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Abstract. Continuously tracking mobility of humans, vehicles or mer-
chandise not only provides streaming, real-time information about their
current whereabouts, but can also progressively assemble historical traces,
i.e., their evolving trajectories. In this paper, we outline a framework for
online detection of groups of moving objects with approximately similar
routes over the recent past. Further, we propose an encoding scheme for
synthesizing an indicative trajectory that collectively represents move-
ment features pertaining to objects in the same group. Preliminary ex-
perimentation with this multiplexing scheme shows encouraging results
in terms of both maintenance cost and compression accuracy.

1 Motivation

As smartphones and GPS-enabled devices proliferate and location-based services
penetrate into the market, managing the bulk of rapidly accumulating traces of
objects’ movement becomes all the more crucial for monitoring applications.
Apart from effective storage and timely response to user requests, data explo-
ration and trend discovery against collections of evolving trajectories seems very
challenging. From detection of flocks [9] or convoys [4] in fleet management, to
similarity joins [1] for car-pooling services, or even to identification of frequently
followed routes [2,8] for traffic control, the prospects are enormous.

We have begun developing a stream-based framework for multiplexing trajec-
tories of objects that approximately travel together over a recent time interval.
Our perception is that a symbolic encoding for sequences of trajectory segments
can offer a rough, yet succinct abstraction of their concurrent evolution. Taking
advantage of inherent properties, such as heading, speed and current position, we
can continuously report groups of objects with similar motion traces. Then, we
may regularly construct an indicative path per detected group, which actually
epitomizes spatiotemporal features shared by its participating objects.

Overall, such a scheme could be beneficial for:

– Data compression: collectively represent traces of multiple objects with a sin-
gle ”delegate” that suitably approximates their common recent movement.

– Data discovery: find trends or motion patterns from real-time location feeds.
– Data visualization: estimate significance of each multiplexed group of trajec-

tories and illustrate its mutability across time (e.g., on maps).



– Query processing: utilize multiplexed traces for filtering when it comes to
evaluation of diverse queries (range, k-NN, aggregates etc.) over trajectories.

We believe that our ongoing work fuses ideas from trajectory clustering [5]
and path simplification [7], but proceeds even further beyond. Operating in a
geostreaming context, not only can we identify important motion patterns in
online fashion, but we may also provide concise summaries without resorting
to sophisticated spatiotemporal indexing. Symbolic representation of routes was
first proposed in [1] for filtering against trajectory databases. Yet, our encoding
differs substantially, as it attempts to capture evolving spatiotemporal vectors
using a versatile alphabet of tunable object headings instead of simply compiling
timestamped positions in a discretized space. Finally, this scheme may be utilized
in applications that handle motion data (navigation, biodiversity, radar etc.).

The remainder of this paper is organized as follows. In Section 2, we introduce
a framework for multiplexing evolving trajectories in real time and explain the
basic principles behind our encoding scheme. In Section 3, we report indicative
performance results from a preliminary experimental validation of the algorithm.
Section 4 concludes the paper with a brief discussion of perspectives and open
issues for further investigation.

2 A Multiplexing Framework against Trajectory Streams

In this section, we first present the specifications of the problem and then outline
a methodology for multiplexing similar trajectories, which effectively provides
almost instant, yet approximate results.

2.1 Problem Formulation

Without loss of generality, trajectory To is abstracted as a sequence of pairs
{〈p1, τ1〉, 〈p2, τ2〉, . . . , 〈pnow, τnow〉} for a given moving object o. Positions pk ∈ Rd

in Euclidean space have d-dimensional coordinates measured at discrete, totally
ordered timestamps τk ∈ T, hence o(τk) ≡ pk. Note that T is regarded as an
infinite set of discrete time instants with a total order ≤. Then:

Definition 1. Trajectories of two objects oi and oj are considered similar along
interval ω up to current time τnow ∈ T, iff L2(oi(t), oj(t)) ≤ ε, ∀ t ∈ (τnow−ω, τnow],
where ε is a given tolerance parameter and L2 the Euclidean distance norm.

Hence, pairs of concurrently recorded locations from each object should not
deviate more than ε during interval ω. This notion of similarity is confined within
the recent past and does not extend over the entire history of movement. How-
ever, it can be easily generalized for multiple objects with pairwise similar tra-
jectory segments (Fig. 1a). Given specifications for proximity in space (within
distance ε) and simultaneity in time (over range ω), our objective is not just
to identify such groups of trajectories, but also to incrementally refresh them
periodically (every β time units) adhering to the sliding window paradigm [6].
More concretely, a framework for online trajectory multiplexing must:
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Fig. 1. Orientation-based encoding of streaming trajectories.

(i) distinguish objects into groups {g1, g2, . . .}, each containing synchronized,
pairwise similar trajectories during interval ω given a tolerance ε.

(ii) create an indicative ”delegate” trajectory T̄k for each group gk with more
than n members. For any sample point ō(t) ∈ T̄k, ∀ t ∈ (τnow − ω, τnow], it
holds that L2(oi(t), ō(t)) ≤ ε, ∀ oi ∈ gk.

(iii) insert, remove or adjust groups regularly (at execution cycles with period β)
in order to reflect changes in objects’ movement.

2.2 Trajectory Encoding

Checking similarity of trajectory segments according to their timestamped po-
sitions soon becomes a bottleneck for escalating numbers of moving objects or
wider window ranges. To avoid this, we opt for an approximative representa-
tion of traces based on consecutive velocity vectors that end up at the current
location of each respective object (Fig. 1c). Every vector is characterized by a
symbol that signifies the orientation of movement using the familiar notion of
compass (Fig. 1b, for movement in d = 2 dimensions), which roughly exemplifies
an object’s course between successive position messages.

Effectively, compass resolution α determines the degree of motion smoothing;
when α = 4, orientation symbols {N, S, E, W} offer just a coarse indication,
but finer representations are possible with α = 16 symbols (Fig. 1c) or more.
Instead of original positions, only the last dω

β e symbols and speed measures
need be maintained per trajectory thanks to the sliding window model, thus
offering substantial memory savings. Typically, once the window slides at the
next execution cycle, an additional symbol (marking motion during the latest β
timestamps) will be appended at the tail of this FIFO sequence, while the oldest
one (i.e., at the head) gets discarded.



2.3 Group Detection

Symbolic sequences are more amenable to similarity checks since they act as mo-
tion signatures. Presently, we identify objects with common signatures through
a hash table. Objects with identical symbolic sequences might have almost ”par-
allel” courses, but can actually be very distant from each other. So, the crux of
our approach is this:

Proposition 1. Objects with identical signatures that are currently within ε dis-
tance from each other, most probably have followed similar paths recently.

Therefore, identifying groups of at least n objects with a common signature
can be performed against their current locations pnow through a point clustering
technique. We provisionally make use of DBSCAN [3] to detect groups of similar
trajectories with proximal current positions. Afterwards, a delegate path T̄k per
discovered cluster with sufficient membership (≥ n objects) can be easily created.
Reconstruction of T̄k starts by calculating centroid ō(τnow) of its constituent
pnow locations; apparently, this will be the point at the tail of the sequence. In
turn, preceding points are derived after successively averaging respective speeds
retained in participating motion signatures. This can be easily accomplished by
simply rewinding the symbolic sequence backwards up to its head, i.e., reversely
visiting all samples within the sliding window frame.

3 Preliminary Evaluation

To assess the potential of our framework for data reduction and timely detection
of trends, we have conducted some preliminary simulations against synthetic
trajectories. Next, we present the experimental settings and we discuss some
indicative results concerning performance and approximation quality.

Experimental Setup. We generated traces of 10 000 vehicles circulating at
diverse speeds along the road network of greater Athens (area ∼250 km2). After
calculating shortest paths between randomly chosen network nodes (i.e., origin
and destination of objects), we took point samples at 200 concurrent timestamps
along each such route. Typically, most trajectories originate from the outskirts
of the city, pass through the center and finish up in another suburb.

Table 1. Experiment parameters.

Parameter Values

Number N of objects 10 000

Window range ω (in timestamps) 10 20 50
Window slide β (in timestamps) 2 4 10

Tolerance ε (in meters) 100, 200

Cluster threshold n 10, 20, 50, 100

Compass resolution α 8, 16, 32
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Algorithms have been implemented in C++ and experiments were performed
on a conventional laptop machine with an Intel Core 2 Duo CPU at 2.4 GHz
and 4GB RAM. All figures show calculated averages of the measured quantities
over 200 time units. Table 1 summarizes experimentation parameters and their
respective ranges; the default value is shown in bold.

Experimental Results. Admittedly, the proposed algorithm performs a lossy
approximation susceptible to errors. The primary causes are crude compass res-
olutions or speed variations amongst objects placed in the same group. By and
large, our empirical validation confirms this intuition, and also expectations for
prompt detection of groups.

As Fig. 2 indicates, execution cost per cycle fulfils real-time objectives for
varying window specifications, with almost stable overhead for encoding and
grouping. Note that the encoding phase is only marginally affected when in-
creasing the window range, although more positions per object must be handled
at each execution cycle (every β timestamps). The cost of grouping remains
practically stable, as it basically depends on the total count N of monitored
objects. In contrast, the clustering overhead fluctuates, but drops sharply for
wider windows as less objects tend to share motion signatures for too long. For
shorter ω, more objects appear to move together lately and thus create more can-
didate groups; accordingly, the clustering cost escalates as it requires distance
calculations among all members of each group.

Our next experiment attempts to appraise how effective this method is. Fig-
ure 3 plots the multiplexing degree, i.e., the fraction of objects assigned into
identified groups of sufficient size. Clearly, distinguishing important trends is
sensitive to threshold n. In case that membership into a group falls below limit
n, its trajectories are not multiplexed at all. Besides, approximation gets more
pronounced with a coarser resolution α. But for finer resolutions, less trajectory
matchings are identified, as objects tend to retain particular features of their
course and cannot easily fit into larger groups.

Still, average error between a delegate path and its contributing trajectories
is tolerable (Fig. 4), especially for less smoothed signatures (larger α). When
probing longer intervals, this deviation may well exceed the desired ε. This phe-
nomenon must be attributed to the relaxed notion of ”density-reachability” in
DBSCAN [3], which does not dictate that all cluster members be within distance



ε from its centroid, but only pairwise. For less detailed trajectory representations
(i.e., encodings based on small resolution α), this deviation propagates back-
wards when probing retained sequences to reconstruct a delegate path, so error
may exacerbate ever more. However, the algorithm seems to achieve more reliable
approximations in case of finer motion signatures, particularly for ε = 200m.

4 Outlook

In this work, we set forth a novel approach for multiplexing trajectory features
that get frequently updated from streaming positions of moving objects. We
have been developing a methodology for detecting groups of objects that ap-
proximately travel together over the recent past. Thanks to an encoding scheme
based on velocity vectors, this process can be carried out in almost real time
with tolerable error, as our initial empirical study indicates.

We keep working on several aspects of this technique and we soon expect
more gains in terms of scalability and robustness. In particular, we intend to take
advantage of intermediate symbolic sequences in order to improve clustering with
higher representativeness and less recalculations, even in presence of massive
positional updates. We also plan to further investigate the grouping phase with
more advanced schemes, like those used in string and sequence matching. Last
but not least, it would be challenging to study this technique as an optimization
problem, trying to strike a balance between similarity tolerance and resolution
of the encoding scheme.
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