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Abstract. For parabolic obstacle problems with quadratic growth, we give pointwise estimates
both for the solutions and their gradients in terms of potentials of the given data. As applications,
we derive Lorentz space estimates if the data satisfies the corresponding Lorentz space regularity.
Moreover, we discuss a borderline case in the regularity theory, the question of boundedness and
continuity of the gradients as well as of the solutions itself.

1. Introduction and summary of results

In the present work, we establish pointwise estimates by potentials for solutions
to parabolic obstacle problems. Obstacle problems play a prominent role in various
applications, for example in mechanics or control theory, cf. [4, 22], but also in other
fields of mathematics such as potential theory, where solutions to obstacle problems
prove useful as approximations of super-solutions [16, 18, 23].

Here, we treat obstacle problems that are related to equations of the type

(1.1) ∂tu− div a(x, t, Du) = f on ΩT := Ω× (0, T )

for a vector-field a : ΩT ×Rn → Rn with so-called quadratic growth (see Section 1.2
for the precise assumptions), where Ω ⊂ Rn is a bounded domain of dimension
n ≥ 2 and f ∈ L2(ΩT ). Additionally, we impose an obstacle constraint of the form
u ≥ ψ a.e. on ΩT for an obstacle function ψ : ΩT → R. Our general assumptions
on the obstacle function are ψ ∈ L2(0, T ; W 1,2(Ω)) and ∂tψ ∈ L2(ΩT ) for the zero
order estimates, and for the gradient estimates additionally ψ ∈ L2(0, T ; W 2,2(Ω)).
Some of our results require even stronger regularity properties of the obstacle, which
will be stated seperately for the particular cases. At no point, however, we assume
monotonicity of the obstacle with respect to time.

1.1. A brief history of the problem. In order to illustrate the kind of
estimates that we have in mind, we consider the easiest case of the linear Poisson
equation

−∆u = f on Rn

for a given function f ∈ L2(Rn). The classical representation formula for the solution
yields pointwise estimates of the type

(1.2) |u(x)| ≤ c

ˆ

Rn

|f(y)|
|x− y|n−2

dy and |Du(x)| ≤ c

ˆ

Rn

|f(y)|
|x− y|n−1

dy
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for a.e. x ∈ Rn. In other words, the solution and its gradient can be estimated
pointwise in terms of the classical Riesz potential I2(f), respectively I1(f). In their
seminal work [20], Kilpeläinen and Malý were able to give analogous estimates for
solutions to non-linear elliptic equations of p-Laplace type with p 6= 2. More precisely,
they considered non-negative p-superharmonic functions u with −∆pu = f ≥ 0 on a
ball BR(x0), for which they established a bound of the type

(1.3) u(x0) ≤ c

(
−
ˆ

BR/2(x0)

uγ dx

) 1
γ

+ cWf
1,p(x0, R)

for some γ > p− 1 and the non-linear Wolff-potential

Wf
β,p(x0, R) :=

ˆ R

0

[ |f |(B%(x0))

%n−βp

] 1
p−1 d%

%

for any β ∈ (0, n], where we used the notation |f |(B%(x0)) :=
´

B%(x0)
|f | dx. We

note that in the case p = 2, the Wolff-potential is a localized version of the Riesz
potential I2β(f), which makes the estimate (1.3) a natural extension of the Riesz
potential estimate (1.2) from the linear case. In the case p 6= 2, the Wolff-potentials
can be estimated by iterated Riesz potentials of Havin–Maz’ya type, which makes
classical Riesz potential estimates applicable to bound the right-hand side of (1.3)
further. Results related to (1.3) have also been established by Kilpeläinen and Malý
[19] and Kilpeläinen and Zhong [21]. Trudinger and Wang [36], using a different
approach, moreover extended the above mentioned result to a very general setting.
However, the question of an analogous estimate for the gradient, i.e. the generalization
of the gradient estimate in (1.2) to non-linear equations, remained open until it was
recently settled by Mingione [28] for the case p = 2 and later by Duzaar and Mingione
[10, 11, 12, 13] in the general case. For solutions to elliptic equations related to the
model case

(1.4) −div (a(x)|Du|p−2Du) = f on BR(x0),

with Dini-continuous coefficients a : Ω → R, they gave an estimate of the form

(1.5) |Du(x0)| ≤ c−
ˆ

BR/2(x0)

|Du| dx + cWf
1
p
,p
(x0, R).

Another salient conclusion of the approach by Duzaar and Mingione [11] is a bor-
derline regularity result situated between classical Calderón–Zygmund- and C1,α-
estimates, which was so far not accessible by previous techniques. Namely, for solu-
tions to (1.4), Duzaar and Mingione were able to establish continuity of the gradient,
provided the right-hand side f is contained in the Lorentz space L(n, 1

p−1
). This

result is sharp at least in the case p = 2, in the sense that f ∈ L(n, q) for any q > 1
is not sufficient to deduce even boundedness of the gradient, as observed by Cianchi
in the case of the Poisson equation [7]. Furthermore, the result is sharp with re-
spect to the regularity of the coefficient function a by a striking counter example by
Jin, Maz’ya and Van Schaftingen [17], who constructed a solution with unbounded
gradient to a linear homogeneous equation with continuous, but not Dini-continuous
coefficients.

Concerning gradient potential estimates in the parabolic setting, the results by
Duzaar and Mingione [10] are restricted to problems with quadratic growth, i.e. with
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p = 2. This is due to the anisotropic scaling behaviour of the parabolic equations
that makes it necessary to work with so-called intrinsic cylinders, following the fun-
damental idea of intrinsic geometry by DiBenedetto [9]. These intrinsic cylinders
depend on the solution and may in particular degenerate if |Du| becomes large. The
appearance of possibly degenerate cylinders causes intricate problems for the defi-
nition of suitable parabolic versions of the Wolff potentials in (1.5). The parabolic
setting with p 6= 2 therefore poses challenging problems that are to the knowledge
of the author open even in the obstacle-free case. Therefore, we restrict ourselves to
the case p = 2 in the present work. The general case p 6= 2 in the elliptic setting will
be addressed in the forthcoming works [33, 32].

While the present work investigates properties of the spatial derivative or the
solution itself, the regularity of the time derivative has been addressed in a recent
interesting work by Lindqvist [25]. More precisely, he established ∂tu ∈ L

p/(p−1)
loc (ΩT )

for the solution u of an obstacle problem associated to the evolutionary p-Laplace
equation.

1.2. Assumptions and formulation of the problem. Before we state our
results more precisely, we specify our assumptions. We assume that a : ΩT×Rn → Rn

is a Carathéodory function, i.e. Rn 3 ξ 7→ a(z, ξ) is continuous for a.e. z ∈ ΩT and
ΩT 3 z 7→ a(z, ξ) is measurable for every ξ ∈ Rn. For given constants 0 < ν ≤ 1 ≤ L,
we impose the ellipticity and growth properties

(
a(z, ξ)− a(z, ξ0)

) · (ξ − ξ0) ≥ ν|ξ − ξ0|2,(1.6)

|a(z, ξ)| ≤ L(1 + |ξ|),(1.7)

for all z ∈ ΩT and ξ, ξ0 ∈ Rn. For the gradient estimates, we will assume moreover
that ξ 7→ a(z, ξ) is differentiable for a.e. z ∈ ΩT and satisfies the corresponding
ellipticity and growth estimates on the level of the derivative Dξa, more precisely

Dξa(z, ξ)ζ · ζ ≥ ν|ζ|2,(1.8)
|Dξa(z, ξ)| ≤ L,(1.9)

for all z ∈ ΩT and ξ, ζ ∈ Rn. We point out that, if Dξa exists, the ellipticity condition
(1.8) implies (1.6), possibly with a smaller constant ν̃ = ν

c
instead of ν. Moreover,

for the gradient estimates we assume that Ω 3 x 7→ a(x, t, ξ) is Dini-continuous in
the sense that

(1.10) |a(x, t, ξ)− a(x0, t, ξ)| ≤ 2Lω(|x− x0|)(1 + |ξ|)
holds for all x, x0 ∈ Ω, t ∈ (0, T ) and ξ ∈ Rn, where ω : [0,∞) → [0, 1] is a non-
decreasing modulus of continuity that satisfies the Dini-condition

(1.11)
ˆ R

0

ω(%)
d%

%
< ∞

for all R > 0. For the regularity of the partial map (0, T ) 3 t 7→ a(x, t, ξ) however,
we do not need to impose anything except measurability.

As mentioned above, we consider an obstacle function ψ ∈ L2(0, T ; W 1,2(Ω)) with
∂tψ ∈ L2(ΩT ), and for the gradient potential estimates we assume additionally ψ ∈
L2(0, T ; W 2,2(Ω)). We note that some of our results require even stronger regularity
properties of the obstacle, as indicated below. Following [31], we consider localizable
solutions to obstacle problems that solve a variational inequality on every sufficiently
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regular subset OI := O × (t1, t2) ⊂ ΩT . The solution spaces adapted to the concept
of localizable solutions are defined as

K(ψ, g;OI) :=
{

u ∈ C0([t1, t2]; L
2(O))∩[

g+L2(t1, t2; W
1,2
0 (O))

]
: u ≥ ψ a.e. on OI

}
,

for given boundary values g ∈ L2(0, T ; W 1,2(Ω)) and any subset OI := O× (t1, t2) ⊂
ΩT . For the space of admissible comparison maps however, we have to restrict our-
selves to the smaller space

K ′(ψ, g;OI) :=
{

v ∈ K(ψ, g;OI) : ∂tv ∈ L2(t1, t2; W
−1,2(O))

}
.

The restriction to comparison maps with a distributional time derivative in L2(t1, t2;
W 1,2(O)) is necessary for writing down the weak formulation of the obstacle problem.
Namely, for a solution u, we require u ∈ K(ψ, g; ΩT ), together with the variational
inequality

ˆ T

0

〈∂tv, v − u〉 dt +

ˆ

ΩT

a(z,Du) ·D(v − u) dz + 1
2
‖(v − u)(·, 0)‖2

L2

≥
ˆ

ΩT

F ·D(v − u) + f(v − u) dz

(1.12)

for every comparison function v ∈ K ′(ψ, g;OI). Here, F ∈ L2(ΩT ,Rn) and f ∈
L2(ΩT ) are given. From the discussion in [31] however, it becomes clear that the
above formulation is not the most natural one for the analysis of regularity properties
since it is not of local nature. Therefore, we employ the following localizable notion
of a solution to the obstacle problem (1.12) that was introduced in [31] (see also [30]).

Definition 1.1. A map u ∈ K(ψ, g; ΩT ) is called a localizable solution of the
obstacle problem (1.12) if for every subdomain OI := O × (t1, t2) ⊂ ΩT , where
O = Õ ∩ Ω with a Lipschitz regular domain Õ ⊂ Rn and I = (t1, t2) ⊂ R, the
following two conditions hold.

(i) The map u satisfies the extension property K ′(ψ, u;OI) 6= ∅;
(ii) for all comparison maps v ∈ K ′(ψ, u;OI), the map u satisfies the variational

inequality
ˆ t2

t1

〈
∂tv, v − u

〉
O dt +

ˆ

OI

a(z, Du) ·D(v − u) dz + 1
2
‖(v − u)( · , t1)‖2

L2(O)

≥
ˆ

OI

F ·D(v − u) + f(v − u) dz,

(1.13)

where 〈· , ·〉O denotes the dual pairing between W−1,2(O) and W 1,2
0 (O).

For existence results for localizable solutions we refer to [31]. We note that
the techniques in the mentioned work yield existence for obstacles that admit a
distributional time derivative ∂tu ∈ L2(0, T ; W−1,2(Ω)). For existence results for
more irregular obstacles we refer to [26].

Now we are in a position to state our results.

1.3. Gradient potential estimates. For the gradient estimates, we con-
sider localizable solutions u ∈ K(ψ, g; ΩT )—in the sense of Definition 1.1—of the
variational inequality (1.12) without divergence term, i.e. with F = 0. We im-
pose the assumptions listed above, in particular we consider obstacles satisfying
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ψ ∈ L2(0, T ; W 2,2(Ω)) and ∂tψ ∈ L2(ΩT ). In this situation, we derive a gradient
potential estimate of the form

|Du(z0)| ≤ 1 + c

(
−
ˆ

CR(z0)

|Du|2 dz

) 1
2

+ cPΨ
1 (z0, R)

+ c

ˆ R

0

ω(%)

[ |Dψ|2(C%(z0))

%n+2

] 1
2 d%

%

(1.14)

for every Lebesgue point z0 ∈ ΩT of Du and a sufficiently small radius R > 0, where
the right-hand side potential is defined by

PΨ
1 (z0, R) :=

ˆ R

0

[
Ψ2(C%(z0))

%n

] 1
2 d%

%
, for Ψ := |f |+ |∂tψ|+ |D2ψ|.

Here, we used the short-hand notation Ψ2(C%(z0)) :=
´

C%(z0)
Ψ2 dz. Clearly, the last

term in (1.14) can be omitted if a(x, t, ξ) ≡ ã(t, ξ) is independent from the spatial
variable, since in this case, the assumptions are satisfied with ω ≡ 0. For the proof
of (1.14) we refer to Theorem 4.1. The main idea of the proof, which goes back
to Mingione [28], is to compare the given solutions with solutions to less difficult
problems, to which classical regularity theory applies. In the present situation, we
need to implement a comparison argument consisting of three steps. In a first step,
we reduce the problem to a parabolic equation, i.e. without an obstacle, then to a
homogeneous parabolic equation and in the last step to a parabolic equation with
frozen coefficients. The solution of the latter is of class C1,β

loc for some β ∈ (0, 1) and
satisfies corresponding excess decay estimates, which we carry over to the solution of
the obstacle problem by comparison estimates. The resulting excess decay estimates
can then be iterated to yield the potential estimate (1.14) for the spatial gradient.

The potential PΨ
1 can be estimated by iterated Riesz potentials of Havin–Maz’ya

type, cf. (6.6). Consequently, classical Riesz potential estimates in various scales of
function spaces are applicable to the right-hand side of (1.14) and yield corresponding
estimates for the spatial gradient of solutions to obstacle problems. As an example,
we present the resulting Lorentz space estimates for the gradient of solutions. For
any 2 < r < N := n + 2 and 1 ≤ s ≤ ∞, we prove that

f, ∂tψ, |D2ψ| ∈ L(r, s) and |Dψ| ∈ L( Nr
N−r

, s) implies |Du| ∈ Lloc(
Nr

N−r
, s),

and we have the borderline result that

f, ∂tψ, |D2ψ| ∈ L2(Ω) and |Dψ| ∈ L( 2N
N−2

,∞) implies |Du| ∈ Lloc(
2N

N−2
,∞).

For the above implications, we also prove the corresponding local estimates, cf. Corol-
lary 4.3. These results can be seen as a refinement of the Calderón–Zygmund esti-
mates for parabolic obstacle problems presented in [5, 31], which in turn are based
on the theory developed in [1, 14, 29] for obstacle-free problems. More precisely,
the cited works establish estimates in Lebesgue spaces under weaker assumptions
on the obstacle and the structure function a, while here, we give the corresponding
results on the finer Lorentz scale in the case p = 2 and for more regular obstacles
and structure functions.

Clearly, the potential estimate (1.14) further yields a criterion under which so-
lutions have locally bounded gradients, namely if the right-hand side is bounded
independently from z0 ∈ OI for every OI b Ω. If more strongly, the right-hand side
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of (1.14) vanishes in the limit R ↘ 0, uniformly in z0 ∈ OI , we can employ the excess
decay estimates mentioned above in order to establish even continuity of the spatial
gradient. More precisely, the condition

(1.15)

lim
R↘0

sup
OI

PΨ
1 ( · , R) = 0

lim
R↘0

sup
OI

ˆ R

0

ω(%)

[
−
ˆ

C%(z0)

|Dψ|2 dz

] 1
2 d%

%
= 0





for all OI b ΩT

implies Du ∈ C0
loc(ΩT ,Rn), see Theorem 5.2. The preceding condition on the poten-

tials holds true e.g. if the data is contained in certain Lorentz spaces. This yields the
following Lorentz space criterion for C1-regularity (cf. Corollary 5.3).

(1.16) f, ∂tψ, |D2ψ| ∈ L(n+2, 1) and |Dψ| ∈ L∞loc(ΩT ) implies Du ∈ C0
loc(ΩT ,Rn).

In the case of a vector field a(x, t, ξ) = a(t, ξ) without x-dependence, the assumption
|Dψ| ∈ L∞loc(ΩT ) can be omitted.

Finally, we mention the following criterion for C1,α-regularity of solutions, see
Lemma 5.4. For this result we assume that x 7→ a(x, t, ξ) is Hölder continuous, that
there holds |Dψ| ∈ L∞loc(ΩT ) and that we have a Morrey-type condition

sup
z0∈OI

sup
0<%<1

%2−2γ −
ˆ

C%(z0)∩ΩT

|f |2 + |∂tψ|2 + |D2ψ|2 dz < ∞

for every subset OI b ΩT and some γ > 0. Under these assumptions, we prove
u ∈ C1,α

loc (ΩT ) for some exponent α ∈ (0, 1) depending on the data. We refer to
Lemma 5.4 for the details.

1.4. Zero order estimates. For all results on the regularity of the spatial
gradient from the preceding section, our methods yield analogues for the solution
itself. These results hold under weaker conditions, namely we can allow an arbitrary
Carathéodory function a : ΩT×Rn → Rn with (1.6) and (1.7), in particular we neither
need to impose continuity in the first nor differentiability with respect to the second
argument. Furthermore, now we can include variational inequalities (1.12) containing
a divergence term given by F ∈ L2(ΩT ,Rn), and we can drop the assumption D2ψ ∈
L2(ΩT ). Under these conditions, there holds the zero order potential estimate

|u(z0)| ≤ c

(
−
ˆ

CR(z0)

|u|2 dz

) 1
2

+ cPf,ψ
2 (z0, R) + cPF,ψ

1 (z0, R) + cR

for every Lebesgue point z0 ∈ ΩT of u and 0 < R < distP(z0, ∂ΩT ), with the potentials

Pf,ψ
2 (z0, R) :=

ˆ R

0

[ |f |2(C%(z0))

%n−2

] 1
2 d%

%
+

ˆ R

0

[ |∂tψ|2(C%(z0))

%n−2

] 1
2 d%

%

and

PF,ψ
1 (z0, R) :=

ˆ R

0

[ |F |2(C%(z0))

%n

] 1
2 d%

%
+

ˆ R

0

[ |Dψ|2(C%(z0))

%n

] 1
2 d%

%
.

For the proof, we refer to Theorem 4.1. As in the case of gradient estimates, the above
estimate implies Lorentz space estimates for the solutions itself, see Corollary 4.2.

Moreover, we deduce a condition for continuity of the solution corresponding to
(1.16). Namely, in dimensions n > 2 there holds

f, ∂tψ ∈ L
(

n+2
2

, 1
)

and |F |, |Dψ| ∈ L(n+2, 1) implies u ∈ C0
loc(ΩT ),
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cf. Corollary 5.3. Finally, we mention that under a certain Morrey-type condition on
the data, we are able to prove Hölder continuity of the solution, see Lemma 5.5.

The present article is organized as follows. After some preliminary remarks in the
following section, we proceed to the excess decay estimate for solutions to obstacle
problems in Section 3. This estimate is the key step both for the potential estimates
derived in Section 4 and for the results on continuity established in Section 5. We
conclude the article with an appendix, in which we present some results on the
relationship between potentials and Lorentz spaces.

2. Preliminaries

Notation. The domain in space-time on which we will formulate our parabolic
problems will be denoted by ΩT := Ω×(0, T ), where Ω ⊂ Rn is a bounded domain of
dimension n ≥ 2 and T > 0. Subdomains will frequently be written as OI := O× I,
where O ⊂ Ω and I := (t1, t2) ⊂ (0, T ). The parabolic boundary of such a subset
is defined by ∂POI := (O × {t1}) ∪ (∂O × [t1, t2]). For points in space-time, we
use notations such as z = (x, t) or z0 = (x0, t0), where x, x0 ∈ Ω denote spatial
variables and t, t0 ∈ (0, T ) the time variables. The standard parabolic cylinders will
be abbreviated by

C%(z0) := B%(x0)× (t0 − %2, t0 + %2)

for z0 = (x0, t0) ∈ Rn ×R and % > 0, where here, B%(x0) denotes the open ball with
radius % > 0 and center x0. If the center is the origin, we will also use the more
compact notations C% := C%(0) and B% := B%(0). The parabolic cylinders are the
balls with respect to the parabolic metric dP(z1, z2) := max{|x1− x2|,

√
|t1 − t2|} for

zi = (xi, ti) ∈ Rn+1, i = 1, 2.
For the mean value of a function f ∈ L1(ΩT ) over a subset A ⊂ ΩT , we abbreviate

fA := −́
A

f(z) dz. In the case that A = C%(z0) is a parabolic cylinder, we will
frequently write fz0,% = fC%(z0), or even shorter f% = fC% if the cylinder is centered in
the origin.

Function spaces. We use the customary notation W 1,2(Ω) for the Sobolev
space of weakly differentiable functions f : Ω → R with |f |, |Df | ∈ L2(Ω) and write
W 1,2

0 (Ω) for the closure of C∞
cpt(Ω) in W 1,2(Ω) with respect to the W 1,2-norm. With

W−1,2(Ω) we denote the dual space of W 1,2
0 (Ω). The dual pairing between these

spaces will be indicated by the brackets 〈· , ·〉.
Next, we introduce parabolic function spaces. For a time T > 0, an exponent

q ∈ [1,∞] and a Banach space B, we employ the notation Lq(0, T ; B) for the space
of measurable functions g : (0, T ) → B with

‖g‖Lq(0,T ;B) :=

( ˆ T

0

‖g(t)‖q
B dt

) 1
q

< ∞

in case q < ∞, respectively with

‖g‖L∞(0,T ;B) := ess sup
t∈(0,T )

‖g(t)‖B < ∞

if q = ∞. For the space of continuous functions g : [0, T ] → B, equipped with the
norm ‖ · ‖L∞(0,T ;B), we write C0([0, T ]; B).

The relevant spaces for parabolic problems with quadratic growth are in partic-
ular the spaces C0([0, T ]; L2(Ω)) and L2(0, T ; W 1,2(Ω)). Moreover, the distributional
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space L2(0, T ; W−1,2(Ω)), which is the dual space to L2(0, T ; W 1,2
0 (B)), plays a promi-

nent role. In particular, the time derivatives of solutions u to a parabolic equation
with quadratic growth satisfy ∂tu ∈ L2(0, T ; W−1,2(Ω)). However, the same regular-
ity property fails to hold for general solutions to parabolic obstacle problems, which
causes severe technical problems in their analysis.

Comparing sums and integrals. The following easy lemma will frequently be
used throughout the proofs in order to estimate certain potentials by sums and vice
versa.

Lemma 2.1. Assume that Φ: (0, R] → [0,∞) is a function that satisfies

(2.1) Φ(%) ≤ KΦ(r) if θr ≤ % ≤ r ≤ R,

for constants K ≥ 1 and θ ∈ (0, 1). Then there holds

| log θ |
K

∞∑

`=1

Φ(θ`R) ≤
ˆ R

0

Φ(%)
d%

%
≤ K| log θ |

∞∑

`=0

Φ(θ`R).

Proof. For r` := θ`R, ` ∈ N0, decompose the domain of integration into the
intervals (r`+1, r`) and use the estimate 1

K
Φ(r`+1) ≤ Φ(%) ≤ KΦ(r`) for all % ∈

(r`+1, r`) that holds by (2.1). ¤

3. Excess decay estimates

3.1. Estimates for comparison maps. We begin by stating excess decay
estimates for parabolic equations, which we will use as comparison problems. We
start with an estimate for a zero-order excess, which follows from classical theory
(see [6, 24]).

Lemma 3.1. Suppose that on a parabolic cylinder CR = BR × (−R2, R2), the
function w ∈ C0([−R2, R2]; L2(BR))∩L2(−R2, R2; W 1,2(BR)) weakly solves the par-
abolic equation

−div a(x, t,Dw) = 0 on CR,

under the assumptions (1.6) and (1.7). Then the solution satisfies w ∈ C0,β
loc (CR) for

some exponent β ∈ (0, 1) depending at most on n, ν and L, and with a constant
c ≥ 1 depending on the same data, there holds the following excess decay estimate
for all radii % ∈ (0, R)

−
ˆ

C%

|w − (w)%|2 dz ≤ c
( %

R

)2β

−
ˆ

CR

|w − (w)R|2 dz + cR2.

Proof. It suffices to prove the assertion in the case (w)R = 0, since w − (w)R is
again a solution to the same parabolic equation. From [24, Thm. 6.28], we infer the
estimate

oscC% w ≤ c
( %

R

)β

oscCR/2
w + cR for all % ∈ (0, R

2
),

where oscC% w := supC%
w− infC% w denotes the oscillation, and from [24, Thm. 6.17],

we get

sup
CR/2

|w|2 ≤ c−
ˆ

CR

|w|2 dz + cR2,

with constants β ∈ (0, 1) and c ≥ 1 depending only on n, ν and L. We point out
that in order to derive the above estimates, only the growth assumptions (1.6) and
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(1.7) are needed and no linearity of the equation, cf. the remark at the beginning of
Section VI.5 in [24]. Joining the above two estimates, we derive the bound

−
ˆ

C%

|w−(w)%|2 dz ≤(
oscC% w

)2≤ c
( %

R

)2β(
oscCR/2

w
)2

+cR2 ≤ c
( %

R

)2β

−
ˆ

CR

|w|2 dz+cR2

for all % ∈ (0, R
2
). For % ∈ [R

2
, R], the same estimate holds trivially. Since we have

assumed (w)R = 0, this implies the claim. ¤
Furthermore, we will need the corresponding decay estimate for the gradients of

solutions.

Lemma 3.2. Assume that w ∈ C0([−R2, R2]; L2(BR))∩L2(−R2, R2; W 1,2(BR))
is a weak solution to the parabolic equation

∂tw − div b(t,Dw) = 0,

where the vector field b : (−R2, R2)×Rn → Rn satisfies the assumptions (1.7), (1.8)
and (1.9), and is independent from the spatial variable. Then, there holds the excess
decay estimate

(3.1) −
ˆ

C%

|Dw − (Dw)%|2 dz ≤ c
( %

R

)2β

−
ˆ

CR

|Dw − (Dw)R|2 dz,

for all radii % ∈ (0, R], where the constants β ∈ (0, 1) and c ≥ 1 depend at most on
n, ν and L.

Proof. A standard application of the difference quotient method yields the higher
differentiability ∂iw ∈ L2

loc(−R2, R2; W 1,2
loc (BR)) for all i ∈ {1, . . . , n}, and further-

more, the partial derivatives weakly solve the parabolic equation

∂t(∂iw)− div
(
B(x, t)D∂iw

)
= 0 on CR/2,

where we defined B(x, t) := Dξb(t,Dw(x, t)). By our assumptions (1.8) and (1.9),
this defines a measurable function B : CR → Rn×n, which satisfies

B(x, t)ζ · ζ ≥ ν|ζ|2 and |B(x, t)| ≤ L

for all (x, t) ∈ CR and ζ ∈ Rn. Therefore, the same argument as in the proof of the
preceding Lemma 3.1, see also [24, (6.42)], gives the estimate

−
ˆ

C%

|∂iw − (∂iw)%|2dz ≤ c
( %

R

)2β

−
ˆ

CR

|∂iw − (∂iw)R|2dz ≤ c
( %

R

)2β

−
ˆ

CR

|Dw − (Dw)R|2dz,

for all radii % ∈ (0, R
2
), and trivially also for radii % ∈ [R

2
, R]. Since here, the index

i ∈ {1, . . . , n} is arbitrary, we derive the asserted estimate. ¤
Next, we state two comparison estimates that we will employ to transfer the

above estimates for homogeneous equations to the setting of an obstacle problem.
The proofs can be found in [31] for problems with more general growth exponents
p > 2n

n+2
. We state the results here for the easier case p = 2.

Lemma 3.3. [31, Lemma 3.5] Suppose that the assumptions (1.6) and (1.7)
are in force, that the inhomogeneity satisfies f ∈ L2(t1, t2; W

−1,2(O)) and that
the obstacle function ψ ∈ C0([t1, t2]; L

2(O)) ∩ L2(t1, t2; W
1,2(O)) satisfies ∂tψ ∈

L2(t1, t2; W
−1,2(O)). We assume that

v ∈ C0([t1, t2]; L
2(O)) ∩ L2(t1, t2; W

1,2(O)) with ∂tv ∈ L2(t1, t2; W
−1,2(O))
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solves the parabolic equation

(3.2) ∂tv − div a( · , Dv) = ∂tψ − div a( · , Dψ) in L2(t1, t2; W
−1,2(O)),

and that u ∈ K(ψ, v;OI) is a solution of the variational inequality
ˆ t2

t1

〈∂tw,w − u〉 dt +

ˆ

OI

a(z, Du) ·D(w − u) dz + 1
2
‖(w − u)( · , t1)‖2

L2

≥
ˆ t2

t1

〈f, w − u〉 dt

(3.3)

for all comparison functions w ∈ K ′(ψ, v;OI). Then there holds the comparison
estimate

(3.4)
ˆ

OI

|Du−Dv|2 dz ≤ c(ν)
∥∥f

∥∥2

L2-W−1,2(OI)
+c(ν)

∥∥∂tψ−div a( · , Dψ)
∥∥2

L2-W−1,2(OI)
.

Next, we state a standard comparison estimate for solutions of two parabolic
equations.

Lemma 3.4. [31, Lemma 3.6] Assume that the vector fields a, b : ΩT ×Rn → Rn

satisfy the growth assumption (1.7), and b additionally the monotonicity property
(1.6). Furthermore, let g, h ∈ L2(t1, t2; W

−1,2(O)) and assume that

v, w ∈ C0([t1, t2]; L
2(O)) ∩ L2(t1, t2; W

1,2(O))

are solutions of the parabolic equations

(3.5) ∂tv − div a(·, Dv) = g in L2(t1, t2; W
−1,2(O)),

respectively

(3.6) ∂tw − div b(·, Dw) = h in L2(t1, t2; W
−1,2(O))

with v = w on ∂POI . Then, for a constant c = c(ν), there holds the comparison
estimate

ˆ

OI

|Dv −Dw|2 dz

≤ c

ˆ

OI

∣∣a(z, Dv)− b(z, Dv)|2 dz + c

ˆ t2

t1

‖g( · , t)− h( · , t)‖2
W−1,2 dt.

(3.7)

3.2. Excess decay estimates for solutions to obstacle problems.

Lemma 3.5. Assume that u ∈ C0([0, T ]; L2(Ω)) ∩ L2(0, T ; W 1,2(Ω)) is a local-
izable solution to the obstacle problem (1.12)—in the sense of Definition 1.1—under
the assumptions (1.6) and (1.7), and let CR(z0) ⊂ ΩT . Then, there holds the zero
order excess decay estimate

−
ˆ

C%(z0)

|u− (u)z0,%|2 dz ≤ c
( %

R

)2β

−
ˆ

CR(z0)

|u− (u)z0,R|2 dz + cR2

+ c
(R

%

)n+2

−
ˆ

CR(z0)

R2|F |2 + R4|f |2 + R2|Dψ|2 + R4|∂tψ|2 dz

(3.8)
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for all % ∈ (0, R]. If additionally, the vector field satisfies the conditions (1.8), (1.9)
and the continuity property stated in (1.10) then we have the estimate

−
ˆ

C%(z0)

|Du− (Du)z0,%|2 dz

≤ c

(( %

R

)2β

+ ω2(R)
(R

%

)n+2
)
−
ˆ

CR(z0)

|Du− (Du)z0,R|2 dz

+ c
(R

%

)n+2
{

ω2(R)
(
1 + |(Du)z0,R|2

)
+ −
ˆ

CR(z0)

|F |2 + R2|f |2 dz

+ R2−
ˆ

CR(z0)

|∂tψ|2 + |D2ψ|2 dz + ω2(R)−
ˆ

CR(z0)

|Dψ|2 dz

}
.

(3.9)

In both estimates, the constant c ≥ 1 depends only on n, ν and L and the exponent
β = β(n, ν, L) is the same as in Lemma 3.1, respectively in Lemma 3.2.

Proof. We assume z0 = 0 for notational convenience. The strategy of the proof
is to carry over the decay estimates from Lemma 3.1, respectively Lemma 3.2 to the
case of obstacle problems by a comparison argument consisting of the following steps.

Step 1: Comparison with the parabolic equation
{

∂tw1 − div a( · , Dw1) = ∂tψ − div a( · , Dψ) on CR,

w1 = u on ∂PCR.

Step 2: Comparison with the homogeneous equation

(3.10)

{
∂tw2 − div a( · , Dw2) = 0 on CR,

w2 = u on ∂PCR.

Step 3 (only for gradient estimates): Comparison with the equation with frozen
coefficients

(3.11)

{
∂tw3 − div a(0, t, Dw3) = 0 on CR,

w3 = u on ∂PCR.

The existence of the solutions to the above comparison problems follows from clas-
sical results, see e.g. [27, 34]. We point out that for the existence of solutions with
boundary values u, it is crucial that the localizable solution u satisfies the exten-
sion property from Definition 1.1 (i), cf. [31, Lemma 4.1]. Next, we will give the
comparison estimates for each of the steps listed above.

The Comparison Lemma 3.3 yields the estimate
ˆ

CR

|Du−Dw1|2 dz ≤ c

ˆ

CR

|F |2 + R2|f |2 dz + c ‖∂tψ − div a( · , Dψ)‖2
L2-W−1,2 .

Applying the Comparison Lemma 3.4 with g = ∂tψ− div a( · , Dψ), h = 0 and b = a,
we get

ˆ

CR

|Dw1 −Dw2|2 dz ≤ c ‖∂tψ − div a( · , Dψ)‖2
L2-W−1,2 .
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Combining the two preceding estimates and applying Poincaré’s inequality, we arrive
at

R−2

ˆ

CR

|u− w2|2 dz ≤ c

ˆ

CR

|Du−Dw2|2 dz

≤ c

ˆ

CR

|F |2 + R2|f |2 dz + c ‖∂tψ − div a( · , Dψ)‖2
L2-W−1,2(3.12)

≤ c

ˆ

CR

|F |2 + R2|f |2 + R2|∂tψ|2 + |Dψ|2 dz,(3.13)

where for the last step we employed the embedding L2(BR) ↪→ W−1,2(BR) and the
growth assumption (1.7). This is the required comparison estimate for the zero
order decay estimate. For the gradient estimate, we need an additional step in order
to “freeze the coefficients”. For this purpose, we apply once again the Comparison
Lemma 3.4, this time with the structure function b(x, t, ξ) = a(0, t, ξ) and g = h = 0.
This leads us toˆ

CR

|Dw2 −Dw3|2 dz ≤ c

ˆ

CR

|a(x, t, Dw2)− a(0, t, Dw2)|2 dz

≤ cL2ω2(R)

ˆ

CR

1 + |Dw2|2 dz,

where we applied the continuity assumption (1.10) in the last step. Estimating the
right-hand side by (3.12) and keeping in mind that ω ≤ 1, we deduce

ˆ

CR

|Dw2 −Dw3|2 dz ≤ c ω2(R)

ˆ

CR

1 + |Du|2 dz + c

ˆ

CR

|F |2 + R2|f |2 dz

+ c‖∂tψ − div a( · , Dψ)‖2
L2-W−1,2 .

Combining this estimate with (3.12), we arrive at
ˆ

CR

|Du−Dw3|2 dz ≤ c ω2(R)

ˆ

CR

1 + |Du|2 dz + c

ˆ

CR

|F |2 + R2|f |2 dz(3.14)

+ c‖∂tψ − div a( · , Dψ)‖2
L2-W−1,2 .

Next, we use the growth assumption (1.9), the embedding L2(BR) ↪→ W−1,2(BR) and
the continuity assumption (1.10) in order to estimate

‖div a( · , Dψ)‖L2-W−1,2(CR)

≤
∥∥div a(x0, · , Dψ)

∥∥
L2-W−1,2(CR)

+
∥∥div [a(x0, · , Dψ)− a( · , · , Dψ)]

∥∥
L2-W−1,2(CR)

≤ cR‖D2ψ‖L2 + c ω(R)(1 + ‖Dψ‖L2).

Plugging this into (3.14) and using the embedding L2(BR) ↪→ W−1,2(BR) for esti-
mating the time derivative, we deduce

ˆ

CR

|Du−Dw3|2 dz ≤ c ω2(R)

ˆ

CR

1 + |Du|2 dz + c

ˆ

CR

|F |2 + R2|f |2 dz

+ cR2

ˆ

CR

|∂tψ|2 + |D2ψ|2 dz + c ω2(R)

ˆ

CR

|Dψ|2 dz.

(3.15)
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Proof of the zero order estimate. By Lemma 3.1, the solution w2 of the homo-
geneous parabolic equation (3.10) satisfies an excess decay estimate of the form

−
ˆ

C%

|w2 − (w2)%|2 dz ≤ c
( %

R

)2β

−
ˆ

CR

|w2 − (w2)R|2 dz + cR2,

for every % ∈ (0, R], where β ∈ (0, 1) and c ≥ 1 are constants depending only on
n, ν and L. In order to transfer this decay estimate to the solution u of the obstacle
problem, we calculate

−
ˆ

C%

|u− (u)%|2 dz ≤ −
ˆ

C%

|u− (w2)%|2 dz

≤ 2−
ˆ

C%

|w2 − (w2)%|2 dz + 2−
ˆ

C%

|u− w2|2 dz

≤ c
( %

R

)2β

−
ˆ

CR

|w2 − (w2)R|2 dz + cR2 + 2
(R

%

)n+2

−
ˆ

CR

|u− w2|2 dz

≤ c
( %

R

)2β

−
ˆ

CR

|u− (u)R|2 dz + cR2 + c
(R

%

)n+2

−
ˆ

CR

|u− w2|2 dz.

This implies the claimed zero order estimate by bounding the last integral with (3.13).

Proof of the gradient estimate. Here, we additionally impose the stronger as-
sumptions (1.8), (1.9) and (1.10). In this situation, the solution w3 ∈ L2(−R2, R2;
W 1,2(BR)) of the parabolic equation (3.11), whose coefficients are independent from
the spatial variable, satisfies the following excess decay estimate, cf. Lemma 3.2.

−
ˆ

C%

|Dw3 − (Dw3)%|2 dz ≤ c
( %

R

)2β

−
ˆ

CR

|Dw3 − (Dw3)R|2 dz for all % ∈ (0, R],

where β ∈ (0, 1) and c ≥ 1 depend at most on n, ν and L. As above, this estimate
implies the following decay estimate for the spatial gradient of the solution to the
obstacle problem.

−
ˆ

C%

|Du− (Du)%|2 dz ≤ −
ˆ

C%

|Du− (Dw3)%|2 dz

≤ 2−
ˆ

C%

|Dw3 − (Dw3)%|2 dz + 2−
ˆ

C%

|Du−Dw3|2 dz

≤ c
( %

R

)2β

−
ˆ

CR

|Dw3 − (Dw3)R|2 dz + 2
(R

%

)n+2

−
ˆ

CR

|Du−Dw3|2 dz

≤ c
( %

R

)2β

−
ˆ

CR

|Du− (Du)R|2 dz + c
(R

%

)n+2

−
ˆ

CR

|Du−Dw3|2 dz.

From this we deduce the claim (3.9) by bounding the last integral by means of
(3.15). ¤

4. Potential estimates and applications

In this section, we will derive pointwise estimates for the solutions and their
gradients by the following non-linear potentials. For the zero-order estimates, the
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influence of the inhomogeneities and the obstacle are given by the potentials

Pf,ψ
2 (z0, R) :=

ˆ R

0

%2

[
−
ˆ

C%(z0)

|f |2 + |∂tψ|2 dz

] 1
2 d%

%

and

PF,ψ
1 (z0, R) :=

ˆ R

0

%

[
−
ˆ

C%(z0)

|F |2 + |Dψ|2 dz

] 1
2 d%

%
.

For the gradient estimates, the relevant potential is

Pf,ψ
1 (z0, R) :=

ˆ R

0

%

[
−
ˆ

C%(z0)

|f |2 + |∂tψ|2 + |D2ψ|2 dz

] 1
2 d%

%
.

We recall that in this situation, we have to restrict ourselves to the case F = 0. With
the notation introduced above, our result reads as follows.

Theorem 4.1. Consider a localizable solution u ∈ C0([0, T ]; L2(Ω)) ∩ L2(0, T ;
W 1,2(Ω)) to the obstacle problem (1.12), in the sense of Definition 1.1, where the
assumptions (1.6) and (1.7) are in force. In every Lebesgue point z0 ∈ ΩT of u and
for every radius R > 0 with CR(z0) ⊂ ΩT , there holds the estimate

|u(z0)| ≤ c

(
−
ˆ

CR(z0)

|u|2 dz

) 1
2

+ cPf,ψ
2 (z0, R) + cPF,ψ

1 (z0, R) + cR.

For the gradient estimates, we additionally assume that the vector field a satisfies
the stronger conditions (1.8), (1.9) and the Dini-continuity property as in (1.10) and
(1.11). Moreover, we assume that F ≡ 0 and that the obstacle function satisfies
ψ ∈ W 1,2(0, T ; L2(Ω))∩L2(0, T ; W 2,2(Ω)). Then there is a radius R0 > 0, depending
only on n, ν, L and ω( ·), such that in every Lebesgue point z0 ∈ ΩT of Du, there
holds

|Du(z0)| ≤ 1 + c

(
−
ˆ

CR(z0)

|Du|2 dz

) 1
2

+ cPf,ψ
1 (z0, R) + c

ˆ R

0

ω(%)

[
−
ˆ

C%(z0)

|Dψ|2 dz

] 1
2 d%

%

for every radius 0 < R < min{R0, distP(z0, ∂ΩT )}. In both estimates, the constant
c ≥ 1 depends at most on n, ν and L.

Proof of the zero order estimate. For a Lebesgue point z0 ∈ ΩT , we consider
a radius R ∈ (0, distP(z0, ∂ΩT )) and fix a parameter θ ∈ (0, 1) sufficiently small to
ensure cθ2β ≤ 1

8
, where β ∈ (0, 1) and c ≥ 1 are the constants from Lemma 3.5. With

the notations R` := θ`R and C` := CR`
(z0) for ` ∈ N, we estimate for an arbitrary

m ∈ N

∣∣(u)Cm+1

∣∣ ≤
∣∣(u)C2

∣∣ +
m∑

`=2

∣∣(u)C`+1
− (u)C`

∣∣

≤ 1

θ2(n+2)

(
−
ˆ

CR(z0)

|u|2 dz

) 1
2

+
1

θn+2

m∑

`=2

(
−
ˆ

C`

|u− (u)C`
|2 dz

) 1
2

.

(4.1)

For the estimate of the last sum, we apply the excess decay estimate from Lemma
3.5 with % = R` and R = R`−1, which yields for our choice of θ

(4.2) −
ˆ

C`

|u− (u)C`
|2 dz ≤ 1

8
−
ˆ

C`−1

|u− (u)C`−1
|2 dz + cR2

`−1 + c θ−n−2R2
`−1Φ(R`−1),
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where we abbreviated

Φ(%) := −
ˆ

C%(z0)

%2|f |2 + %2|∂tψ|2 + |F |2 + |Dψ|2 dz

for all % ∈ (0, R). Taking square roots in (4.2) and summing over ` = 2, . . . , m we
infer—since θ has been fixed in dependence on n, ν and L—that there holds

m∑

`=2

(
−
ˆ

C`

|u− (u)C`
|2 dz

) 1
2

≤ 1

2

m−1∑

`=1

(
−
ˆ

C`

|u− (u)C`
|2 dz

) 1
2

+ cR

m∑

`=2

θ`−1 + c

m∑

`=2

[
R2

`−1Φ(R`−1)
] 1

2

≤ 1

2

m∑

`=2

(
−
ˆ

C`

|u− (u)C`
|2 dz

) 1
2

+ c

(
−
ˆ

CR(z0)

|u|2 dz

) 1
2

+ cR + c

m∑

`=2

[
R2

`−1Φ(R`−1)
] 1

2 .

Re-absorbing the first integral on the right-hand side and joining the resulting esti-
mate with (4.1), we deduce that for all m ∈ N, there holds

∣∣(u)Cm+1

∣∣ ≤ c

(
−
ˆ

CR(z0)

|u|2 dz

) 1
2

+ cR + c

m∑

`=2

[
R2

`−1Φ(R`−1)
] 1

2

≤ c

(
−
ˆ

CR(z0)

|u|2 dz

) 1
2

+ cR + c

ˆ R

0

[
%2 Φ(%)

] 1
2

d%

%
,

where we applied Lemma 2.1 in the last step. Since z0 ∈ ΩT was chosen as a Lebesgue
point of u and therefore |u(z0)| = limm→∞ |(u)Cm+1|, we conclude the claimed zero
order estimate. ¤

Proof of the gradient estimate. With the constants c ≥ 1 and β ∈ (0, 1) from
Lemma 3.5, we choose a parameter θ ∈ (0, 1) in dependence on n, ν and L so small
that c θ2β ≤ 1

16
, and we will later choose the radius R0 ∈ (0, distP(z0, ∂ΩT )) small

enough to ensure

(4.3) c ω2(R0)θ
−n−2 ≤ 1

16
.

We fix a Lebesgue point z0 = (x0, t0) ∈ ΩT of Du and a radius R ∈ (0, R0). We
continue to use the notations R` := θ`R and C` := CR`

(z0) for ` ∈ N. Analogously
as in (4.1), we deduce

(4.4)
∣∣(Du)Cm+1

∣∣ ≤ 1

θ2(n+2)

(
−
ˆ

CR(z0)

|Du|2 dz

) 1
2

+
1

θn+2

m∑

`=2

(
−
ˆ

C`

|Du−(Du)C`
|2 dz

) 1
2

for every m ∈ N. The excess decay estimate (3.9) from Lemma 3.5 implies by our
choices of θ and R0 and since F = 0 that

−
ˆ

C`

|Du− (Du)C`
|2 dz ≤ 1

8
−
ˆ

C`−1

|Du− (Du)C`−1
|2 dz

+ c θ−n−2
[
ω2(R`−1)

(
1 + |(Du)C`−1

|2) + Φ(R`−1)
](4.5)
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holds for every ` ∈ N, where we re-defined the function Φ(%) for % ∈ (0, R0) by

Φ(%) := %2−
ˆ

C%(z0)

|f |2 + |∂tψ|2 + |D2ψ|2 dz + ω2(%)−
ˆ

C%(z0)

|Dψ|2 dz.

Next, we take the square roots of the estimate (4.5) and sum over ` = 2, . . . , m, with
the result

m∑

`=2

(
−
ˆ

C`

|Du− (Du)C`
|2 dz

) 1
2

≤ 1

2

m∑

`=2

(
−
ˆ

C`

|Du− (Du)C`
|2 dz

) 1
2

+ c

(
−
ˆ

CR(z0)

|Du|2 dz

) 1
2

+ c

m−1∑

`=1

ω(R`)
(
1 + |(Du)C`

|) + c

m−1∑

`=1

[
Φ(R`)

] 1
2 .

Here, we can re-absorb the first integral on the right-hand side. In view of (4.4), we
thereby deduce

∣∣(Du)Cm+1

∣∣ ≤ c

(
−
ˆ

CR(z0)

|Du|2 dz

) 1
2

+ c

m−1∑

`=1

ω(R`)
(
1 + |(Du)C`

|) + c

m−1∑

`=1

[
Φ(R`)

] 1
2

≤ c

(
−
ˆ

CR(z0)

|Du|2 dz

) 1
2

+ c

ˆ R

0

[
Φ(%)

] 1
2

d%

%
(4.6)

+ c max
1≤`≤m

(
1 + |(Du)C`

|)
ˆ R

0

ω(%)
d%

%

for all m ∈ N, where the last step is a consequence of Lemma 2.1. At this stage,
we use the Dini condition (1.11) on the modulus of continuity ω in order to fix the
maximal radius R0 ∈ (0, dist(z0, ∂ΩT )) so small that additionally to the condition
(4.3), we have

c

ˆ R0

0

ω(%)
d%

%
≤ 1

2
,

where c denotes the constant from (4.6). With this choice of R0, the estimate (4.6)
implies

∣∣(Du)Cm+1

∣∣ ≤ 1

2
max

1≤`≤m

(
1 + |(Du)C`

|) + c

(
−
ˆ

CR(z0)

|Du|2 dz

) 1
2

+ c

ˆ R

0

[
Φ(%)

] 1
2

d%

%
,

from which we infer inductively that

∣∣(Du)Cm+1

∣∣ ≤ 1 + 2c

(
−
ˆ

CR(z0)

|Du|2 dz

) 1
2

+ 2c

ˆ R

0

[
Φ(%)

] 1
2

d%

%

holds for every m ∈ N. Since z0 was assumed to be a Lebesgue point of Du, we
arrive at

|Du(z0)| = lim
m→∞

∣∣(Du)Cm+1

∣∣ ≤ 1 + c

(
−
ˆ

CR(z0)

|Du|2 dz

) 1
2

+ c

ˆ R

0

[
Φ(%)

] 1
2

d%

%
.

By the definition of Φ, this yields the claimed estimate (3.9). ¤
The potential estimates from the preceding theorem, combined with classical

estimates for potentials, imply estimates in various scales of function spaces. Here,
we mention only the following results for the scale of Lorentz spaces, which refine the
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Calderón–Zygmund estimates from [31] in the case of Dini-continuous vector fields
with growth exponent p = 2.

Corollary 4.2. Suppose that u ∈ C0([0, T ]; L2(Ω)) ∩ L2(0, T ; W 1,2(Ω)) is a lo-
calizable solution to the obstacle problem (1.12), under the assumptions (1.6) and
(1.7), and let N := n + 2.

(i) If the data satisfies

f, ∂tψ ∈ L2(Ω) and |F |, |Dψ| ∈ L
(

2N
N−2

,∞)

then in dimensions n > 2, the solution satisfies u ∈ L( 2N
N−4

,∞)(OI) for every
subdomain OI b ΩT and we have the local estimate

‖u‖L( 2N
N−4

,∞)(OI)

≤ c
(
1 + ‖u‖L2 + ‖f‖L2 + ‖∂tψ‖L2 + ‖F‖L( 2N

N−2
,∞) + ‖Dψ‖L( 2N

N−2
,∞)

)
,

with a constant c = c(n, ν, L, |OI |, distP(OI , ∂ΩT )). For n = 2, this estimate
remains valid if we replace the left-hand side by ‖u‖Lq(OI) for an arbitrary
exponent q ∈ [1,∞).

(ii) Assume that the data satisfies

f, ∂tψ ∈ L(r, s) and |F |, |Dψ| ∈ L
(

Nr
N−r

, s
)

for 2 < r < N
2
and 1 ≤ s ≤ ∞. Then the solution satisfies u ∈ L( Nr

N−2r
, s)(OI)

for every subdomain OI b ΩT and there holds the local estimate

‖u‖L( Nr
N−2r

, s)(OI)

≤ c
(
1 + ‖u‖L2 + ‖f‖L(r,s) + ‖∂tψ‖L(r,s) + ‖F‖L( Nr

N−r
, s) + ‖Dψ‖L( Nr

N−r
, s)

)
,

where the constant c depends only on n, ν, L, |OI | and distP(OI , ∂ΩT ).

Proof. For the proof of (i) in the case n > 2, we apply Lemma 6.1 once with the
parameter γ = 2 in the borderline case r = 1 to the functions f and ∂tψ and once
more with γ = 1, r = N

N−2
and s = ∞ to |F | and |Dψ|. This yields

∥∥Pf,ψ
2 ( · , R)

∥∥
L( 2N

N−4
,∞)

≤ c
(‖f‖L2 + ‖∂tψ‖L2

)
,

∥∥PF,ψ
1 ( · , R)

∥∥
L( 2N

N−4
,∞)

≤ c
(‖F‖L( 2N

N−2
,∞) + ‖Dψ‖L( 2N

N−2
,∞)

)
.

In view of Theorem 4.1, this implies the asserted estimate. In the case of spatial
dimension n = 2, we instead apply Lemma 6.1 for an arbitrary parameter γ < 2 to
f and ∂tψ in order to derive bounds for ‖u‖Lq for an arbitrary q ∈ [1,∞).

For the proof of (ii), we proceed analogously, where here, we choose the param-
eters r

2
and s

2
in the Lorentz spaces in Lemma 6.1 in order to treat the functions f

and ∂tψ, while for the functions F and Dψ, we choose 1
2

Nr
N−r

and s
2
. This gives

∥∥Pf,ψ
2 ( · , R)

∥∥
L( Nr

N−2r
, s)
≤ c

(‖f‖L(r,s) + ‖∂tψ‖L(r,s)

)
∥∥PF,ψ

1 ( · , R)
∥∥

L( Nr
N−2r

, s)
≤ c

(‖F‖L( Nr
N−r

, s) + ‖Dψ‖L( Nr
N−r

, s)

)
.

The potential estimates from Theorem 4.1 thereby yield the claimed estimates. ¤
Next, we give the corresponding estimates on the level of the gradient.
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Corollary 4.3. Let u ∈ C0([0, T ]; L2(Ω)) ∩ L2(0, T ; W 1,2(Ω)) be a localizable
solution to the obstacle problem (1.12) with F = 0, where (1.7), (1.8), (1.9), (1.10)
and (1.11) are in force.

(i) Assume that there holds

f, ∂tψ, |D2ψ| ∈ L2(Ω) and |Dψ| ∈ L
(

2N
N−2

,∞)
,

where N := n + 2. Then we have |Du| ∈ L( 2N
N−2

,∞)(OI) for every OI b
ΩT . Moreover, for a constant c = c(n, ν, L, ω( ·), |OI |, distP(OI , ∂ΩT )), there
holds the local estimate

‖Du‖L( 2N
N−2

,∞)(OI)

≤ c
(
1 + ‖Du‖L2 + ‖f‖L2 + ‖∂tψ‖L2 + ‖D2ψ‖L2 + ‖Dψ‖L( 2N

N−2
,∞)

)
.

(ii) Assume that there holds

f, ∂tψ, |D2ψ| ∈ L(r, s) and |Dψ| ∈ L
(

Nr
N−r

, s
)

for 2 < r < N and 1 ≤ s ≤ ∞. Then we have |Du| ∈ L( Nr
N−r

, s)(OI) for every
subdomain OI b ΩT , and moreover, with a constant c = c(n, ν, L, ω( ·), |OI |,
distP(OI , ∂ΩT )),

‖Du‖L( Nr
N−r

, s)(OI)

≤ c
(
1 + ‖Du‖L2 + ‖f‖L(r,s) + ‖∂tψ‖L(r,s) + ‖D2ψ‖L(r,s) + ‖Dψ‖L( Nr

N−r
,s)

)
.

Proof. We fix a subdomain OI b ΩT and the radius R := 1
2
min{R0, distP(OI ,

∂ΩT )}, where the radius R0 is determined in Theorem 4.1 in dependence on n, ν, L
and ω( ·). Theorem 4.1 provides us with the pointwise estimate

|Du(z0)| ≤ 1 + cR−1−n/2‖Du‖L2 + c

ˆ R

0

ω(%)

[ |Dψ|2(C%(z0))

%N

] 1
2 d%

%

+ c

ˆ R

0

[ |f |2(C%(z0))

%N−2

] 1
2

+

[ |∂tψ|2(C%(z0))

%N−2

] 1
2

+

[ |D2ψ|2(C%(z0))

%N−2

] 1
2 d%

%
(4.7)

for any z0 ∈ OI , where c = c(n, ν, L). The potential in the last line can be bounded by
applying Lemma 6.1 with γ = 1 to each of the functions f , ∂tψ and D2ψ, analogously
as in the preceding proof. It remains to estimate the first integral in (4.7). By Lemma
6.2, it is bounded by

∥∥∥∥
ˆ R

0

ω(%)

[ |Dψ|2(C%( ·))
%N

] 1
2 d%

%

∥∥∥∥
L( Nr

N−r
, s)

≤ c‖Dψ‖L( Nr
N−r

, s),

for every 2 < r < N and 1 ≤ s ≤ ∞. This concludes the proof. ¤

5. Continuity results

5.1. Sharp criteria for continuity. Here we give criteria which guarantee
that the solution of the obstacle problem (1.12) is continuous, respectively of class
C1. We begin with the continuity results for the solutions. The proof consists of
three steps. First, we establish local boundedness of u, then VMO-regularity and
finally the desired continuity of the solution. The proof therefore gives sufficient
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conditions for boundedness, VMO-regularity and continuity that are listed in the
theorem below.

Theorem 5.1. Let u ∈ C0([0, T ]; L2(Ω)) ∩ L2(0, T ; W 1,2(Ω)) be a localizable
solution of the obstacle problem (1.12) (cf. Definition 1.1), under the assumptions
(1.6) and (1.7).

(i) Suppose that on every subdomain OI b ΩT , we have the bound

sup
z0∈OI

[
Pf,ψ

2 (z0, R) + PF,ψ
1 (z0, R)

]
< ∞

for some radius 0 < R < distP(OI , ∂ΩT ). Then, the solution satisfies u ∈
L∞loc(ΩT ).

(ii) If additionally to the assumptions in (i), there holds

(5.1) lim
%↘0

sup
z0∈OI

−
ˆ

C%(z0)

%4|f |2 + %4|∂tψ|2 + %2|F |2 + %2|Dψ|2 dz = 0

for every subdomain OI b ΩT , then there holds u ∈ VMOloc(ΩT )∩L∞loc(ΩT ).
(iii) If on every subdomain OI ⊂ ΩT , there holds

(5.2) lim
R↘0

sup
z0∈OI

[
Pf,ψ

2 (z0, R) + PF,ψ
1 (z0, R)

]
= 0,

then u ∈ C0
loc(ΩT ).

The corresponding statement for the gradients of the solutions reads as follows.

Theorem 5.2. We suppose that the monotonicity and growth assumptions (1.7),
(1.8) and (1.9) are in force and that the Dini-continuity condition stated in (1.10)
and (1.11) is valid. Under this set of assumptions, we consider a localizable solution
u ∈ C0([0, T ]; L2(Ω)) ∩ L2(0, T ; W 1,2(Ω)) of the obstacle problem (1.12).

(i) If on every subdomain OI b ΩT , there holds

(5.3) sup
z0∈OI

[
Pf,ψ

1 (z0, R) +

ˆ R

0

(
ω2(%)−

ˆ

C%(z0)

|Dψ|2 dz

) 1
2 d%

%

]
< ∞

for some 0 < R < distP(OI , ∂ΩT ) then Du ∈ L∞loc(ΩT ,Rn).
(ii) Assume that additionally to the assumptions in (i), we have

(5.4) lim
%↘0

sup
z0∈OI

[
%2−
ˆ

C%(z0)

|f |2 + |∂tψ|2 + |D2ψ|2 dz + ω2(%)−
ˆ

C%(z0)

|Dψ|2 dz

]
= 0

for every OI b ΩT . Then Du ∈ VMOloc(ΩT ,Rn) ∩ L∞loc(ΩT ,Rn).
(iii) If for every subdomain OI ⊂ ΩT , we have

(5.5) lim
R↘0

sup
z0∈OI

[
Pf,ψ

1 (z0, R) +

ˆ R

0

(
ω2(%)−

ˆ

C%(z0)

|Dψ|2 dz

) 1
2 d%

%

]
= 0,

then u ∈ C1
loc(ΩT ).

In view of Lemma 6.3, we readily deduce the following sufficient condition for
the solutions to be continuous, respectively C1, in terms of Lorentz spaces.

Corollary 5.3. Suppose that u ∈ C0([0, T ]; L2(Ω)) ∩ L2(0, T ; W 1,2(Ω)) is a lo-
calizable solution to the obstacle problem (1.12), under the assumptions (1.6) and
(1.7). Then we have:
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(i) If n > 2 and the data satisfies

f, ∂tψ ∈ L(n+2
2

, 1), and |F |, |Dψ| ∈ L(n + 2, 1),

then the solution is continuous on ΩT .
(ii) Under the stronger growth assumption (1.9) and the Dini-continuity assump-

tions (1.10) and (1.11), the conditions F = 0,

f, ∂tψ, |D2ψ| ∈ L(n + 2, 1) and |Dψ| ∈ L∞loc(ΩT )

imply u ∈ C1
loc(ΩT ). Here, in the case of a vector-field a(x, t, ξ) = a(t, ξ)

without x-dependence, the assumption |Dψ| ∈ L∞loc(ΩT ) can be omitted.

Since the proofs of the above two theorems are almost identical, we only give
the proof of the gradient estimates in detail and then shortly sketch the necessary
modifications for the proof of the zero order results.

Proof of Theorem 5.2. We fix a subdomain OI = O × (t1, t2) b ΩT and define
another subdomain ÕI = Õ × (t0, t3) with OI b ÕI b ΩT by letting

Õ :=
{
x ∈ Ω: dist(x, ∂Ω) > 1

2
dist(O, ∂Ω)

}
,

t0 := 1
2
t1 and t3 := 1

2
(t2 + T ). We begin with the

Proof of (i): Local boundedness. Joining the potential estimate from Theorem
4.1 with assumption (5.3) for the domain ÕI instead of OI , we infer

(5.6) Mu := sup
z∈ÕI

|Du(z)| < ∞.

Since the domainOI ⊂ ÕI was arbitrary, we deduce the first claim Du ∈ L∞loc(ΩT ,Rn).

Proof of (ii): VMO-regularity. For every 0 < R < distP(OI , ΩT\ÕI), we define

δ(R) := sup
0<%≤R

sup
z0∈OI

[
%2−
ˆ

C%(z0)

|f |2 + |∂tψ|2 + |D2ψ|2 dz + ω2(%)−
ˆ

C%(z0)

|Dψ|2 dz

]
,

which satisfies δ(R) → 0 as R ↘ 0 by assumption (5.4). Keeping in mind the
supremum bound (5.6), we deduce from Lemma 3.5 that

−
ˆ

C%(z0)

|Du− (Du)z0,%|2 dz

≤ c

(( %

R

)2β

+ ω2(R)
(R

%

)n+2
)

M2
u + c

(R

%

)n+2(
ω2(R)(1 + M2

u) + δ(R)
)

(5.7)

for every z0 ∈ OI and % ∈ (0, R], where the constants β ∈ (0, 1) and c ≥ 1 depend at
most on n, ν and L. For an arbitrary ε > 0, we choose first a parameter θ ∈ (0, 1)

and then a radius 0 < R0 < distP(OI , ΩT\ÕI) sufficiently small to make sure that

c θ2βM2
u ≤

ε2

2
and c ω2(R0)

M2
u

θn+2
+

c

θn+2

(
ω2(R0)(1 + M2

u) + δ(R0)
)
≤ ε2

2
.

Letting % = θR in (5.7) we thus deduce

−
ˆ

CθR(z0)

|Du− (Du)z0,θR| dz ≤
(
−
ˆ

CθR(z0)

|Du− (Du)z0,θR|2 dz

) 1
2

≤ ε

for every z0 ∈ OI and every R ∈ (0, R0]. Since ε > 0 can be chosen arbitrarily, this
implies Du ∈ VMO(OI) and thus the claim (ii).
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Proof of (iii): Gradient continuity. The idea of the proof is to show that the
convergence of the mean values (Du)w,% → Du(w) as % ↘ 0 is uniform in w ∈ OI ,
which implies the continuity of the gradient. Before we proceed to the proof, we
introduce the notation

Φ(w, %) := %2−
ˆ

C%(w)

|f |2 + |∂tψ|2 + |D2ψ|2 dz + ω2(%)−
ˆ

C%(w)

|Dψ|2 dz

for every w ∈ OI and 0 < % < distP(OI , ΩT\ÕI). Now we first fix a constant
θ ∈ (0, 1) and then a radius 0 < R0 < distP(OI , ΩT\ÕI) so small that c θ2β ≤ 1

16

and c ω2(R0)θ
−n−2 ≤ 1

16
, where β ∈ (0, 1) and c ≥ 1 denote the constants from

Lemma 3.5. Using the short-hand notation R` := θ`R and C` := C`(w) := CR`
(w)

for ` ∈ N and w ∈ OI , we can estimate

|(Du)Cm − (Du)Ck
| ≤

m−1∑

`=k

|(Du)C`+1
− (Du)C`

|

≤ c(θ)
m−1∑

`=k

(
−
ˆ

C`

|Du− (Du)C`
|2 dz

) 1
2

(5.8)

for all k, m ∈ N with k < m, where we omitted the point w ∈ OI for the sake of
notational convenience. Next, we use the excess decay estimate from Lemma 3.5 in
order to estimate the right-hand side further. In view of our choices of θ and R0, this
yields
m−1∑

`=k

(
−
ˆ

C`

|Du− (Du)C`
|2 dz

) 1
2

≤ 1

2

m−2∑

`=k−1

(
−
ˆ

C`

|Du− (Du)C`
|2 dz

) 1
2

+ c

m−2∑

`=k−1

ω(R`)(1 + |(Du)C`
|) + c

m−2∑

`=k−1

[Φ(w,R`)]
1
2

≤ 1

2

m−1∑

`=k

(
−
ˆ

C`

|Du− (Du)C`
|2 dz

) 1
2

+
1

2

(
−
ˆ

Ck−1

|Du− (Du)Ck−1
|2 dz

) 1
2

+ c(1 + Mu)

ˆ Rk−2

0

ω(%)
d%

%
+ c

ˆ Rk−2

0

[Φ(w, %)]
1
2

d%

%
,

where we applied (5.6) and Lemma 2.1 for the last estimate. Next, we re-absorb the
first integral from the right-hand side into the left-hand side and conclude

m−1∑

`=k

(
−
ˆ

C`(w)

|Du− (Du)C`(w)|2 dz

) 1
2

≤
(
−
ˆ

Ck−1(w)

|Du− (Du)Ck−1(w)|2 dz

) 1
2

+ c(1 + Mu)

ˆ Rk−2

0

ω(%)
d%

%

+ cPf,ψ
1 (w, Rk−2) + c

ˆ Rk−2

0

(
ω2(%)−

ˆ

C%(z0)

|Dψ|2 dz

) 1
2 d%

%
,

(5.9)

by definition of Pf,ψ
1 . From the VMO-regularity established in Step 2, the Dini

continuity condition (1.11) and the assumption (5.5), we infer that the right-hand
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side of the preceding estimate vanishes in the limit k → ∞, uniformly in w ∈ OI .
Keeping in mind the estimate (5.8), we deduce

lim
k,m→∞

sup
w∈OI

|(Du)Cm(w) − (Du)Ck(w)| = 0,

which means that {(Du)Cm(w)}m∈N is a uniform Cauchy sequence. By Lebesgue’s
differentiation theorem, the gradient Du(w) = limm→∞(Du)Cm(w) therefore is the
uniform limit of the continuous functions w 7→ (Du)Cm(w), which yields the asserted
continuity of Du. ¤

Sketch of the proof of Theorem 5.1. For a given subdomain OI b ΩT , we choose
a subset ÕI with OI b ÕI b ΩT . The proof of the local boundedness of u is a
straightforward consequence of the potential estimates from Theorem 4.1. In order
to derive the VMO-regularity, we define M0 := supOI

|u| < ∞ and

δ(R) := sup
0<%≤R

sup
z0∈OI

−
ˆ

C%(z0)

%4|f |2 + %2|F |2 + %4|∂tψ|2 + %2|Dψ|2 dz

for all 0 < R < distP(OI , ΩT\ÕI), which satisfies δ(R) → 0 as R ↘ 0 by assumption
(5.1). Then we apply Lemma 3.5, with the result

−
ˆ

CθR(z0)

|u− (u)z0,θR|2 dz ≤ c θ2βM0 + cR2 + c θ−n−2δ(R),

where here, the right-hand side becomes arbitrarily small for all z0 ∈ OI and R ∈
(0, R0) if we choose first θ ∈ (0, 1) and then 0 < R0 < distP(OI , ΩT\ÕI) small
enough. This implies the local VMO-regularity of u.

For the proof of the continuity, we choose a parameter θ ∈ (0, 1) with c θ2β ≤ 1
8
,

where β and c are as in Lemma 3.5. Then we proceed analogously as in the derivation
of (5.8) and (5.9), but this time using the zero order decay estimate (3.8) from
Lemma 3.5. We thereby deduce

∣∣(u)Cm(w) − (u)Ck(w)

∣∣ ≤ c

m−1∑

`=k

(
−
ˆ

C`(w)

|u− (u)C`(w)|2 dz

) 1
2

≤
(
−
ˆ

Ck−1(w)

|u− (u)Ck−1(w)|2 dz

) 1
2

+ cRk−1 + cPf,ψ
2 (w,Rk−2) + cPF,ψ

1 (w, Rk−2),

for all k < m in N and w ∈ OI . Here, the first integral on the right-hand side
vanishes in the limit k → ∞ uniformly in w ∈ OI , because of the VMO-regularity
established above, and the potentials Pf,ψ

2 and PF,ψ
1 converge to zero uniformly in

w ∈ OI by our assumption (5.2). This implies uniform convergence (u)Cm(w) → u(w)
on OI and thereby the continuity of u. ¤

5.2. Hölder continuity and C1,α-regularity.

Lemma 5.4. Suppose that u ∈ C0([0, T ]; L2(Ω))∩L2(0, T ; W 1,2(Ω)) is a localiz-
able solution to the obstacle problem (1.12) with F = 0, where the structure function
satisfies (1.7), (1.8), (1.9) and the continuity condition (1.10) for a Hölder-continuity
modulus ω(%) := min{1, %γ} with γ ∈ (0, 1). Moreover, we assume |Dψ| ∈ L∞loc(ΩT )
and that the Morrey-type condition

sup
z0∈OI

sup
0<%<1

%2−2γ −
ˆ

C%(z0)∩ΩT

|f |2 + |∂tψ|2 + |D2ψ|2 dz < ∞



Potential estimates in parabolic obstacle problems 437

holds for every subset OI b Ω. Then the solution has a Hölder-continuous gradient
Du ∈ C0,α

loc (ΩT ,Rn) for every 0 < α < min{β, γ}, where β = β(n, ν, L) ∈ (0, 1)
denotes the exponent from Lemma 3.2.

Proof. For a fixed subset OI b ΩT we choose a subset O∗
I with OI b O∗

I b ΩT

and let

K2 := sup
z0∈O∗I

sup
0<%<%0

%2−2γ −
ˆ

C%(z0)

|f |2 + |∂tψ|2 + |D2ψ|2 dz + −
ˆ

C%(z0)

|Dψ|2 dz < ∞

with %0 := 1
2
distP(OI , ∂ΩT ). By the potential estimate from Theorem 4.1, this

implies

(5.10) ‖Du‖L∞(O∗I ) ≤ c(‖Du‖L2 + K + 1),

where here and in the remainder of the proof, we write c for universal constants
that depend at most on α, γ, n, ν, L, |ΩT | and distP(OI , ∂ΩT ). With the constant
c = c(n, ν, L) ≥ 1 from Lemma 3.5 and a Hölder exponent α with 0 < α < min{β, γ},
we choose first a parameter θ = θ(α, γ, n, ν, L) so small that

c θ2β ≤ 1
2
θ2α

and then a radius 0 < R0 ≤ min{1, %0,
1
2
distP(OI , ΩT\O∗

I )} in dependence on the
data α, γ, n, ν, L and distP(OI , ∂ΩT ) with the property

c ω2(R0)θ
−n−2 ≤ 1

2
θ2α.

With these choices of θ and R0 and the excess functional

E(z0, %) := −
ˆ

C%(z0)

|Du− (Du)z0,%|2 dz

for all z0 ∈ OI and % ∈ (0, R0), Lemma 3.5 implies the excess decay estimate

E(z0, θR) ≤ θ2αE(z0, R) + c θ−n−2
{

ω2(R)(1 + ‖Du‖2
L∞(O∗I ))

+ R2−
ˆ

CR(z0)

|f |2 + |∂tψ|2 + |D2ψ|2 dz + ω2(R)−
ˆ

CR(z0)

|Dψ|2 dz
}

≤ θ2αE(z0, R) + cR2γ(‖Du‖2
L2 + K2 + 1)

for all z0 ∈ OI and R ∈ (0, R0). Here, the last estimate is a consequence of ω(R) =
Rγ, the bound (5.10) and the definition of K. Iterating the above estimate, we get

E(z0, θ
kR) ≤ θ2αk

[
E(z0, R) + cR2γ

∞∑

`=0

θ2`(γ−α)(‖Du‖2
L2 + K2 + 1)

]

for all z0 ∈ OI and k ∈ N. Here, the series on the right-hand side is finite since
α < γ and θ ∈ (0, 1). By a standard argument, we thus deduce

−
ˆ

Cr(z0)

|Du− (Du)z0,r|2 dz ≤ c
( r

R

)2α[
‖Du‖2

L2 + R2γ(K2 + 1)
]

for all 0 < r < R < R0 and z0 ∈ OI . Now the characterization of Hölder continuous
functions by Campanato–Da Prato [8] yields Du ∈ C0,α(OI ,R

n), as desired. ¤
The analogous proof, now based on the zero order estimate from Lemma 3.5, also

yields the following criterion for the Hölder continuity of the solution itself. We state
it without proof in order to avoid a repetition of arguments.
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Lemma 5.5. Consider a localizable solution u ∈ C0([0, T ]; L2(Ω)) ∩ L2(0, T ;
W 1,2(Ω)) to the obstacle problem (1.12), where the assumptions (1.6) and (1.7) are
in force and the data satisfies the Morrey estimate

sup
z0∈OI

sup
0<%<1

[
%2−2γ −

ˆ

C%(z0)∩ΩT

|F |2 + |Dψ|2 dz + %4−2γ −
ˆ

C%(z0)∩ΩT

|f |2 + |∂tψ|2 dz

]
< ∞

for some γ ∈ (0, 1) and every subset OI b Ω. Then there holds u ∈ C0,α
loc (ΩT ) for

every 0 < α < min{β, γ}, where β = β(n, ν, L) ∈ (0, 1) denotes the exponent from
Lemma 3.1.

6. Appendix: Parabolic potentials and Lorentz spaces

Throughout this section, we consider measurable functions f : Rn+1 → R. How-
ever, everything applies as well to functions f : ΩT → R defined on an arbitrary
domain ΩT ⊂ Rn+1 by extending the function by zero outside of ΩT .

Lorentz spaces. The non-increasing rearrangement of a function f : Rn+1 → R
is defined by

f ∗ : [0,∞) → [0,∞), f ∗(s) := sup{t ≥ 0: |{|f | > t}| > s}.
For 1 ≤ p < ∞ and 0 < q < ∞, the Lorentz space L(p, q) is defined as the space of
measurable functions f : Rn+1 → R for which the expressions

(6.1) ‖f‖L(p,q) :=

( ˆ ∞

0

[
r1/pf ∗(r)

]q dr

r

) 1
q

are finite. These expressions define norms on L(p, q) for all parameters q ≥ 1. More-
over, the space L(p,∞), also known as Marcinkiewicz space, is defined analogously
via the norm

(6.2) ‖f‖L(p,∞) := sup
r>0

r1/pf ∗(r).

For local variants of Lorentz spaces on a set A ⊂ Rn we write L(p, q)(A) for the
space of functions f : A → R with f1A ∈ L(p, q). Another way to define the Lorentz
spaces is to consider the averaged versions of f ∗, i.e. f ∗∗(r) := −́r

0
f ∗(s) ds for all

r ≥ 0, and to use

[f ]p,q :=

( ˆ ∞

0

[
r1/pf ∗∗(r)

]q dr

r

) 1
q

, respectively [f ]p,∞ := sup
r>0

r1/pf ∗∗(r),

instead of (6.1), respectively (6.2) for the definition of L(p, q). This leads to an
equivalent definition of Lorentz spaces for the range of parameters 1 < p < ∞ and
1 ≤ q ≤ ∞ in the sense that

(6.3) ‖f‖L(p,q) ≤ [f ]p,q ≤ c(p, q)‖f‖L(p,q).

Here, the first inequality is an immediate consequence of the monotonicity of f ∗ and
the second one follows from Hardy’s inequality, see e.g. [35, Lemma V.3.1]. For a
more detailed exposition of the properties of Lorentz spaces we refer to Ziemer’s
book [37].
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Parabolic potentials. We introduce the localized parabolic Riesz potential

If
α(z0, R) :=

ˆ R

0

|f |(C%(z0))

%n+2−α

d%

%

for α ∈ (0, n+2], where |f |(C%(z0)) :=
´

C%(z0)
|f | dz. This potential can be estimated

by the classical parabolic Riesz potential

IPα (f)(z0) :=

ˆ

Rn+1

|f(z)|
dP(z, z0)n+2−γ

dz,

where dP((x, t), (x0, t0)) := max{|x − x0|,
√
|t− t0|}. More precisely, an application

of Fubini’s theorem implies the bound

(6.4) If
α(x0, R) ≤ 1

n + 2− α
IPα (f)(x0)

independently from R > 0, provided α ∈ (0, n + 2). Next, we consider potentials
adapted to parabolic problems with quadratic growth. For a parameter γ ∈ (0, n+2

2
]

and a function f ∈ L2
loc(R

n+1), we define a parabolic potential by

(6.5) Pf
γ(z0, R) :=

ˆ R

0

[ |f |2(C%(z0))

%n+2−2γ

] 1
2 d%

%

for z0 ∈ Rn+1 and R > 0, where we abbreviated |f |2(C%(z0)) :=
´

C%(z0)
|f |2 dx. We

claim that these potentials can be bounded by iterated Riesz potentials of Havin–
Maz’ya-type in the sense

(6.6) Pf
γ(z0, R) ≤ c(n, γ)IPα

([
IPα (|f |2)]

1
2

)
(z0) with α := 2

3
γ,

for all z0 ∈ Rn, R > 0, and γ ∈ (0, n+2
2

]. Iterated Riesz potentials as above were
introduced in the fundamental works [2, 15]. The preceding estimate can be checked
in the following way:

Pf
γ(z0, R) = 2(n+2−α)/2

ˆ R

0

%α

[ |f |2(C%(z0))

(2%)n+2−α

] 1
2 d%

%

≤ 2(n+2−α)/2

ˆ R

0

%α−
ˆ

C%(z0)

[ ˆ

C2%(z)

|f(w)|2
dP(z, w)n+2−α

dw

] 1
2

dz
d%

%

≤ 2(n+2−α)/2

|Bn|
ˆ R

0

%α−n−2

ˆ

C%(z0)

[
IPα (|f |2)(z)

] 1
2 dz

d%

%
.

Estimating the right-hand side by (6.4), we arrive at the claimed estimate (6.6).

6.1. Integrability estimates. In the Lorentz spaces defined above, there holds
the following estimate for Riesz potentials.

(6.7)
∥∥IPα (f)

∥∥
L( Nr

N−αr
, s)
≤ c(n)‖f‖L(r,s)

for every 1 < r < ∞, 1 ≤ s ≤ ∞ and 0 < α < N
r
, where N := n + 2. Moreover, we

have the borderline result

(6.8)
∥∥IPα (f)

∥∥
L( N

N−α
,∞)

≤ c(n)‖f‖L1
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for every 0 < α < N . Both estimates follow from a convolution inequality in Lorentz
spaces [37, Thm. 2.10.2]. In view of (6.6), we infer the following estimate for potentials
of the type (6.5).

Lemma 6.1. Assume that for 1 < r < ∞ and 1
2
≤ s ≤ ∞, we have f ∈

L(2r, 2s). Furthermore, let 0 < γ < N
2r

be given, where N := n+2. Then there holds
Pf

γ( · , R) ∈ L(2 Nr
N−2γr

, 2s) and we have the corresponding estimate

(6.9)
∥∥Pf

γ( · , R)
∥∥

L(2 Nr
N−2γr

, 2s)
≤ c(n, γ) ‖f‖L(2r,2s)

for every R > 0. If f ∈ L2(Rn) and 0 < γ < N
2
, we still have the estimate

(6.10)
∥∥Pf

γ( · , R)
∥∥

L(2 N
N−2γ

,∞)
≤ c(n, γ) ‖f‖L2 .

Proof. In a first step, we restrict ourselves to parameters 1 ≤ s ≤ ∞. The Riesz
potential estimate (6.7) with α := 2

3
γ implies

(6.11)
∥∥∥
[
IPα (|f |2)]

1
2

∥∥∥
L(2 Nr

N−αr
, 2s)

≤ c
∥∥|f |2

∥∥ 1
2

L(r,s)
≤ c‖f‖L(2r,2s).

Applying (6.6) and then once more the Riesz potential estimate (6.7) leads us to
∥∥Pf

γ( · , R)
∥∥

L(2 Nr
N−2γr

, 2s)
≤ c

∥∥∥
[
IPα (|f |2)]

1
2

∥∥∥
L(2 Nr

N−αr
, 2s)

≤ c‖f‖L(2r,2s)

for every R > 0, by the definition of α. This yields the claim (6.9) provided s ≥ 1.
The case s ∈ [1

2
, 1) then follows by an application of the Marcinkiewicz interpolation

theorem (see e.g. [3, Thm. IV.4.13]), using the quasi-linearity of the operator f 7→
Pf

γ( · , R).
The second claim (6.10) follows analogously, now replacing (6.11) by the estimate

∥∥∥
[
IPα (|f |2)]

1
2

∥∥∥
L(2 N

N−α
,∞)

≤ c
∥∥|f |2

∥∥ 1
2

L1 = c‖f‖L2

which follows from (6.8). Combining this with (6.7), we arrive at the claim (6.10). ¤
Moreover, we state a result for the borderline case α = 0 of the preceding potential

estimates.

Lemma 6.2. Suppose that R > 0 and ω : [0,∞) → [0,∞) is measurable with´ R

0
ω(%) d%

%
< ∞. For f ∈ L2

loc(R
n+1) and z0 ∈ Rn+1, we let

Tf(z0) :=

ˆ R

0

ω(%)

[ |f |2(C%(z0))

%n+2

] 1
2 d%

%
.

This defines a bounded quasi-linear operator T : L2(Rn+1) → L2(Rn+1) and T : L(r, s)
→ L(r, s) for every 2 < r ≤ ∞ and 1 ≤ s ≤ ∞, with the corresponding estimates

‖Tf‖L2 ≤ c‖f‖L2 and ‖Tf‖L(r,s) ≤ c‖f‖L(r,s).

Here, the constants depend on n,R, ω( ·) and in the second estimate additionally on
r and s.

Proof. We abbreviate M :=
´ R

0
ω(%) d%

%
. For any q ≥ 2, we use Jensen’s inequal-

ity, once with the measure ω(%)
M

d%
%
and in the case q > 2 once more with the measure
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|B%|−1 dx, which gives

|Tf(w)|q ≤ M q−1|B1|q/2

ˆ R

0

ω(%)

(
−
ˆ

C%(w)

|f(z)|2 dz

) q
2 d%

%

≤ M q−1|B1|q/2

ˆ R

0

ω(%)−
ˆ

C%(w)

|f(z)|q dz
d%

%
.

Integrating over w ∈ Rn+1 and applying Fubini’s theorem, we deduce
ˆ

Rn+1

|Tf(w)|q dw ≤ M q−1|B1|q/2

ˆ R

0

ω(%)
d%

%

ˆ

Rn+1

|f(z)|q dz = M q|B1|q/2‖f‖q
Lq .

We have thereby shown that T defines a bounded operator T : Lq(Rn+1) → Lq(Rn+1)
for every q ≥ 2. This implies in particular the first asserted estimate, and by an ap-
plication of the Marcinkiewicz interpolation theorem [3, Thm. IV.4.13], the operator
T is also bounded on the Lorentz spaces L(r, s) as long as r > 2. ¤

6.2. Continuity estimates. Here, we provide a condition in terms of Lorentz
spaces that ensures that the potentials uniformly tend to zero in the limit R ↘ 0.
This yields sufficient conditions for the continuity of solutions to obstacle problems.

Lemma 6.3. For every γ ∈ (0, N
2
) there holds the estimate

sup
z∈Rn+1

Pf
γ(z, R) ≤ c(n, γ)

ˆ |CR|

0

%
γ
N f ∗(%)

d%

%

for every R > 0. In particular, for functions f ∈ L(N
γ
, 1) there holds

(6.12) lim
R↘0

sup
z∈Rn+1

Pf
γ(z, R) = 0.

Proof. By the definition of the non-increasing rearrangement, we have

|f |2(C%(z0)) =

ˆ

C%(z0)

|f |2 dy ≤
ˆ |C%|

0

(|f |2)∗ ds = ωn%
N (|f |2)∗∗(ωn%

N)

for all z0 ∈ Rn+1 and % > 0, where we write ωn := |Bn|. Consequently, we have
ˆ R

0

[ |f |2(C%(z0))

%N−2γ

] 1
2 d%

%
≤ c(n)

ˆ R

0

[
%2γ(|f |2)∗∗(ωn%

N)
] 1

2
d%

%

= c(n, γ)

ˆ |CR|

0

[
σ

2γ
N (|f |2)∗∗(σ)

] 1
2

dσ

σ
,

by the transformation σ = ωn%N . Here, we wish to replace the term (|f |2)∗∗ in
the above estimate by (|f |2)∗ = (f ∗)2. Using the monotonicity of f ∗, we can use an
elementary estimate for integrals of non-increasing functions (cf. e.g. [33, Lemma 2.4])
with the result

ˆ |CR|

0

[
σ

2γ
N (|f |2)∗∗(σ)

] 1
2

dσ

σ
=

ˆ |CR|

0

σ
1
2
( 2γ

N
−1)

[ ˆ σ

0

(f ∗)2(s) ds

] 1
2 dσ

σ

≤ 2

ˆ |CR|

0

σ
γ
N
− 1

2

ˆ σ

0

s
1
2 f ∗(s)

ds

s

dσ

σ
.
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Joining the last two estimates, using Fubini’s theorem and the assumption γ < N ,
we infer

ˆ R

0

[ |f |2(C%(z0))

%N−2γ

] 1
2 d%

%
≤ c(n, γ)

ˆ |CR|

0

ˆ |CR|

s

σ
γ
N
− 1

2
dσ

σ
.s

1
2 f ∗(s)

ds

s

≤ c(n, γ)

ˆ |CR|

0

s
γ
N f ∗(s)

ds

s
,

which yields the asserted estimate. Finally, we suppose that f ∈ L(N
γ
, 1), or equiva-

lently ˆ ∞

0

%
γ
N f ∗(%)

d%

%
< ∞.

This implies that the right-hand side of (6.12) vanishes in the limit R ↘ 0, which
proves the second claim. ¤
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