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Many dynamical systems can be modeled by a set of linear/nonlinear ordinary differen-
tial equations with periodic time-varying coefficients. The state transition matrix (STM)
Uðt; aÞ, associated with the linear part of the equation, can be expressed in terms of the
periodic Lyapunov–Floqu�et (L-F) transformation matrix Qðt; aÞ and a time-invariant ma-
trix RðaÞ containing a set of symbolic system parameters a: Computation of Qðt; aÞ and
RðaÞ in symbolic form as a function of a is of paramount importance in stability, bifurca-
tion analysis, and control system design. In earlier studies, since Qðt; aÞ and RðaÞ were
available only in numerical forms, general results for parameter unfolding and control
system design could not be obtained in the entire parameter space. In 2009, an attempt
was made by Butcher et al. (2009, “Magnus’ Expansion for Time-Periodic Systems: Pa-
rameter Dependent Approximations,” Commun. Nonlinear Sci. Numer. Simul., 14(12),
pp. 4226–4245) to compute the Qðt; aÞ matrix in a symbolic form using the Magnus
expansions with some success. In this work, an efficient technique for symbolic computa-
tion of Qðt; aÞ and RðaÞ matrices is presented. First, Uðt; aÞ is computed symbolically
using the shifted Chebyshev polynomials and Picard iteration method as suggested in the
literature. Then, RðaÞ is computed using a Gaussian quadrature integral formula.
Finally, Qðt; aÞ is computed using the matrix exponential summation method. Using MATH-

EMATICA, this approach has successfully been applied to the well-known Mathieu equation
and a four-dimensional time-periodic system in order to demonstrate the applications of
the proposed method to linear as well as nonlinear problems. [DOI: 10.1115/1.4033382]

1 Introduction

Dynamic systems such as asymmetric rotors, parametrically
excited pendulums, columns, helicopter blades, automotive com-
ponents, and several others can be modeled by a set of ordinary
differential equations with periodically time-varying coefficients.

In 1991, Sinha and Wu [1] proposed an innovative and efficient
numerical scheme for the analysis of linear systems with periodi-
cally varying parameters. The approach is based on the idea that
the state vector and the periodic matrix of the system can be
expanded in terms of Chebyshev polynomials over the principal
period. Such an expansion converts the original problem into a set
of linear algebraic equations from which the solution in the inter-
val of one period can be obtained. Further, the technique is com-
bined with Floqu�et theory to provide the stability conditions via
the eigenanalysis procedure. Sinha et al. [2] computed the L-F
transformation matrix QðtÞ and R by factoring the UðtÞ matrix.
Sinha and Joseph [3] introduced optimal control theory in con-
junction with Floqu�et analysis to design full state and observer-
based controllers for periodic systems. Sinha and Pandiyan [4]
used these transformed equations to construct solutions of nonlin-
ear time-periodic systems via time-dependent normal form and
center manifold theories. For the first time, Sinha and Butcher [5]
presented a symbolic computation of the STM Uðt; aÞ for linear
time-periodic dynamical systems. D�avid and Sinha [6] presented a
local semi-analytical method of quantitative bifurcation analysis
for parameter unfolding in time-periodic nonlinear systems by
using the L-F transformation in the neighborhood of a bifurcation
point.

The critical limitation of these previous methods is the inability
to determine the L-F transformation matrix in a symbolic form.
Since the L-F transformation was available only in numerical
form, general results for parameter unfolding and control system
design [7] could not be obtained in the entire parameter space.
Motivated by these issues, in 2009 Butcher et al. [8] presented a
technique to compute the L-F transformation Qðt; aÞ in a symbolic
form using the Magnus expansion. Although the approach appears
to be quite general, the algorithm can get complicated and the
convergence could be problematic for large values of system pa-
rameters. The stability boundaries obtained in Ref. [8] for the
Mathieu equation do not match the exact boundaries even for rela-
tively smaller values of system parameters. The authors do not
attempt to improve the accuracy due to the complexity involved
in construction of the additional “trees.” Nevertheless, the Magnus
expansion method could be advantageous since one does not have
to compute the monodromy matrix in a symbolic form before
computing the L-F transformation matrix.

In this work, a technique for symbolic computation of L-F
transformation Qðt; aÞ and RðaÞ matrices is presented. First, the
STM Uðt; aÞ is computed in a symbolic form based on Chebyshev
polynomial expansion technique as described in Ref. [5]. Once
UðT; aÞ is known, RðaÞ can be computed using a quadrature inte-
gral formula. Using MATHEMATICA, this approach has successfully
been applied to the well-known Mathieu equation and a time-
periodic double inverted pendulum system in order to demonstrate
the applicability of the proposed work.

2 Floqu�et Theory

Floqu�et theory focuses on predicting the stability and response
of linear differential equations with periodic coefficients. The sta-
bility conditions are based on the characteristic multipliers
(Floqu�et multipliers) of the STM UðtÞ evaluated at the end of one
principle period, known as the monodromy or the Floqu�et
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transition matrix (FTM) UðTÞ. Floqu�et theory is extremely useful
in stability analysis, as once the problem is solved for one full pe-
riod, solutions are known for all time t.

Consider a time-periodic system in state-space form given by

_x ¼ AðtÞx (1)

Let UðtÞ be the STM of Eq. (1) with Uð0Þ ¼ I, the identity ma-
trix. Then, by Yakubovich and Starzhinski [9]

_UðtÞ ¼ AðtÞUðtÞ; Uð0Þ ¼ I (2)

and

Uðtþ TÞ ¼ UðtÞF (3)

which implies

UðTÞ ¼ F (4)

where F is a constant matrix and

_Uðtþ T; t0Þ ¼ AðtÞUðtþ T; t0Þ (5)

For time greater than one principle period, the STM is given by

UðdÞ ¼ UðtÞUnðTÞ (6)

where d ¼ tþ nT; t 2 ½0;T�; n ¼ 1; 2; 3… Equation (6) is signifi-
cant in the study of periodic differential equations since it infers
that if a solution is known for the time variations in the principle
period, then the solution is known for all time t.

3 Computation of the STM in a Symbolic Form

As indicated above, Sinha and Butcher [5] have outlined a tech-
nique for computing the fundamental solution matrix for a linear
time-periodic dynamical system explicitly as a function of system
parameters via Picard iteration and expansion in shifted Cheby-
shev polynomials. Hence, it is possible to express the local stabil-
ity conditions as a function of system parameters a in a closed
form. A brief description of the methodology is given below for
completeness.

Consider the linear time-periodic system

_xðt; aÞ ¼ Aðt; aÞxðt; aÞ; xð0; aÞ ¼ x0 (7)

The n� n matrix Aðt; aÞ ¼ Aðtþ T; aÞ, where T is the principle
period of the system. The fundamental solution matrix Uðt; aÞ of
Eq. (7) satisfies _Uðt; aÞ ¼ Aðt; aÞUðt; aÞ, where Uð0; aÞ ¼ I and
the solution for the given initial conditions may be expressed as
xðt; aÞ ¼ Uðt; aÞx0.

An equivalent integral form of Eq. (7) is

xðt; aÞ ¼ x0 þ
ðt

0

Aðs; aÞxðs; aÞds (8)

As the zeroth approximation, let x0ðt; aÞ ¼ xð0; aÞ ¼ x0: Use of
Eq. (8) to determine the ðk þ 1Þth term is then

xðkþ1Þðt; aÞ ¼ x0 þ
ðt

0

Aðsk; aÞxðkÞðsk; aÞdsk

¼
"

Iþ
ðt

0

Aðsk; aÞdsk

þ
ðt

0

Aðsk; aÞds0

ðsk

0

Aðsk�1; aÞdsk�1dsk þ :::

þ
ðt

0

Aðsk; aÞ:::
ðs1

0

Aðs0; aÞds0 � � � dsk

#
x0 (9)

where s0; s1; :::; sk are dummy variables. This series of integrals is
an approximation to the fundamental matrix Uðt; aÞ because it is
truncated at a finite number of terms, while the true solution is an
infinite series.

If Aðt; aÞ ¼ AðaÞ, a constant matrix, then this series results in
the power series definition of the exponential solution of Eq. (9),
such that

x t; að Þ ¼ eX að Þtx0 ¼ Iþ X að Þtþ X að Þt½ �2

2!
þ :::þ X að Þt½ �n

n!

� �
x0

(10)

Unfortunately, the symbolic evaluation of the fundamental ma-
trix via Eq. (9), in general, leads to complicated expressions for
Uðt; aÞ and is not efficient due to the necessary repeated integra-
tion by parts. Instead, the following approach is taken, which
results in a more efficient approximation of Uðt; aÞ.

The transformation t ¼ Ts is applied to Eq. (7), which normal-
izes the system matrix’s principal period to one. The equation
then becomes

dx s; að Þ
ds

¼ A s; að Þx s; að Þ (11)

where Aðsþ 1; aÞ ¼ Aðs; aÞ; xð0; aÞ ¼ x0, and Að Þ is expressed

as Aðs; aÞ ¼ A1ðaÞf1ðsÞ þ � � � þ ArðaÞfrðsÞ, fiðsÞ ¼ fiðsþ 1Þ, and

AiðaÞ ¼ T̂AiðaÞ; i ¼ 1;…; r. The Chebyshev polynomial matrix

T̂
TðsÞ is used to expand the normalized system matrix in m shifted

Chebyshev polynomials of the first kind as

Aðs; aÞ ¼ T̂
TðsÞDðaÞ (12)

where the nm� n Chebyshev coefficient matrix DðaÞ is defined as

DðaÞ ¼
Xr

i¼1

AiðaÞ � di (13)

The m� 1 column vectors di contain the known coefficients of
the Chebyshev expansion of the one-periodic functions, and � is
the Kronecker product.

Then, using the integration operational and product operational
matrices (see Ref. [5] for details)

Uðp;mÞðs; aÞ ¼ T̂
TðsÞ Î þ

Xp

k¼1

½LðaÞ�k�1

 !
PðaÞ

" #
¼ T̂

TðsÞBðaÞ

(14)

where BðaÞ contains the Chebyshev coefficients of the elements
of Uðs; aÞ. By selecting a value for p, the number of Picard itera-
tions, this truncated expression gives an approximate solution to
any desired degree of accuracy. While this is valid only in the
interval t 2 ½0;T� or s 2 ½0; 1�; the solution can be easily extended
for t > Tðs > 1Þ by utilizing the formula

Uðp;mÞðs; aÞ ¼ Uðp;mÞðg; aÞ½Uðp;mÞð1; aÞ�k (15)

where s ¼ k þ g; g 2 ½0; 1�; k ¼ 1; 2;… The matrix Uðp;mÞð1; aÞ is
the FTM whose eigenvalues (Floqu�et multipliers) determine the
stability characteristics of the system. While these expressions are
in terms of normalized time, the substitution s ¼ t/T yields the
result in real time.

4 Computation of the L-F Transformation Matrix in a

Symbolic Form

As a corollary to the Floqu�et theory, the L-F theorem states that
the STM Uðt; aÞ of Eq. (7) can be written as the product of two
n� n matrices
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Uðt; aÞ ¼ Lðt; aÞeCðaÞt

Uð0; aÞ ¼ Lð0; aÞ ¼ LðT; aÞ ¼ I
(16)

where Lðt; aÞ is a T -periodic n� n matrix and CðaÞ is a constant
n� n matrix. In general, L and C are complex. Uðt; aÞ can also be
factored as

Uðt; aÞ ¼ Qðt; aÞeRðaÞt

Uð0; aÞ ¼ Qð0; aÞ ¼ Qð2T; aÞ ¼ I
(17)

where Qðt; aÞ is real and 2T-periodic and RðaÞ is a real matrix.
A note of interest: If all of the Floqu�et multipliers lie in the left-

half of the complex plane, then QðtÞ is 2T-periodic and has
symmetry of Qðtþ TÞ ¼ �QðtÞ. However, if all the Floqu�et
multipliers lie in the right-half of the complex plane, the real and
complex L-F transformations coincide, both being T-periodic and
real.

Obviously, one must first compute the STM Uðt; aÞ as outlined
in Sec. 3. In this paper, only the real transformation will be con-
sidered. The computation of Qðt; aÞ and RðaÞ is not a simple task,
except in the special class of commutative systems [10].

Applying the 2T-periodic L-F transformation

xðt; aÞ ¼ Qðt; aÞzðt; aÞ (18)

to Eq. (7) produces a real representation as

_zðt; aÞ ¼ RðaÞzðt; aÞ (19)

where

RðaÞ ¼ Q�1ðt; aÞ Aðt; aÞQðt; aÞ � _Qðt; aÞ
� �

(20)

Evaluating Eq. (17) at t ¼ 2T

Uð2T; aÞ ¼ U2ðT; aÞ ¼ Ie2RðaÞT (21)

then it follows that

R að Þ ¼ 1

2T
ln U2 T; að Þ
� �

(22)

Assuming RðaÞ is known, an approximation of Qðt; aÞ can be
computed from

Qðt; aÞ ¼ Uðt; aÞe�RðaÞt (23)

For symbolic computation, Eq. (23) is written as

Q̂ t; að Þ ¼ U t; að Þ
Xk¼N

k¼0

�Rð Þktk

k!

" #
(24)

Several authors have presented feasible methods of computing
the natural logarithm of symbolic matrices. In particular, this
paper presents two approaches based on series expansion and
one based on Gaussian quadrature [11–13] as compiled by
Dieci et al. [11].

4.1 Series Method 1. Let

A ¼ I�M (25)

where A is a dummy matrix and M is the matrix of which the real
natural logarithm is desired. Assuming qðAÞ < 1, where qðAÞ is
the spectral radius of A, we have

ln Mð Þ ¼ ln I� Að Þ ¼ �
X1
k¼1

Ak

k
(26)

This method is severely limited by the constraint placed of the
spectral radius of the matrix, as the series will only converge if
the magnitudes of all of the eigenvalues of the matrix are less than
one (i.e., the matrix A associated with a discrete-time system is
stable or matrix M associated with a continuous time system is
unstable). In a symbolic form, the parameters are not known in
advance; thus, it is impossible to predict if this series will
converge.

4.2 Series Method 2. Since lnðIþ YÞ � lnðI� YÞ ¼
lnððIþ YÞðI� YÞ�1Þ, using conformal transformation M ¼
ðY� IÞðYþ IÞ�1

and results of series method 1, it can be shown
that

ln Mð Þ ¼ 2
X1
k¼0

1

2k þ 1
M� Ið Þ Mþ Ið Þ�1

h i2kþ1

(27)

The restriction of series method 1 becomes RðKðMÞÞ > 0, where
KðMÞ ¼ fkiðMÞ; i ¼ 1; 2; :::; ng indicates the spectrum of M.
Hence, for this series to converge, the real parts of all eigenvalues
must be greater than zero (i.e., the matrix M associated with a
continuous time system is unstable). Similar to series method 1,
the eigenvalues are not known beforehand; thus, it is not possible
to determine whether this series will converge.

As previously mentioned, these methods are not ideal for sym-
bolic computations as the determination of spectral radius and
spectrum requires eigenanalysis. While possible in a symbolic
form, this typically requires a great deal of computing power.
Also, as bifurcation analysis is performed near the stability boun-
daries, these series expansion will likely converge very slowly.

4.3 Integral Quadrature (IQ) Method. The IQ method is an
alternative technique for determining the real natural logarithm of
a matrix based on a continuous model. This method determines
the desired natural logarithm of a given matrix based on the solu-
tion of an ordinary differential equation as shown below.

Let the s dependent matrix XðsÞ be defined as

XðsÞ : eXðsÞ ¼ ðM� IÞsþ I; 0 � s � 1 (28)

Thus, XðsÞ is well defined, real, s 2 ½0; 1�, and Xð1Þ defines
log ðMÞ based on the following theorem [11]:

Let M 2 Rn�n be nonsingular. Then, there exists a real X ¼
lnðMÞ if and only if M has an even number of Jordan blocks of
each size for every negative eigenvalue. If M has any eigenvalue
on the negative real axis, then no real logarithm of M can be a pri-
mary matrix function of M.

XðsÞ must satisfy the ODE

_X ¼ ðM� IÞe�XðsÞ; 0 � s � 1

Xð0Þ ¼ 0
(29)

and M and eXðsÞ commute such that MeXðsÞ ¼ eXðsÞM.
By Eq. (28), the explicit solution can be written as

XðtÞ ¼
ðs

0

ðM� IÞððM� IÞbþ IÞ�1db; 0 � s � 1 (30)

where b is a dummy variable. Hence

lnðMÞ ¼ Xð1Þ ¼
ð1

0

ðM� IÞððM� IÞsþ IÞ�1ds (31)

Computation of the natural logarithm of the matrix M can then
be achieved by any type of numerical integration technique,
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such as Simpson’s method, quadrature rules, etc., whereas
ððM� IÞsþ IÞ�1

may be computed via Cayley–Hamilton theo-
rem since it does not require computation of eigenvalues. In this
work, Gaussian quadrature will be implemented to approximate
RðaÞ, represented by R̂ðaÞ. Unlike the previously stated series
methods, the IQ method is not constrained by eigenvalue limita-
tions, and thus, this method converges for all parameter values.
Applying this result to Eq. (22), we can determine R̂ðaÞ as

R̂ að Þ ¼ 1

2T
U2 T; að Þ � I
� � ð1

0

U2 T; að Þ � I
� �

sþ I
� ��1

ds (32)

5 Application to the Damped Mathieu Equation

(DME)

Consider the well-known Mathieu equation

€x þ d _x þ ðaþ b cos xtÞx ¼ 0 (33)

which has a period of T ¼ 2p=x; where x ¼ 2p for simplicity
and a; b; and d are the system parameters denoted by a. The time t
is normalized as s ¼ t=T and Eq. (33) is written in the state-space
form as

_x ¼ Acða; dÞ þ ApðbÞcos ð2psÞ
� �

x (34)

where

Acða; dÞ ¼
0 1

�a �d

� �
; ApðbÞ ¼

0 0

�b 0

� �
(35)

xT ¼ ðx1x2Þ and the derivatives are with respect to s. Then, the
STM of the original second-order system is given by Eq. (14) as
(see Sec. 3)

U 24;15ð Þ s; að Þ ¼ T̂
T

sð ÞB að Þ ¼ T̂
T

sð Þ
x
2p

Im 0

0 Im

2
4

3
5B að Þ

2p
x

0

0 1

2
64

3
75

(36)

The “product operational matrices” for fcðsÞ ¼ 1 and fpðsÞ ¼
cos 2ps are utilized in the approximation. Computation was per-
formed with m ¼ 15 Chebyshev expansion terms and p ¼ 24 Pic-
ard iterations, which was shown to be sufficiently accurate by
Sinha and Butcher [5]. All computations were performed on a 64-
bit Windows 7 Home Premium PC with a 4.0 GHz AMD FXTM

8350 8-core processor and 8 GB of RAM. The STM Uðs; aÞ in
terms of the parameters a; b; and d was first computed in a sym-
bolic form. This process required 48.22 s of CPU time.

The IQ method was implemented to determine R̂ðaÞ, the ap-
proximate value of RðaÞ matrix, by Eq. (32).

A computation-time study was performed to determine the
amount of CPU time required for a given number of nodes used
and is shown in Fig. 1.

Clearly, the CPU time required varies linearly with the number
of Gaussian nodes implemented in the numerical integration
approximation for R̂ðaÞ. Figure 2 shows the CPU time required to
compute Q̂ðs; aÞ by Eq. (24) for a given number of summation
terms.

5.1 Stable Case. The parameter set a ¼ 0:5; b ¼ 4:0; and d ¼
0:3 produces characteristic multipliers of f0:578814 6 0:637019ig
with absolute values of 0:860708, indicating that this parameter
set is stable. Figure 3 displays a plot of the “relative error”
between R̂ computed using Eq. (32) and R obtained from Eq. (22)
wherein the UðTÞ matrix was computed numerically using a

Runge–Kutta type algorithm available in MATHEMATICA. Relative
error is defined as

Errrel ¼
kR̂ � Rkf

kRkf

(37)

where R̂ is defined as the approximate solution, R is the numerical
solution, and k•kf is the Frobenius norm. It is easily noticed that
in a simple 2� 2 system, the relative error decreases rapidly with
the increase of Gaussian nodes. It was noted that 11 nodes are
required to achieve a relative error on the order of 1� 10�7,
which corresponds to a CPU time of only 2.93 s. Beyond 11
nodes, numerical error due to machine-precision values occurs.
Implementing 11 nodes, R̂ evaluates to

Fig. 1 CPU time to compute R̂ðaÞ versus number of Gaussian
nodes for the DME

Fig. 2 CPU time to compute Q̂ðt ; aÞ versus number of summa-
tion terms for the DME

Fig. 3 Relative error versus number of Gaussian nodes of the
R̂ matrix (stable DME)
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R̂ ¼ 0:03798 1:2532

�0:5822 �0:3379

� 	
(38)

where R̂ is truncated at four decimal places.
Figure 4 illustrates the time-invariant nature of the R̂ matrix

over two periods.
Q̂ðtÞ is then computed by Eq. (24), and the relative error (using

an expression similar to Eq. (37)) is shown in Fig. 5.
Computing Q̂ð2TÞ with ten summation terms, we obtain

Qð2TÞ ¼ 1 9:08387� 10�9

�4:2201� 10�9 1

� �
� 1 0

0 1

� �
(39)

As both characteristic multipliers are on the right-half of the com-
plex plane, Q̂ðsÞ is T-periodic, as shown in Fig. 6.

5.2 Unstable Case. The parameter set a¼ 12:0;b¼
7:0; and d ¼ 0:3 produces characteristic multipliers of f�1:28285;
�0:577091g with absolute values of f1:28285;0:577091g, which
makes this parameter set unstable. It was observed that seven
nodes are required to achieve a relative error on the order of
1� 10�6. In this case, beyond seven nodes, the numerical compu-
tation error begins to occur due to the nature of machine-precision
values. Implementing seven nodes, R̂ evaluates to

R̂ ¼ �0:1577 �0:0514

�3:0961 �0:1422

� 	
(40)

where R̂ is truncated at four decimals.
Q̂ðsÞ is then computed by Eq. (24). Computing Q̂ð2TÞ with 11

expansion terms, we obtain

Q̂ð2TÞ ¼ 1 �1:172� 10�9

�7:055� 10�8 1

� �
� 1 0

0 1

� �
(41)

As both characteristic multipliers are on the left-half of the
complex plane, Q̂ðsÞ is 2T-periodic, as shown in Fig. 7.

Thus, this method of analysis is feasible for application to sta-
ble as well as unstable systems in a symbolic form. Due to the na-
ture of the polynomial expansions, matrix elements of Q as well
as R contain very large order polynomials involving parameters
a; b; and d. An abbreviated version of the symbolic elements of R
matrix is shown in the Appendix.

5.3 Critical Case. For nonlinear systems, it is desirable to as-
certain the type of bifurcation a system goes through when the
control parameter is given a small perturbation g from its critical
value (say ac). This change in control parameter (a ¼ ac þ g)
changes the linear part of the equation, and thus, the eigenvalues
of the matrix can be directly related to g.

However, such a procedure cannot be directly applied to a
time-periodic system due to the fact that the linear part is time-
periodic. Nevertheless, one can use the L-F transformation Qðt; aÞ
and obtain Eq. (19) where the RðaÞ matrix is time-invariant.
Then, one can relate the changes in the control parameter a to the
eigenvalues of RðaÞ. But, in order to do so, Qðt; aÞ must be sym-
bolically computed such that RðaÞ is also in a symbolic form.
Since Qðt; aÞ and RðaÞ are available in symbolic form, the
“parameter unfolding” in bifurcation of time-periodic systems can
be easily studied. Recently, D�avid and Sinha [6] used a numerical
form of QðtÞ (evaluated at a ¼ ac) and attempted to approximate
Rðac þ gÞ using Taylor series expansion and “curve fitting” meth-
ods. Using the results of the present work, R̂ðac þ gÞ can be com-
puted almost exactly for all values of g. The approximate values
of R as computed in Ref. [6] are compared with the results
obtained here for the Mathieu equation

Fig. 4 R̂ matrix over two periods of the DME (stable)

Fig. 5 Relative error versus number of summation terms of the
Q̂ matrix (stable DME)

Fig. 6 T-periodic Q̂ðtÞmatrix of the DME (stable) Fig. 7 2T-periodic Q̂ðtÞmatrix of the DME (unstable)
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€x þ d _x þ ðac þ b cos xtÞx ¼ 0 (42)

Selecting parameters of ac ¼ 3:91778734; b ¼ 4:0; d ¼ 0:31623,
and x ¼ 2:0, we obtain characteristic multipliers
f0:9999999957; 0:3702910945g indicating that the system under-
goes a symmetry breaking bifurcation. For increased accuracy,
Uðs; aÞ was computed with m ¼ 32 Chebyshev expansion terms
and p ¼ 30 Picard iterations. With R̂ðaÞ and Q̂ðs; aÞ in symbolic
forms, we may fix the values of b and d and investigate the dy-
namics of the bifurcation by introducing small changes in ac.
Twelve Gaussian nodes were implemented in the following analy-
sis. R̂ at ac evaluated to

R̂ ¼ �0:48907 0:01542

15:99016 �0:50439

� 	
(43)

With eigenvalues of R̂ being f�0:993466;�4:28304� 10�9 �
0g where the latter eigenvalue is known as the critical eigenvalue
lc. A small bifurcation parameter g was introduced into the sym-
bolic computation of R̂ðaÞ such that a ¼ ac þ g and the change in
the critical eigenvalue was investigated and shown in Table 1.

This data is compared to results obtained by D�avid and Sinha
[6] in which linear ðlc ¼ 0:868gÞ, quadratic ðlc ¼ 0:868g
�1:854g2Þ, and curve fitting ðlc ¼ 0:865g� 1:635g2Þ methods
were implemented to approximate the critical eigenvalues. The
“numerical values” in the table were computed using a
Runge–Kutta type algorithm. It is noticed that the values com-
puted via the symbolic method presented in this paper match
exactly (truncated to at max six decimals) with the numerical val-
ues for all bifurcation parameters tested. The curve fitting method
is the second most accurate approximation. However, the versal
deformation of the normal form must remain on the center mani-
fold in order to provide an accurate approximation of the system
dynamics. Thus, the bifurcation parameter can only be increased
until the critical eigenvalue is at least one order of magnitude less
than the stable eigenvalue. The symbolic method is not limited by
working on the center manifold, which means that g may be of
any magnitude as long as the approximation of the STM and the
time-invariant matrix is of high enough accuracy to provide cor-
rect results.

6 Application to an Inverted Double Pendulum (IDP)

To prove the viability of this method’s application to higher
order systems, consider the inverted double pendulum subjected
to a constant and periodically varying follower force as shown in
Fig. 8.

The time-periodic equations of motion for this system as given
in Refs. [4,8] are

3€/1 þ cos ð/2 � /1Þ€/2 � sin ð/2 � /1Þ _/
2

2 þ ðB1 þ B2Þ _/1 � B2
_/2

þ 2k/1 � k/2 � pðtÞsin ð/1 � c/2Þ ¼ 0

cos ð/2 � /1Þ€/1 þ €/2 þ sin ð/2 � /1Þ _/
2

1 � B2
_/1 þ B2

_/2

� k/1 þ k/2 � pðtÞsin ðð1� cÞ/2Þ ¼ 0 ð44Þ

where k ¼ k=ml2 is the normalized stiffness, B1 ¼ b1=ml2 and
B2 ¼ b2=ml2 are the normalized damping constants, pðtÞ ¼
ðP̂1 þ P̂2 cos xtÞ=ml ¼ P1 þ P2 cos xt is the normalized applied
load, c is load the direction parameter, and x is the excitation fre-
quency of the applied load. Denoting xT ¼ ðx1 x2 x3 x4Þ ¼
ð/1 /2 /3 /4Þ as the state vector and retaining only linear terms,
Eq. (44) in state-space form becomes

Table 1 Critical eigenvalue lc as a function of g

Critical eigenvalue lc

Bifurcation
parameter g ¼ a� ac

Numerical
value

Symbolic
method

Linear relation
sensitivity analysis [6]

Quadratic relation
sensitivity analysis [6]

Quadratic relation
curve fitting [6]

0.0001 0.000086777 0.000086777 0.000086800 0.000086781 0.000086484
0.001 0.00086615 0.00086615 0.00086800 0.00086615 0.00085553
0.005 0.0042941 0.0042941 0.0043400 0.0042963 0.0042484
0.01 0.0084981 0.0084981 0.0086800 0.0084946 0.0084234
0.02 0.016645 0.016645 0.017360 0.016618 0.016554
0.03 0.024460 0.024460 0.026040 0.024371 0.024391
0.04 0.031958 0.031958 0.034720 0.031754 0.031934
0.05 0.039155 0.039155 0.043400 0.038765 0.039185
0.06 0.046065 0.046065 0.052080 0.045405 0.046142
0.08 0.059069 0.059069 0.694400 0.057574 0.059178
0.1 0.071057 0.071057 0.086800 0.068260 0.071040
0.15 0.097048 0.097048 0.130200 0.088484 Not valid

Fig. 8 Inverted double pendulum (IDP) [8]
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0
BBBB@

1
CCCCA (45)

The STM Uðt; pÞ is computed using the symbolic method as pre-
viously detailed via Eq. (14). Once again, the approximation was
performed with m ¼ 15 Chebyshev expansion terms and p ¼ 24
Picard iterations

U 24;15ð Þ s; að Þ ¼ T̂
T

sð Þ
x
2p

I2m 0

0 I2m

2
4

3
5B að Þ

2p
x

I2 0

0 I2

2
64

3
75 (46)

Values of k ¼ 1, B1 ¼ B2 ¼ 1:0, x ¼ 2p, c ¼ 1, and P1 ¼ 1:0
were chosen while P2 remained symbolic. A total CPU time of
175.95 s was required to perform the computation of Uðt; pÞ. As
in the Mathieu equation example, the CPU time required varies
linearly with the number of Gaussian nodes implemented in the
integral approximation for R̂ðaÞ.

Figure 9 shows the CPU time required to compute Q̂ðt; aÞ for a
given number of summation terms. Due to the increased size in
the system matrix, the time required is greatly increased compared
to the Mathieu system.

Figure 10 displays a plot of the relative error of the symboli-
cally approximated R̂ matrix compared to R obtained from a
Runge–Kutta type numerical solution. P2 ¼ 0:7 was selected for a
numerical comparison.

Again, for the larger 4� 4 system, the relative error decreases
linearly with an increase in Gaussian nodes. It was noted that 48
nodes are required to achieve a relative error on the order of
1� 10�7; this corresponds to a CPU time of 2.11 s in symbolic
form. Beyond 48 nodes, numerical error due to the use of machine-
precision values occurs. Implementing 48 nodes, R̂ evaluates to

R̂ ¼

�0:0190 0:0188 0:9844 0:0147

0:0412 �0:0387 0:0205 0:9824

�0:9692 0:4631 �1:4889 0:9838

1:9302 �1:4244 2:4565 �1:9531

0
BB@

1
CCA (47)

Figure 11 shows the values of R̂31; R̂32; R̂33; and R̂34 with respect
to time. Other elements show similar behavior.

Q̂ðtÞ is then computed by Eq. (24), and the relative error is
shown in Fig. 12.

Computing Q̂ðTÞ with 15 expansion terms, we obtain

Q̂ðTÞ ¼ 1� 10�8

1� 108 9:6 1:4 �1:1

�2:5 1� 108 �2:3 1:8

�3:6 2:3 1� 108 2:6

5:9 3:8 5:6 1� 108

2
666664

3
777775

�

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
666664

3
777775 ð48Þ

Fig. 9 CPU time to compute Q̂ðt ; aÞ versus number of summa-
tion terms for the IDP

Fig. 10 Relative error versus number of Gaussian nodes of the
R̂ matrix for the IDP

Fig. 11 R̂ matrix over two periods of the IDP

Fig. 12 Relative error versus number of expansion terms of
the Q̂ matrix for the IDP
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The Floqu�et multipliers are f0:845360:4125i; 0:3664; 0:0931g;
thus, we can expect a T-periodic Q̂ðtÞ. Figure 13 shows elements
Q̂11 and Q̂12. Other elements show similar behavior.

7 Conclusions

For a linear system with time-periodic coefficients, the STM,
Uðt; aÞ, can be written as Uðt; aÞ ¼ Qðt; aÞeRðaÞt, where a is a set
of system parameters. In this work, a technique for the computa-
tion of the real L-F transformation matrix Qðt; aÞ and the time-
invariant matrix RðaÞ in a symbolic form as a function of system
parameters is presented. This allows symbolic computation of
general results for parameter unfolding and control system design
in the entire parameter space. First, implementing the Chebyshev

expansion and Picard iteration methods, the STM and FTMs are
computed in a symbolic form. Then, the time-invariant matrix
RðaÞ is computed from the symbolic form of Uðt; aÞ using an inte-
gral representation and a quadrature method. Finally, Qðt; aÞ is
computed from Uðt; aÞ using the series representation of the expo-
nential of RðaÞ. Two alternate methods for computing RðaÞ, based
on natural logarithmic series expansions, are also discussed. How-
ever, these methods are not suitable for symbolic computations
since the stability properties of a system cannot be ascertained
beforehand. The symbolic computation of Qðt; aÞ and Rðt; aÞ,
associated with the DME, is presented for stable, unstable, and
critical cases. Bifurcation and parameter unfolding are investi-
gated for the critical case and compared to the results available in
the literature. The comparison clearly demonstrates the superiority
of the method suggested here. The stable case of a linearized
inverted double pendulum is presented to illustrate the application
to a moderately large system. The technique presented here is
computationally efficient and practical for the cases considered,
and is expected to be convergent over a wide parameter space. It
is anticipated that these results will be used to obtain general
results for parameter unfolding and control system design for a
large class of problems in the near future.

Appendix

Elements of R̂ matrix for the DME (33) in a symbolic form

R̂11 ¼ 1:872573307371286� 10�10ð�2:670122435430305� 109 þ 4:450204059050507

� 108a� 2:225102029525254� 107a2 þ 529786:1975060159a3

� 7358:141632028073a4 þ 66:89219665480027a5

� 0:4287961324026424a6 � 1:352699826777344� 108b

þ 8839282:420491958ab� 231643:30434715538a2b

þ 3368:9080533924807a3b� 31:426045754925273a4b

þ 924908:5956588635b2 � 64405:79420981872ab2

þ 1628:7244935426115a2b2 � 22:169294178669865a3b2

þ 8281:832112179707b3 � 337:22773449070974ab3

þ 5:761230159219807a2b3 � 40:03781976627869b4

þ 1:3046913456297837ab4 þ 1:335061217715152� 109d

� 2:2251020295253� 108ad þ 1:112551014762627� 107a2d

� 264893:0987530069a3d þ 3679:070816013979a4d

� 33:4460983274013a5d þ 6:763499133979191� 107bd

� 4419641:250426704abd þ 115821:64330868478a2bd

� 1684:454522849935a3bd þ 15:713031193858347a4bd

� 462454:5284305774b2d þ 32203:062496390437ab2d � � � �Þ

Fig. 13 T-periodic Q̂11 and Q̂12 of the IDP
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R̂12 ¼ 0:5þ 9:042058724009175� 10�11b� 1:507009787334862� 10�11ab

þ 7:535048936674315� 10�13a2b� 1:794059270636751� 10�14 a3b

þ 2:491748986995513� 10�16a4b� 2:265226351814089� 10�18 a5b

þ 1:45206817424006� 10�20a6b� 0:006332585367603382b2

þ 0:0010554308950646916 ab2 � 0:00005277154476035686a2b2

þ 0:00000125646535150976a3b2 � 1:745090766037826� 10�8a4b2

þ 1:586446151040215� 10�10 a5b2 � 1:016952660923396� 10�12 a6b2

þ 4:118016558611256� 10�9 b3 � 0:00003250579068384681ab3

þ 0:000002124096071910776a2b3 � 5:566423778958834� 10�8a3b3

þ 8:095531994779215� 10�10 a4b3 � 8:037133248104041� 10�12a5b3

þ 5:152008492375305� 10�14 a6b3 � 0:000020385703198466296b4

� 0:000001538023349887296ab4 þ 4:785637935945735� 10�8a2b4

� 8:421527369426231� 10�10 a3b4 þ � � �Þ

R̂21 ¼ 0:5ð1:� 1:1666666666666667aþ 0:3416666666666667a2

� 0:041666666666666664a3

þ 0:001736111111111111a4 þ 0:050660591770180376b

þ 3:858063913067739� 10�10abþ 0:0000867536208071576a2b

þ 1:607526630444891� 10�11 a3b� 0:00034639182959781b2

þ 0:0008276062116826679ab2 � 0:00043610152598726404a2b2

þ 0:000045327811625242615a3b2 � 9:036849559831769� 10�7a4b2

� 0:000003101667549879616b3 � 2:617062408976375� 10�10ab3

� 2:026652394423692� 10�9a2b3 � 1:090861047324918� 10�11a3b3

þ 1:499475051593519� 10�8b4 � 2:390332229458579� 10�8ab4

þ 1:831846715511766� 10�7 a2b4 � 9:970715157984674� 10�9a3b4

þ 1:175970959525255� 10�10 a4b4 � 1:0829946632876� 10�13 a2b5

þ 2:837999913433251� 10�15a3b5 � 9:891268988303464� 10�12a2b6

þ 2:592128730676135� 10�13a3b6 þ 3:127824311340369� 10�18a2b7 þ � � �Þ

R̂22 ¼ 1:204428287761545� 10�10ð4:15134700000261� 109 � 2:07567360000013� 109a

þ 1:729728000000108� 108a2 � 5765760:000000372 a3

þ 102960:00000000637 a4 � 1144:000000000076 a5

þ 8:666666666667421 a6 � 2:628871372952065� 107b2

þ 1717847:653801569 ab2 þ 654:7181605948956 a3b2

� 6:106677256168282 a4b2 þ 0:4353529998731057 b3

þ 1390:43267100043b4 � 49:62117930219122 ab4

þ 2471040:000000155 a3d � 45760:000000003456 a4d

þ 520:0000000000373 a5d � 4:0000000000005365 a6d

þ 1:051548530201969� 108bd � 6871394:555945888 abd

� 2618:891143524505 a3bd þ 24:429442749897632 a4bd

þ 1:242535847489643� 107 b2d � 808857:5193181505 ab2d

� 310:11582980409406 a3b2 d þ 2:9039299571796535 a4bd

� 6438:307548258003b3d þ 262:41232611737684 ab3d

� 664:1194363173282b4d þ 23:795444946916003ab4d

� 617760:0000000391a3d2 þ 11440:000000000833a4d2

� 130:00000000001162 a5 d2 þ 1:a6d2 � � � �Þ
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