel flux at one of 
the boundaries was varied in proportion to Zi in Eq. (23) by 
varying the no-flux boundary condition around zero at one 
boundary grid point upstream from the front. The algorithm 
was initiated at L= 108.0, where the steady state is still 
stable, and continuously applied to L = 132.0. 

Because the perturbations applied by the tracking algo- 
rithm become very small after the steady state is targeted, the 
position of the steady state is unaffected even though its 
stability is altered. The presence of noise and experimental 
errors, however, may affect both the position and stability of 
the steady state. During control, these fluctuations are multi- 
plied by a factor of exp(&‘&, where Tp is the period of 
oscillation, and can cause the algorithm to fail when aT, is 
large.” The stabilization of the two-cell front eventually fails 
as L is increased, since, as shown in Fig. 9(b), the state 
becomes highly unstable at large L. 

VI. CONCLUSION 

Stabilization and tracking methods represent powerful 
tools for investigating the bifurcation structures of dynamical 
systems. Studies of dynamical systems typically rely on time 
series analysis, with the character of the bifurcations inferred 
from the qualitative changes in behavior as a system con- 
straint is systematically varied. Information about the posi- 
tion and stability of unstable states has been accessible only 
from the application of continuation methodsz3 to model de- 
scriptions. This information is necessarily dependent on the 
accuracy of the model. Tracking methods, on the other hand, 
provide information that is primary in nature and not depen- 
dent on a particular model interpretation. These methods 
therefore provide an expansion of the repertoire of tech- 
niques for the experimental characterization of dynamical 
systems. The development of model descriptions is thereby 
enhanced by the larger experimental data base for compari- 
sons between experiment and theory. 

Several different schemes have been proposed for track- 
ing unstable states, most of which have stabilization routines 
based on reductions of the OGY method.12*13 We have relied 
on the map-based stabilization algorithm,‘-” since a linear 
stability analysis subroutine can be readily incorporated into 
the tracking procedure.5 In the application presented here, 
modifications incorporating a phase shift allow the algorithm 
to be applied to focus-type stationary states. Methods based 
on targeting stable manifolds in phase space could also be 
adapted to this type of tracking scheme. 

The tracking of steady and oscillatory flame fronts con- 
sidered in this study points to an obvious application of such 
algorithms: the stabilization of desired dynamical behavior 
under extreme or varying conditions. Extending the regime 
of stable burning, for example, could serve to enhance the 
efficiency of combustion processes. In order to facilitate our 
study of stabilization and tracking, we have considered only 
the simplest model systems. The model independent nature 
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of the method, however, suggests that more complicated 
flame systems, such as those subject to hydrodynamic insta- 
bilities, might also be amenable to stabilization and tracking. 

Although full knowledge of the system dynamics was 
available in this study, the control and tracking procedure 
utilized only a single “experimental” observable, the posi- 
tion of the local minimum in the front profile. The 
Kuramoto-Sivashinsky equation, as well as the complete 
reaction-diffusion system, served as test systems for the 
tracking algorithm, with unstable steady states and periodic 
orbits stabilized and tracked through period-doubling cas- 
cades, simple period-doubling chaos, and more complex spa- 
tiotemporal chaos. Since the algorithm stabilizes states that 
are representative of the autonomous system, it provides a 
model-independent, path-following method for the investiga- 
tion of experimental dynamical behavior. The stabilization of 
steady and oscillatory flame fronts in premixed flames is 
only one potential application of the algorithm; other appli- 
cations should be possible in biological and chemical spa- 
tiotemporal systems. 
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