
Definability problems for graph query languages
∗

Timos Antonopoulos
Hasselt University and

Transnational University of
Limburg

timos.antonopoulos@uhasselt.be

Frank Neven
Hasselt University and

Transnational University of
Limburg

frank.neven@uhasselt.be

Frédéric Servais
Hasselt University and

Transnational University of
Limburg

frederic.servais@uhasselt.be

ABSTRACT

Given a graph, a relation on its nodes, and a query lan-
guage Q of interest, we study the Q-definability problem
which amounts to deciding whether there exists a query in
Q defining precisely the given relation over the given graph.
Previous research has identified the complexity of FO- and
CQ-definability. In this paper, we consider the definabil-
ity problem for regular paths and conjunctive regular path
queries (CRPQs) over labelled graphs.

1. INTRODUCTION
Banchilhon [2] and Paredaens [27], showed that a relation

S whose active domain is contained in the active domain of a
database D, is definable over D in the relational algebra (or,
equivalently in first-order logic (FO)) if and only if every au-
tomorphism ofD is also an automorphism of S. This seminal
result is often referred to by the name of BP-completeness
as Codd termed a query language complete when it has the
same expressiveness as the relation algebra (or, equivalently,
first-order logic). The latter language-independent charac-
terization of relational completeness, provides a means to
decide whether a given relation S is definable over a given
database D: simply guess an automorphism on D that does
not hold in S. For a query language Q of interest, we de-
fine Q-definability as the problem to decide whether for a
database D and a relation S over its active domain, there
exists a query in Q defining precisely S over D. By the
argument given above, FO-definability is in conp. More-
over, Fletcher at al. show that the extension of the defin-
ability problem which requires to find an FO-formula con-
sistent with a given set of pairs {(D1, S1), . . . , (Dn, Sn)}
is co-graph-isomorphism hard [16]. Definability as defined
above has been studied for the conjunctive queries (CQs)

∗We acknowledge the financial support of the Future and
Emerging Technologies (FET) programme within the Sev-
enth Framework Programme for Research of the European
Com- mission, under the FET-Open grant agreement FOX,
number FP7-ICT-233599.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1598-2/13/03 ...$15.00.

as well and has been shown to be conexptime-complete
by Willard [31].1 Motivated by the recent renewed interest
in path query languages for graphs (e.g., [25, 5, 24, 4, 3,
15]), we study the complexity of the definability problem
for graph query languages.More precisely, we study regular
paths [26, 25] and conjunctive regular path queries [9, 17,
14].

The paper is structured as follows. In Section 2, we in-
troduce the necessary definitions and formally define the de-
finability problem. In Section 3, we consider binary queries
defining regular paths in graphs. We argue that in the gen-
eral case, regular path definability reduces to definability by
a finite language and show that the corresponding decision
problem is pspace-complete (even when restricting to deter-
ministic graphs). Then, we turn to simple path semantics
and classes which do not contain all finite languages. In
particular, we consider single-occurrence regular [7, 6, 10]
and abbreviated regular expressions [26]. We show that all
corresponding decision problems become np-complete. In
Section 4, we consider the more expressive conjunctive reg-
ular path queries (CRPQs). We obtain that definability for
chain and linear CRPQs is pspace-complete, for acyclic CR-
PQs is pspace-hard and in exptime, and definability is in
expspace for general CRPQs. Finally, we show that de-
finability for unions of CRPQs is conp-complete. In Sec-
tion 5, we discuss the relationship between CQ-definability
and CRPQ-definability. We discuss related work in Section 6
and conclude in Section 7.

2. DEFINITIONS
We introduce the necessary definitions concerning regular

expressions, automata, graphs, and queries, and we define
the problem central to this paper.

In the following, Σ always denotes a finite alphabet. A
word over Σ is a sequence a1 · · · an of Σ-symbols. The con-
catenation of two words w1 = a1 · · · an and w2 = b1 · · · bm,
denoted w1 · w2, is defined as the word a1 · · · an · b1 · · · bn.
As usual, the empty word is denoted by ε. A language over
Σ is a set of words. By Σ∗, we denote the language of all
finite words over Σ.

A regular expression is defined by the following grammar:

r := ε | a ∈ Σ | r1 + r2 | r1 · r2 | r∗.

The language L(r) defined by r is defined inductively as

1We refer to the section on related work for a more elaborate
discussion.

141

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357595458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

follows:

L(ε) = {ε},
L(a) = {a}, where a ∈ Σ,

L(r1 + r2) = L(r1) ∪ L(r2),
L(r1 · r2) = {w1 · w2 | w1 ∈ L(r1), w2 ∈ L(r2)},

L(r∗) = {w1 · · ·wn | n ∈ N, wi ∈ L(r) for i ≤ n}.

We also use the abbreviations r? and r+ to denote the ex-
pressions r + ε and rr∗. Sometimes, we abuse notation and
write w to denote the word w as well as the regular ex-
pression for which L(w) = {w}. The length of a regular
expression is the size of its word representation including
operators and parenthesis.
A nondeterministic finite word automaton (NFA) A is a

tuple (Q,Σ, δ, I, F), where Q is a finite set of states, I ⊆ Q

is the set of initial states, F ⊆ Q is the set of final states and
δ : Q × Σ → 2Q is the transition function. A run of A on
a word w = a1 · · · an is a sequence of states q0q1 · · · qn such
that qi ∈ δ(qi−1, ai) for each i ∈ [1, n] and q0 ∈ I. A run
on w is accepting if qn ∈ F , and a word w is accepted by A,
if there exists an accepting run of A on w. The size |A| of
A is its total number of states and transitions. By L(A) we
denote the set of words accepted by A. A deterministic finite
word automaton (DFA) A is an NFA (Q,Σ, δ, I, F) where I
is a singleton, and δ(q, σ) is a singleton or the empty set for
all q ∈ Q and all σ ∈ Σ.
As usual, a word language L is regular if there is an NFA

A with L(A) = L. We denote by REG(Σ) the set of regular
languages over Σ. Sometimes we leave Σ implicit and just
write REG.
The inclusion problem for NFAs is to decide whether L(A)

⊆ L(B) for two given NFAs A and B. Given DFAs A1,. . . ,
An, the emptiness of intersection problem for DFAs is to de-
cide whether

⋂n

i=1
L(Ai) = ∅. Similarly, the universality of

union problem for DFAs is to decide whether
⋃n

i=1
L(Ai) =

Σ∗.
We make use of the following results. Note that (3) follows

directly from (2).

Theorem 2.1. 1. The inclusion problem for NFAs is
pspace-complete. [28]

2. The emptiness of intersection problem for DFAs is
pspace-complete. [23]

3. The universality of union problem for DFAs is pspace-
complete.

We consider finite labelled directed graphs G = (VG, EG),
where VG is the set of nodes and EG ⊆ VG × Σ × VG is
the set of labelled edges. We also write u

σ
−→G v to denote

(u, σ, v) ∈ EG. We abuse notation and also write v
ε
−→G u.

The latter only holds when u = v. For w ∈ Σ∗, we denote
by u

w
−→G v the existence of a path from u to v labelled with

w. That is, there is a sequence of nodes v1, . . . , vn ∈ VG

such that v1 = u, vn = v, for all i < n, vi
σi−→G vi+1, and

w = σ1 . . . σn−1. By G⊎G′, we denote the disjoint union of
the graphs G and G′.
Let G = (VG, EG) and H = (VH , EH) be two graphs. A

homomorphism from G to H is a mapping h : VG → VH such
that if u

σ
−→G v then h(u)

σ
−→H h(v). An endomorphism is

an homomorphism from a graph onto itself.
Given a graph G, two nodes u and v, and a regular ex-

pression r, the evaluation problem is the problem to decide

whether there is a w ∈ L(r), such that u
w
−→G v. The follow-

ing theorem seems to belong to folklore and is for instance
mentioned in [26]:

Theorem 2.2. The evaluation problem for regular expres-
sions over graphs is in ptime in the size of the graph and
the regular expression.

In the following, we leave n as an implicit natural number.
An n-ary query q is a function mapping graphs to n-ary
relations over their nodes. We only consider queries which
are closed under isomorphism.

For a class of n-ary queries Q, a graph G = (VG, EG),
and a set S ⊆ V nG , we say that (G,S) is Q-definable if there
exists a query q ∈ Q such that q(G) = S. We are now ready
to define the problem central to this paper.

Definition 2.3. Let Q be a class of n-ary queries and
G be a class of graphs. Then DEF(Q,G) is the problem to
decide whether (G,S) is Q-definable for a graph G ∈ G and
S ⊆ V nG .

When G is the class of all graphs, then we denote DEF(Q,G)
simply by DEF(Q).

We observe the following lemma which says that lower
bounds (resp. upper bounds) carry over when the class of
graphs under consideration grows (resp. shrinks):

Lemma 2.4. Let C be a complexity class and let G and G′

be two classes of graphs such that G ⊆ G′. Then for any class
of queries Q, C-hardness of DEF(Q,G) implies C-hardness
of DEF(Q,G′) and membership of DEF(Q,G′) in C implies
membership of DEF(Q,G) in C.

Note that the above lemma does not extend to classes of
queries.

3. PATHS
In this section, we consider binary queries defining paths

in graphs. Any language R ⊆ Σ∗ can define a binary query
as follows. For a graph G, define qR(G) as the set {(u, v) |

∃w ∈ R, u
w
−→G v}. Any class of languages L therefore

corresponds to a class of binary queries. We abuse notation
and use L to refer to the class of languages as well as to the
corresponding class of binary queries.

Let F be the class of all finite languages. We argue next
that L-definability reduces to F-definability for any class of
languages L containing all finite languages. Intuitively, the
proposition holds because definability is a property defined
over a single finite graph.

Proposition 3.1. Let L be a class of languages contain-
ing F . Then for every graph G and set S ⊆ VG×VG, (G,S)
is L-definable iff (G,S) is F-definable.

Proof. The if direction is immediate. For the converse
direction, assume there is an R ∈ L with qR(G) = S. For

every (u, v) ∈ S choose a wu,v ∈ R with u
wu,v
−−−→G v. Then,

define F as the set {wu,v | (u, v) ∈ S}. Clearly, qF (G) = S.
As F is finite, (G,S) is F-definable.

3.1 F-definability
Denote by LG(u, v) the set of paths from u to v. That is,

define LG(u, v) = {w | u
w
−→G v}. The next lemma shows

that (G,S) is F-definable if for every pair (u, v) ∈ S there is
at least one word in LG(u, v) which selects no pair outside
S.

142

Lemma 3.2. For a graph G = (VG, EG) and S ⊆ VG×VG,
(G,S) is F-definable iff

LG(u, v) 6⊆
⋃

(x,y)/∈S

LG(x, y),

for all pairs (u, v) ∈ S.

Proof. For the if direction, suppose that for all pairs
(u, v) ∈ S, there is a word

w(u,v) ∈ LG(u, v) \ (
⋃

(x,y)/∈S

LG(x, y)).

Then, let R = {w(u,v) | (u, v) ∈ S}. Now, it follows that
qR(G) = S, and (G,S) is F-definable. For the only if di-
rection, suppose that (G,S) is F-definable. Then there is
a finite language R in F such that qR(G) = S. There-
fore, for each pair (u, v) ∈ S, there is at least one word
w ∈ R, such that w ∈ LG(u, v) but w /∈ LG(x, y) for any
pair (x, y) /∈ S.

As every LG(u, v) can be represented by an NFA, the pre-
vious lemma shows that F-definability reduces to contain-
ment testing of NFAs which is known to be in pspace. In
the following Theorem, we obtain pspace-hardness already
when graphs are required to be ‘deterministic’ (as, for in-
stance, considered in [8]). A graph G is deterministic when
for every node there is at most one outgoing edge for every
label. That is, u

σ
−→G v and u

σ
−→G v′ imply v = v′. Denote

by D the class of deterministic graphs.

Theorem 3.3. The problems DEF(F) and DEF(F ,D) are
pspace-complete.

Proof. We decompose the proof in two steps. First we
show that DEF(F) is in pspace; then, we show that the
problem DEF(F ,D) is pspace-hard. The result then follows
from Lemma 2.4.
(1) We witness membership in pspace by a reduction to

the inclusion problem for NFAs.
Given a graph G = (V,E) and S ⊆ V × V , we con-

struct for each pair (u, v) ∈ V × V , the automata Au,v =
(V,Σ, δE , {u}, {v}) where (x, σ, y) ∈ δE iff (x, σ, y) ∈ E.
Then, L(Au,v) = LG(u, v). By Lemma 3.2, (G,S) is F-
definable iff for every (u, v) ∈ S,

L(Au,v) 6⊆
⋃

(x,y) 6∈S

L(Ax,y).

As
⋃

(x,y) 6∈S L(Ax,y) can be represented by an NFA of size
linear in the sum of the size of the Ax,y’s, the result follows
by Theorem 2.1.
(2) For hardness in the case of a deterministic graph, we

reduce from the universality of union problem for DFAs,
which is hard for pspace by Theorem 2.1. Let s, f be two
new symbols not in Σ. Given n DFAs D1, . . . , Dn, we con-
struct G as the disjoint union of G1, . . . , Gn, and G∗. Here,
for each i, Gi is the graph obtained from Di by adding a
new edge, labelled with s, from some new node ui to the
initial state, and by adding a new edge, labelled with f ,
from each of the final states to some new node vi. We re-
fer to ui and vi as the initial and final node in Gi. Then,
LGi

(ui, vi) = {swf | w ∈ L(Di)}. Furthermore, let G∗ be
the graph ‘defining’ all words of the form swf for w ∈ Σ∗.
That is, define G∗ = (V,E), where V = {v1, v2, v3}, E =

{(v1, s, v2), (v2, f, v3)}∪{(v2, σ, v2)}σ∈Σ. Then, LG(v1, v3) =
{swf | w ∈ Σ∗}. Finally, let S = {(v1, v3)}.

By Lemma 3.2, the instance (G,S) is F-definable if and
only if LG(v1, v3) 6⊆

⋃

(x,y)/∈S LG(x, y). Since each word in

LG(v1, v3) starts with s and ends with f , the latter condition
is equivalent to LG(v1, v3) 6⊆

⋃n

i=1
LG(ui, vi) where ui and vi

are the initial and final node of Gi. But, this last condition
is true if and only if Σ∗ 6⊆

⋃n

i=1
L(Di), i.e., if and only if the

union of the DFA is not universal.

Combining Theorem 3.3 with Proposition 3.1, we obtain
that DEF(REG,D) is pspace-complete.

Corollary 3.4. The problem DEF(REG) and the prob-
lem DEF(REG,D) are pspace-complete.

3.2 Single-occurrence regular expressions
The pspace-hardness result obtained in Theorem 3.3 al-

ready holds for every subclass of the regular languages con-
taining F . In an effort to lower the complexity, we now
consider a class of regular expressions not containing F .
Single-occurrence regular expressions (SOREs) are regular
expressions where every Σ-symbol can occur at most once.
For instance, a((b + c)+)d)∗? is a SORE, while a(a + b)∗ is
not. SOREs have been considered in several papers (e.g.,
[7, 6, 10]). Denote by SORE(·) the fragment of SOREs that
only use concatenation. Each expression in this fragment
defines a single word.

Theorem 3.5. DEF(SORE) and DEF(SORE(·)) are np-
complete.

Proof. (1) Let us first show that DEF(SORE) is np-
complete. In the proof of Theorem 3.1 in [6], it is shown
that every SORE over Σ is equivalent to one of size at most
10|Σ|. Therefore, to show membership in np, one simply
guesses a SORE r of size at most 10|Σ| and verifies that
qL(r) = S. By Theorem 2.2, the latter verification is in
ptime.

We next show np-hardness through a reduction from 3-
SAT. Let X be a set of variables and let ϕ be an instance of
3-SAT with variables in X. That is, ϕ = (α11 ∨α12 ∨α13)∧
· · · ∧ (αn1 ∨ αn2 ∨ αn3), where αij is a literal of the form x

or ¬x for some variable x ∈ X.
We construct a graph G and a relation S ⊆ VG×VG such

that there is a SORE r with qL(r)(G) = S if and only if ϕ is
satisfiable. Define Σ = {aij | 0 < i ≤ n∧0 < j ≤ 3}⊎{s, f}.
Then, G is defined as the disjoint union of Gϕ and Gx for
every x ∈ X. Here, Gϕ represents all possible satisfying
truth assignments for the formula ϕ, while each Gx ensures
consistency. In particular, Gx ensures that in such a truth
assignment the variable x can not be assigned both the value
true and false.

The graph Gϕ is illustrated in Figure 1. Intuitively, every
path from s to f assigns the value true to one literal ai1,
ai2, or ai3 by traversing the corresponding edge, for every
i ≤ n. Note that every such path starts and ends with the
symbol s and f , respectively.

Figure 2 illustrates Gx. Here, an edge labelled with a set
denotes multiple edges where each edge is labelled with a
distinct element of the set. Figure 2 uses the sets Px and
Nx which contain the positive and negative occurrences of
variable x in ϕ. That is, define Px = {aij | αij = x} and
Nx = {aij | αij = ¬x}. Intuitively, when a path from s to f

143

s 0 1 n-1 n f
s

a11
a12

a13

an1

an2

an3

f

Figure 1: The graph Gϕ representing all possible

truth assignments for the formula ϕ.

in Gϕ contains a symbol a ∈ Px and another a′ ∈ Nx, then
that path is conflicting and defines an inconsistent valuation.
The purpose of Gx is to define these conflicting paths. The
upper half of the graph defines paths where an occurrence
of Nx precedes an occurrence of Px, while the lower half of
the graph defines paths where an occurrence of Px precedes
an occurrence of Nx.

sx 1

2

3

4 fx
s

Σ \ (Px ∪Nx) Nx

Px

Px

Nx

Σ \ Px

Σ \Nx

Σ

f

Figure 2: The graph Gx ensures that the valuations

are consistent with regards to the variable x.

The set S = {(s, f)} now contains a single pair. As-
sume (G,S) is SORE-definable. Then, there is a SORE
r with qL(r)(G) = S. In particular, there is a word w ∈

L(r) such that s
w
−→G f and sx 6

w
−→G fx for every x ∈ X.

This means that w encodes a satisfying truth assignment
for ϕ. Conversely, assume ϕ is satisfiable. For every clause
i, pick one literal αiji which is assigned true. Then, let
w = sa1j1 · · · anjnf . Now, qL(w) = {(s, f)} and (G,S) is
SORE-definable.
(2) The NP-algorithm for DEF(SORE(·)) is the same as

the one in (1). For the lower bound it suffices to remark that
for the graph G and the relation S constructed in (1), (G,S)
is SORE(·)-definable iff (G,S) is SORE-definable.

3.3 Simple path semantics
Simple path semantics enjoys renewed attention due to its

inclusion at the core of the semantics of SPARQL, see for
example [25]. Recall that a path is called simple when it con-
tains no repetition of nodes. We consider definability in the
context of simple paths and show that the complexity drops
from pspace to np. This is in contrast to the evaluation
problem which is harder for the simple path semantics than
for the standard semantics. Indeed, for a regular expression
r, using Theorem 2.2, computing qr(G) can be done in time
polynomial in the size of G and r. However, Mendelzon and
Wood [26] showed that the evaluation problem for regular

expressions over graphs under the simple path semantics be-
comes intractable (np-complete to be precise).

For a language L, we define qsimple

L (G) as the set of pairs
(u, v) for which there is a sequence of nodes u = v1, . . . , vn =
v in VG and a sequence of labels σ1, . . . , σn such that vi 6= vj

for i 6= j and vi
σi−→G vi+1 for all i < n. By Lsimple we

denote L under the simple path semantics. In analogy to
Proposition 3.1, DEF(Lsimple) is equivalent to DEF(Fsimple)
for every class of languages L containing F .

Theorem 3.6. DEF(Fsimple) is np-complete.

Proof. We start by membership in np. Let G = (V,E)
be a graph with n nodes and let S ⊆ V ×V . Then, as every
simple path can contain at most n nodes, every pair (u, v) ∈
S is witnessed by a word of length at most n. Therefore,
non-deterministically guess for every such pair a word wu,v
of at most length n, and test whether qR(G) = S for R =
{wu,v | (u, v) ∈ S}.

For the np-hardness part of the argument, we reduce va-
lidity of 3DNF to the complement of DEF(Fsimple), where
3DNF denotes the boolean propositional formulas in dis-
junctive normal form where each disjunct contains precisely
three literals. The validity problem for 3DNF is np-complete.
Therefore, let ϕ be a formula over the variablesX = {x1, . . . ,
xk} which is of the form

∨n

i=1
αi where each αi = αi1∧αi2∧

αi3 is a conjunction of literals. Let Σ = {0, 1, s, f}. When
interpreting s as the initial node and f as the final node,
the graph GX , illustrated for X = {x1, x2, . . . x6} in Fig-
ure 3, defines all words of the form sσ1 · · ·σkf where each
σi ∈ {0, 1} assigns a truth value to variable xi. Then, sim-
ilarly, Gαi

, illustrated for X = {x1, x2, . . . x6} and αi =
¬x2 ∧ x4 ∧ x5 in Figure 4, defines all words of the form swf

where w encodes a truth assignment which makes αi true.

s 1 2 3 4 5 6 7 f
s

0

1

0

1

0

1

0

1

0

1

0

1

f

Figure 3: Graph GX for X = {x1, x2, . . . x6}.

si 1 2 3 4 5 6 7 fi
s

0

1

0 0

1 1 1

0

1

f

Figure 4: Graph Gαi
for X = {x1, x2, . . . x6} and αi =

¬x2 ∧ x4 ∧ x5.

Now, define G as the disjoint union of Gα1
,. . . , Gαn , and

GX , and set S = {(s, f)}. Then ϕ is valid iff (G,S) is not
F-definable. Indeed, when ϕ is valid, for every word w for
which s

w
−→G f there is a disjunct αi for which si

w
−→G fi.

Conversely, when ϕ is not valid there is a truth assignment
which makes ϕ false. Let w be the word encoding of that
truth assignment. Then, q{w}(G) = S.

The class of restricted regular expressions was introduced
by Mendelzon and Wood [26] in connection with the evalu-
ation problem of regular path queries under the simple path
semantics. In particular, they showed that the evaluation
problem for restricted regular expressions under the simple
path semantics is in ptime. A regular expression is restricted

144

if it is equivalent to the regular expression obtained from it
by replacing all symbols a by a?. For example, 0∗10∗ is not
restricted but 0∗10∗ + 0∗ is restricted as it is equivalent to
(0?)∗1?(0?)∗ + (0?)∗. Restricted regular expressions define
the abbreviated regular languages. These are the regular
languages which are closed under the subword operation.
A word v is a subword of w, when v is obtained from w

by deleting some of its, not necessarily consecutive, letters.
Now, a regular language L is abbreviated if for any word in
L all its subwords also belong to L. We denote the class
of abbreviated regular languages by A and we show (proof
omitted) that the definability problem remains np-complete
even though the evaluation problem under the simple path
semantics becomes tractable.

Theorem 3.7. DEF(A) is np-complete.

4. CONJUNCTIVE REGULAR PATH

QUERIES
In this section, we consider more expressive query lan-

guages. In particular, we investigate the definability prob-
lem for various classes of conjunctive regular path queries
(CRPQs) [9, 17, 14] such as chain (CCRPQs), linear (LCR-
PQs) and acyclic CRPQs (ACRPQs) or the class formed
by queries that are unions of CRPQs (UCRPQs). Interest-
ingly, we show that while the problem is pspace-hard for
LCRPQs, it drops to np for the most expressive class, the
UCRPQs.
Let x = (x1, . . . xn) and y = (y1, . . . ym) be tuples of vari-

ables. Let X = {x1, . . . xn} and Y = {y1, . . . ym}. A Con-
junctive Regular Path Query (CRPQs) is a formula ϕ(x) of
the form:

∃ y (r1(z1, z
′
1) ∧ · · · ∧ rk(zk, z

′
k))

where each ri is a regular expression and {z1, . . . zk, z
′
1, . . . ,

z′k} is equal to X ∪ Y . We abuse notation and denote the
class of CRPQs by CRPQ as well and similarly for the sub-
classes we consider below.
Let G = (V,E) be a graph, we say that a tuple of nodes

(v1, . . . , vn) ∈ V n satisfies the query ϕ(x) if there is a map-
ping h from X ∪ Y to V with h(xi) = vi and such that
(h(zi), h(z

′
i)) ∈ qL(ri)(G) for all i ≤ k. We call such a map-

ping a valid assignment. We define the evaluation qϕ(G) of
ϕ(x) on G as the set of tuples (v1, . . . , vn) ∈ V n that satisfy
ϕ.
We restrict attention to unary and binary queries.

4.1 Chain CRPQs
We start by defining CRPQs of a restricted form: chain

and linear CRPQs. We say that a CRPQ is a chain CRPQ
(CCRPQ) if it is of the form

ϕ(x, y) = ∃x̄ (r1(x, x1) ∧ r2(x1, x2) ∧ . . . ∧ rn(xn−1, y)).

The unary variant then is of the form

ϕ(x) = ∃x̄ (r1(x, x1) ∧ r2(x1, x2) ∧ . . . ∧ rn(xn−1, xn)).

We say that a CRPQ is linear (LCRPQ) if it is of the form
ϕ(x, y) =

∃x̄1, . . . , x̄n (ψ0(x) ∧ r1(x, x1) ∧ ψ1(x1) ∧ r2(x1, x2) ∧ . . .
. . . ∧ ψn−1(xn−1) ∧ rn(xn−1, y) ∧ ψn(y))

where each ψi is a unary CCRPQ. So, an LCRPQ is a
CCRPQ with tentacles. Note that as regular expressions
can be ε, LCRPQ is a superset of CCRPQ.

As every CCRPQ ϕ(x, y) of the form

∃x̄ (r1(x, x1) ∧ r2(x1, x2) ∧ . . . ∧ rn(xn−1, y)),

is equivalent to the path query (in the sense of the previous
section) defined by the regular language expressed by the
regular expression r1 · · · rn, it readily follows from Corol-
lary 3.4, that DEF(CCRPQ) is pspace-complete. Never-
theless, to prepare for the more elaborate construction in
Theorem 4.3, we provide a more direct proof which shows
that CCRPQs and LCRPQs defining a given relation can
be constructed in pspace by guessing the associated regular
expressions.

We recall some basic operations on binary relations. Let
R1 and R2 be two binary relations. The composition of
R1 and R2, denoted by R1 ◦ R2, is defined as {(x, y) |
∃zR1(x, z) and R2(z, y)}. We denote by R1⋉R2 = {(x, y) ∈
R1 | ∃zR2(y, z)} the semi-join of R1 and R2. Finally, by
π1(R1) we denote {x | ∃y(x, y) ∈ R1}.

By Qunary, we denote Q restricted to unary queries only.

Lemma 4.1. 1. DEF(CCRPQunary) is in pspace.

2. DEF(CCRPQ) is in pspace.

3. DEF(LCRPQ) is in pspace.

Proof. (1) Let G = (VG, EG) be a graph and S ⊆ VG.
Note that (G,S) is unary CCRPQ-definable iff there is a
formula ϕ(x) = ∃y r(x, y) ∧ ϕy(y), where ϕy(y) is a unary
CCRPQ, with qϕ(G) = S.2 The latter requirement reduces
to the existence of a relation Rx,y ⊆ VG × VG and a set
Sy ⊆ VG such that

• (G,Rx,y) is REG-definable;

• (G,Sy) is unary CCRPQ-definable; and,

• S = π1(Rx,y ◦ Sy × Sy).

On input (G,S), the following algorithm checks for the
existence of such Rx,y and Sy:

1. Guess a REG-definable binary relation Rx,y ⊆ VG×VG
and a set of nodes Sy ⊆ VG such that S = π1(Rx,y ◦
Sy × Sy).

2. If Sy = VG accept. Otherwise, set S := Sy and go to
step (1).

The algorithm is in pspace. Indeed, the size of the guessed
relations is at most quadratic in the input and testing for
REG-definability is in pspace by Corollary 3.4.

It remains to argue that the algorithm accepts iff (G,S) is
CCRPQ-definable. Assume (G,S) is CCRPQ-distinguish-
able. Then, there is a formula ϕ(x) = ∃x̄ (r1(x, x1) ∧
r2(x1, x2) ∧ . . . ∧ rn(xn−1, xn)) with qϕ(G) = S. The al-
gorithm accepts by guessing at each stage i < n the relation
qL(ri)(G) and the set qϕi

(G) where

ϕi = ∃xi+1, . . . , xn (ri+1(xi, xi+1) ∧ . . . ∧ rn(xn−1, xn)].

At stage n, the algorithm guesses the relation qL(rn)(G) and
the set VG. Conversely, assume the algorithm accepts after

2Note that ϕ is syntactically not a CCRPQ but is equivalent
to one.

145

n iterations and let (Ri)i≤n be the REG-definable relations
definable by the regular expressions (ri)i≤n. Then, qϕ(G) =
S for ϕ(x) = ∃x̄ (r1(x, x1)∧ r2(x1, x2)∧ . . .∧ rn(xn−1, xn)).

(2) Let G = (VG, EG) be a graph and S ⊆ VG× VG. Note
that (G,S) is binary CCRPQ-definable iff there is a formula
ϕ(x, y) = ∃z (r(x, z)∧ϕz,y(z, y)), where ϕz,y(z, y) is a binary
CCRPQ, with qϕ(G) = S. The latter requirement reduces
to the existence of a relation Rx,z ⊆ VG× VG and a relation
Rz,y ⊆ VG × VG such that

• (G,Rx,z) is REG-definable;

• (G,Rz,y) is binary CCRPQ-definable; and,

• S = Rx,z ◦Rz,y.

The following algorithm checks for the existence of such re-
lations Rx,z and Rz,y:

1. Guess a REG-definable binary relation Rx,z ⊆ VG×VG
and a binary relation Rz,y ⊆ VG × VG such that S =
Rx,z ◦Rz,y.

2. If Rz,y = VG × VG accept. Otherwise, set S := Rz,y
and go to step (1).

Correctness and membership in pspace of the above al-
gorithm is similar to the corresponding argument for unary
CCRPQs and is therefore omitted.

(3) Let G = (VG, EG) be a graph and S ⊆ VG × VG.
Note that (G,S) is LCRPQ-definable iff there is a formula
ϕ(x, y) = ∃z r(x, z) ∧ ϕz(z) ∧ ϕz,y(z, y), where ϕz(z) is a
unary CCRPQ and ϕz,y(z, y) is a binary CCRPQ, with
qϕ(G) = S. The latter requirement reduces to the exis-
tence of a relation Rx,z ⊆ VG × VG, a set Sz ⊆ VG, and a
relation Rz,y ⊆ VG × VG such that

• (G,Rx,z) is REG-definable;

• (G,Sz) is unary CCRPQ-definable;

• (G,Rz,y) is binary CCRPQ-definable; and,

• S = Rx,z ◦ (Sz × Sz) ◦Rz,y.

Consider the following algorithm:

1. Guess a REG-definable relation Rx,z, a unary CRPQ-
definable set Sz, and a relation Rz,y such that S =
Rx,z ◦ (Sz × Sz) ◦Rz,y.

2. If Rz,y = VG × VG accept. Otherwise, set S := Rz,y
and go to step (1).

Correctness and membership in pspace of the above algo-
rithm is similar to the corresponding argument for unary
CCRPQs and is therefore omitted.

The following Theorem follows from the proof of Theo-
rem 4.10.

Theorem 4.2. DEF(LCRPQ) is pspace-complete.

4.2 Acyclic CRPQs
We first recall the definition of acyclic CRPQs as, for in-

stance, introduced in [5]. A query ϕ(x) = ∃ y (r1(z1, z
′
1) ∧

· · · ∧ rk(zk, z
′
k)) naturally defines a graph Gϕ = (Vϕ, Eϕ)

whose nodes Vϕ are the variables in ϕ and whose edges are
labelled with regular expressions as follows: (z, r, z′) ∈ Eϕ
if and only if there is some i ≤ k with z = zi, z

′ = z′i and
r = ri. A CRPQ is acyclic (ACRPQ) if its graph (considered
undirected) is acyclic.

Theorem 4.3. 1. DEF(ACRPQunary) is in exptime.

2. DEF(ACRPQ) is in exptime.

Proof. The proof follows closely that of Lemma 4.1.
Whereas in the latter proof the recursion is linear, the struc-
ture of ACPRQs requires to use non-linear recursion. To this
end, we employ alternation exploiting that exptime equals
alternating pspace.

(1) Let G = (VG, EG) be a graph and S ⊆ VG. Note
that (G,S) is unary ACRPQ-definable iff there is a formula
ϕ(x) = ∃ȳ

∧m

i=1
ri(x, yi) ∧ ϕi(yi), where ϕi(y) is a unary

ACRPQ with qϕ(G) = S.
The latter reduces to the existence of relations Rx,yi ⊆

VG × VG and sets Syi ⊆ VG such that

• each (G,Rx,yi) is REG-definable;

• each (G,Syi) is unary tree definable; and,

• S =
⋂m

i=1
(Rx,yi ◦ Syi × Syi).

Consider the following alternating pspace algorithm:

1. Set Stemp = VG × VG.

2. Guess a REG-definable binary relation Rx,y and a set
of nodes Sy.

3. Create two branches and accept if both accept:

(a) Set Stemp := Stemp∩(Rx,y◦Sy×Sy). If S = Stemp

accept. Otherwise go to step (2).

(b) If Sy = VG then accept, else set S := Sy and go
to (1).

(2) Let G be a graph and S ⊆ VG × VG. Note that (G,S)
is binary ACRPQ-definable iff there is a formula

ϕ(x, y) = ϕi(x) ∧ ∃ū
n
∧

i=1

si(x, ui) ∧ ψi(ui, y),

where ϕi(x) is a unary ACRPQ and ψi(ui, y) is a binary
ACRPQ, with qϕ(G) = S.

The latter reduces to the existence of a set Sx ⊆ VG and
relations Rx,ui

, Rui,y ⊆ VG × VG such that

• (G,Sx) is unary ACRPQ-definable;

• each (G,Rx,ui
) is REG-definable;

• each (G,Rui,y) is binary ACRPQ-definable; and,

• S = (Sx × VG) ∩
⋂n

i=1
Rx,ui

◦Rui,y.

The alternating pspace algorithm is now similar to (1).

146

4.2.1 Hardness

We show that DEF(ACRPQ) is pspace-hard. It will fol-
low from the proof that DEF(LCRPQ) is pspace-hard, as
well. We reduce from the emptiness of intersection problem
for DFAs as defined in Section 2. The input consists of a
sequence of DFAs A1, . . . , An. We construct a graph G and
a set S such that (G,S) is ACRPQ-definable iff

⋂n

i=1
L(Ai)

is non-empty. We start by summarizing the main steps of
the proof. For each DFA Ai, we construct a graph Gi with a
designated start node si and a designated end node fi such
that a word w is accepted by Ai if and only if there is a
path in Gi labelled with w (or more precisely by an encod-
ing γ(w) of w) from si to fi. We then define the graph G as
the disjoint union of the Gi and a constraint graph Gc (to
be discussed next) and define the set S to contain all (si, fi)
but no elements from the constraint set Sc. The constraint
graph Gc together with the constraint set Sc ensures that if
there is an ACRPQ ϕ(x, y) with Sc∩qϕ(G) = ∅, then ϕ(x, y)
is equivalent to a linear ACRPQ whose regular expressions
consist of a single alphabet symbol. Therefore, ϕ(x, y) de-
fines a single word and as every (si, fi) ∈ qϕ(G), that word
is accepted by every Ai. The main difficulty of the proof lies
in the construction of Gc and Sc.
Let us first note that queries are monotone with regards

to the subgraph relation. Specifically, we write G1 ⊆ G2 for
two graphs G1 = (V1, E1) and G2 = (V2, E2) when V1 ⊆ V2

and E1 ⊆ E2.

Lemma 4.4. Let G1, G2 be two graphs with G1 ⊆ G2.
Then qϕ(G1) ⊆ qϕ(G2), for any CRPQ ϕ.

We use the above monotonicity property to construct G as
the disjoint union of several graphs. Some properties are
easier to prove on the subgraphs, they then carry over, by
monotonicity, to the whole graph.
The first part of this section is devoted to the constraint

graph Gc. It is constructed as the disjoint union of the
subgraphs G→, G⊥, and Gαβ . For each of them we prove
the relevant properties that also hold, by monotonicity, to
G.
Denote by G→ = (V→, E→) the graph depicted in Fig. 5.

The first lemma states that if the pair (s→, f→) is not se-
lected by a ACRPQ ϕ(x, y), then there is a directed path in
the graph of ϕ from x to y.

s→ f→

Σ Σ

Σ

Figure 5: Component G→.

Lemma 4.5. Let ϕ(x, y) be a ACRPQ. If (s→, f→) /∈
qϕ(G→) then ϕ is equivalent to a formula of the form ∃z
(ϕ1(x, y) ∧ ψ(x, y)) where ϕ1 = r1(x, z1) ∧ r2(z1, z2) ∧ · · · ∧
rn(zn−1, y).

Proof. We assume that ϕ does not contain conjuncts of
the form ε(z, z′) as we can remove these by replacing every
occurrence of the variable z′ by z. Let Gϕ be the graph
associated with the query ϕ(x, y). Let S1 be the set of vari-
ables reachable from x in Gϕ and let S2 be the set com-
prising the remaining variables. Then, let h be a mapping

that maps all variables in S1 to s→ and all variables in S2

to f→. Assume ϕ is not of the claimed form. But, then
y ∈ S2 as y is not reachable from x. Let us show that h
is a valid assignment witnessing that (s→, f→) ∈ qϕ(G→),
which contradicts our assumption. Indeed, first we have
h(x) = s→ and h(y) = f→. Second, for any disjunct r(z1, z2)
in ϕ we check that (h(z), h(z′)) ∈ qr(G). We consider three
cases: (i) h(z) = h(z′) = s→ or h(z) = h(z′) = f→, then
(h(z), h(z′)) ∈ qr(G) for any r, (ii) h(z) = s→, h(z′) = f→,
this is impossible by definition of h. (iii) h(z) = f→, h(z′) =
s→, then (h(z), h(z′)) ∈ qr(G) for any r (as there is a Σ la-
belled edge from the first node to the second and there are
Σ self-loops on both nodes).

s⊥ m⊥ f⊥

Σ

Σ

Σ \ {⊥}Σ \ {⊥}

Σ

Σ

Figure 6: Component G⊥.

Denote by G⊥ = (V⊥, E⊥) the graph depicted in Fig. 6.
The following result states that if an acyclic query ϕ(x, y),
whose graph contains a directed path from x to y, does not
select (s⊥, f⊥) in G⊥, then each regular expression, appear-
ing on an edge of that path, is a disjunction of words of
length at most 1.

Lemma 4.6. Let ⊥ ∈ Σ and ϕ(x, y) be an ACRPQ query
of the form ∃z(ϕ1(x, y) ∧ ψ(x, y)) where ϕ1 = r1(x, z1) ∧
r2(z1, z2) ∧ · · · ∧ rn(zn−1, y) and no ri contains the symbol
⊥.

If (s⊥, f⊥) /∈ qϕ(G⊥), then, for each i ≤ n, ri = αi,1 +
· · ·+ αi,ki , with αi,j ∈ Σ ∪ {ε}.

Proof. Let ϕ(x, y) be as stated in the lemma and as-
sume that (s⊥, f⊥) /∈ qϕ(G⊥). Towards a contradiction sup-
pose that for some ri, there is a word w of length larger
than 1 with w ∈ L(ri). We define the following valid as-
signment h which witnesses that (s⊥, f⊥) ∈ qϕ(G⊥). Let
Gϕ be the graph associated with the query ϕ, and let G−

ϕ

be the graph obtained by Gϕ by removing the edge from
zi−1 to zi. Since ϕ is acyclic we have the following three
disjoint sets over the variables {x, y} ∪ z̄. Let S1 be all
the variables on the same connected component of G−

ϕ as
x, let S2 be all the variables on the same connected com-
ponent of G−

ϕ as y and let S3 be the rest of the variables.
Then define h so that all variables of S1 and S3 are mapped
to s⊥ and all variables of S2 are mapped to f⊥. Notice
that, since no ri contains the symbol ⊥, any word of length
larger than 1 is satisfied on the path from s⊥ to f⊥ via
m⊥. Therefore, ri(zi−1, zi) is satisfied. One can easily
check that the other conjuncts of ϕ are also satisfied. In-
deed, if r(z, z′) is any other conjunct of ϕ then, by con-
struction of h, h(z) = h(z′) = s⊥ or h(z) = h(z′) = f⊥,
and (s⊥, s⊥), (f⊥, f⊥) ∈ qr(G⊥) for any regular expression
r. Therefore, h witnesses (s⊥, f⊥) ∈ qϕ(G⊥) which leads to
the desired contradiction.

Let α, β ∈ Σ, then Gαβ = (Vαβ , Eαβ) is the graph de-
scribed in Fig. 7. The following lemma states that, if an

147

sαβ mαβ fαβ

Σ

α β

Σ Σ

Σ

Figure 7: Component Gαβ for α, β ∈ Σ.

acyclic query ϕ(x, y) whose graph contains a directed path
from x to y does not select (sαβ , fαβ) in Gαβ , then the word
αβ does not appear on that path. This property is later
used to prevent disjunctions in the regular expressions. The
proof is similar to the proof of Lemma 4.6.

Lemma 4.7. Let ϕ(x, y) be a ACRPQ of the form ∃z
(ϕ1(x, y) ∧ ψ(x, y)) where ϕ1 = r1(x, z1) ∧ r2(z1, z2) ∧ · · · ∧
rn(zn−1, y).
Then, (sαβ , fαβ) ∈ qϕ(Gαβ), if and only if there exist

α′, β′ ∈ Σ∗, such that α′αββ′ ∈ L(r1 · r2 · · · rn).

Consider a formula ϕ of the form depicted in Fig. 8. That
is, (i) ϕ has a directed path from x to y, (ii) each node on the
unique path from x to y in ϕ has an outgoing edge labelled
⊥, and (iii) moreover, each edge on that path is labelled
with a regular expression formed by a single letter.
We show in the next lemma that the pair (s⊥, f⊥) and

(s→, f→), are not selected by ϕ in any graph G that contains
as disjoint subgraphs the graphs G⊥ and G→. Moreover
(sαβ , fαβ) is not selected in any graph that contains Gαβ as
a disjoint subgraph, whenever αβ is not a factor of σ1 . . . σn.

x

x′

z1

z′
1

z2

z′
2

z3

z′
3

zn−1

z′n−1

y

y′

σ1 σ2 σ3 σn

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Figure 8: The graph of ϕ such that (s⊥, f⊥) /∈ qϕ(G⊥).

Lemma 4.8. Let ⊥ ∈ Σ and ϕ(x, y) be an ACRPQ of the
form (depicted in Fig. 8):

ϕ(x, y) = ∃z(σ1(x, z1) ∧ ⊥(x, x′) ∧
n−2
∧

i=1

(σi+1(zi, zi+1) ∧ ⊥(zi, z
′
i)) ∧

σn(zn−1, y) ∧ ⊥(zn−1, z
′
n−1) ∧ ⊥(y, y′)),

where, for each i ≤ n, σi ∈ Σ.
Then

• (s⊥, f⊥) /∈ qϕ(G) for any G with G = G⊥ ∪ G′ where
V⊥ ∩ V ′ = ∅ (we assume G′ = (V ′, E′));

• (sαβ , fαβ) /∈ qϕ(G) for any G with G = Gαβ ∪ G′,
Vαβ ∩V

′ = ∅, and αβ is not a factor of σ1 . . . σn; and,

• (s→, f→) /∈ qϕ(G) for any G with G = G→ ∪ G′ and
V→ ∩ V ′ = ∅.

Proof. We prove the first item, the others are proved
similarly. Suppose for contradiction that (s⊥, f⊥) ∈ qϕ(G).

Let h be the valid assignment witnessing this. Since h(x) =
s⊥ and h(y) = f⊥, and since for each i ≤ n, σi ∈ Σ, it
cannot be the case that for some j < n, h(zj) = s⊥ and
h(zj+1) = f⊥. Therefore, for some j < n, it is the case that
h(zj) = m⊥ and h(zj+1) = f⊥. But ϕ expresses that each of
the variables zj has an outgoing edge labelled with ⊥. But
this is a contradiction since m⊥ in G⊥ has no such outgoing
edge, and therefore m⊥ in G = G⊥ ∪G′ has no outgoing ⊥
edge either because G⊥ and G′ are disjoint.

The main proof relies on a transformation that maps a
DFA A on the binary alphabet ∆ = {a, b} to a graph G

whose edges are labelled with elements of Σ = {a1, a2, b1, b2,
s, f,⊥}, and with two distinguished nodes s and f . This
transformation is such that a word w is accepted by A if and
only if there is a path from s to f in G labelled with sµ(w)f
where µ is the morphism that maps a on a1a2 and b on b1b2.
All words labelling a path in G corresponding to accepted
words in A belong to L = L(s((a1a2) ∨ (b1b2))

∗f). The
purpose of the next lemma is to show that we can enforce
some queries to only define words in L.

Every factor of length 2 of a word w in L (two consecutive
letters of w) belongs to the following set:

factors = {sa1, sb1, sf, a1a2, a2a1, a2b1, a2f,
b1b2, b2a1, b2b1, b2f}.

We define Gfactors to be the graph
⋃

αβ/∈factors
Gαβ , where we

assume that Vαβ ∩ Vα′β′ = ∅ whenever αβ 6= α′β′. We will
show that, under some hypothesis, a query that does not
select (sαβ , fαβ) (for αβ /∈ factors) in Gfactors is equivalent
to a query where every regular expression is a single alphabet
symbol.

Lemma 4.9. Let ϕ(x, y) be a ACRPQ of the form ∃z
(ϕ1(x, y) ∧ ψ(x, y)) where ϕ1 = r1(x, z1) ∧ r2(z1, z2) ∧ · · · ∧
rn(zn−1, y), ri = αi,1+ · · ·+αi,ki , with αi,j ∈ Σ∪{ε}\{⊥},
and r1 = s, rn = f . Let

α1,1 · α2,1 · · ·αn,1 ∈ L(s((a1a2) ∨ (b1b2))
∗
f). (1)

If (sαβ , fαβ) /∈ qϕ(Gfactors) for all αβ /∈ factors, then ri ≡ αi
and αi ∈ Σ ∪ {ε} \ {⊥} for all i ≤ n.

Proof. We show that each ri is equivalent to αi,1. The
argument is based on the following observations. Because
(sαβ , fαβ) /∈ qϕ(Gαβ) for all αβ /∈ factors, and equation (1)
holds, it follows that (i) s (resp. f) is the first (resp. last)
symbol; (ii) a1 (resp. b1) can only be followed by a2 (resp.
b2); (iii) a2 (resp. b2) can only be preceded by a1 (resp. b1);
and, (iv) s, a2 and b2 can only be followed by f, a1 or b1.

We consider several cases:

• If αi,1 = a1 then, by observation (ii) above, αi+1,1 =
a2. But then, by observation (iii), all other disjuncts
αi,j = a1 (they can not be ε either, as shown in the
last item below).

• If αi,1 = b1 then, similarly as in the case for a1, each
αi,j can only be b1.

• If αi,1 = a2 then, by (iii), αi−1,1 = a1. But then, by
(ii), all other disjuncts αi,j can only be a2.

• If αi,1 = b2 then, similarly as in the case for a2, all
other disjuncts αi,j can only be b2.

148

• If αi,1 = s (resp. αi,1 = f) then it can only be the
first (resp. last) symbol (observation (i)), i.e. i = 1
(resp. i = n). And by equation (1) r1 is equivalent to
s (resp., rn is equivalent to f).

• If αi,1 = ε and αi,2 6= ε, then α1,1 . . . αi,1 . . . αn,1 or
α1,1 . . . αi−1,1αi,2αi+1,1 . . . αn,1 is of the form w1αβw2

with αβ /∈ factors, which implies that (sαβ , fαβ) ∈
qϕ(Gfactors).

This concludes the proof.

We are now ready for the main result of this section:

Theorem 4.10. DEF(ACRPQ) is pspace-hard.

Proof. We reduce the emptiness problem for the inter-
section of n DFAs to DEF(ACRPQ). Let A1, . . .An be n
DFAs over the alphabet ∆ = {a, b}. For each i ≤ n, we
define the associated graph Gi = (Vi, Ei), on the alphabet
Σ = {s, f, a1, a2, b1, b2,⊥}, obtained from the graph repre-
sentation of Ai by

• adding an initial node si connected to the initial node
by an edge labelled s;

• adding a final node fi and connecting each final state
of Ai to fi by an edge labelled f ;

• for each edge e = (v1, a, v2) (resp. e = (v1, b, v2)),
adding a new node v′1 and replacing e with two new
edges (v1, a1, v

′
1) and (v′1, a2, v2) (resp (v1, b1, v

′
1) and

(v′1, b2, v2)); and,

• adding a new node, say v⊥, and for each node v, adding
a new edge (v,⊥, v⊥).

Consider the morphism µ from ∆∗ to Σ∗ defined by µ(a) =
a1a2 and µ(b) = b1b2 and let γ be the function from ∆∗ to
Σ∗ defined as γ(w) = sµ(w)f . Clearly, Ai accepts the word
w if and only if there is a path from si to fi in Gi labelled
with γ(w).
Let G =

⋃

i≤nGi ⊎ Gc, where Gc = G→ ⊎ G⊥ ⊎ Gfactors .
Denote the set of vertices and edges of G by V and E, re-
spectively. Furthermore, let S be the set containing all sets
S for which

1. (s⊥, f⊥) /∈ S;

2. (sαβ , fαβ) /∈ S for any αβ /∈ factors;

3. (s→, f→) /∈ S;

4. (s1, f1), . . . (sn, fn) ∈ S; and,

5. (Vi × Vi) \ {(si, fi)} ∩ S = ∅, all i ≤ n.

Notice that by the last condition, S does not contain any
state of a DFA Ai apart from si and fi.
It remains to show that there is a set S ∈ S for which

(G,S) is ACRPQ-definable if and only if
⋂

i≤n L(Ai) is not
empty.
First assume there exists a word w ∈

⋂

i≤n L(Ai) with

µ(w) = σ1 . . . σm. Then one can easily check that the query:

ϕ(x, y) = ∃z̄(s(x, z1) ∧ ⊥(x, x′) ∧
m−1
∧

i=1

(σi(zi, zi+1) ∧ ⊥(zi, z
′
i)) ∧

f(zm, y) ∧ ⊥(zm, z
′
m) ∧ ⊥(y, y′))

satisfies the properties (1) to (5) of sets in S. Indeed, the
first three properties follow directly from Lemma 4.8. The
fourth property follows as w belongs to the intersection of
the Ai’s, by construction of Gi. Finally, the last property
follows as only the path from (si, fi) in Gi is labelled with
a word of the form swf .

For the only if direction, assume there exists an acyclic
query ϕ(x, y) with qϕ(G) ∈ S. We proceed in several steps
to show that there exists a formula of the form

∃z (s(x, z1) ∧ σ2(z1, z2) ∧ · · · ∧ f(zm, y) ∧ ψ(x, y))

with σi ∈ Σ, such that qϕ(G) ∈ S.
By Lemma 4.5 and Lemma 4.4, the query is of the form

∃z(ϕ1(x, y)∧ψ(x, y)) where ϕ1 = r1(x, z1)∧r2(z1, z2)∧· · ·∧
rm(zm, y).

The following observation (†) is key to the sequel of the
proof. Consider the language Lvalid defined by the regular
expression s((a1a2) ∨ (b1b2))

∗f . Then, let ϕ′ be a formula
obtained from ϕ by replacing every ri by a r′i such that

L(r1 · r2 . . . rm) ∩ Lvalid ⊆ L(r′1 · r
′
2 . . . r

′
m)

and

L(r′1 · r
′
2 . . . r

′
m) ⊆ L(r1 · r2 . . . rm).

Then qϕ′(G) ∈ S. Indeed, because qϕ′(G) ⊆ qϕ(G) prop-
erties (1),(2), (3) and (5) hold. And (4) holds because all
paths from (si, fi) are labelled with words in Lvalid, and no
such words have been removed. Therefore any valid assign-
ment witnessing (si, fi) ∈ qϕ(G) is also a valid assignment
witnessing (si, fi) ∈ qϕ′(G).

Next, we show that we can assume that no ri in ϕ contains
⊥. To this end, define L′

i = {w ∈ L(ri) | w ∈ (Σ \ {⊥})∗}
as the restriction of ri to ΣΣ \ {⊥}. As L′

i is regular, there
exists an equivalent regular expression r′i. Moreover, it is
easy to see that

L(r1 · r2 . . . rm)∩Lvalid ⊆ L(r′1 · r
′
2 . . . r

′
m) ⊆ L(r1 · r2 . . . rm)

Therefore by (†), qϕ′(G) ∈ S, where ϕ′ is obtained by re-
placing each ri by r

′
i. Therefore, we can assume that ri does

not contain ⊥.
By Lemma 4.6 and Lemma 4.4, it follows that each ri in

ϕ is of the form ri = αi,1 + · · ·+ αi,ki , with αi,j ∈ Σ ∪ {ε}.
Next, utilizing observation (†), we show that we can as-

sume that r1 = s in ϕ. We consider three cases (recall that
r1 = α1,1 + · · ·+ α1,k1):

• α1,j 6= s for all j ≤ k1: Then αi,j = ε for some j ≤ k1,
because otherwise L(r1 · r2 . . . rm) ∩ Lvalid = ∅ and
(si, fi) /∈ qϕ(G), which contradicts the hypothesis. By
taking r′1 = ε and using (†), we have qϕ′(G) ∈ S. Then
ϕ′′ obtained from ϕ′ by removing r1 and renaming z1
with x is equivalent to ϕ′. And we can reiterate the
procedure on ϕ′′.

• α1,1 = s and α1,j 6= ε for all j > 1: clearly if one takes
r′1 = s, then, by (†), qϕ′(G) ∈ S because L(r1 . . . rm)∩
Lvalid ⊆ L(r′1r2 . . . rm) ⊆ L(r1 . . . rm).

• α1,1 = s and α1,j = ε for some j > 1: if sw′ ∈
L(r2 . . . rm) for some word w then ssw ∈ L(r1r2 . . . rm),
but this is not possible because ss can not be a factor
of words in L(r1r2 . . . rm) (by Lemma 4.7, as Gss ∈
G). Otherwise, if sw /∈ L(r2 . . . rm) for any w ∈ Σ∗,
then take r′1 = s, we have L(r1 . . . rm) ∩ Lvalid ⊆

149

L(r′1r2 . . . rm) ⊆ L(r1 . . . rm), and, using †, qϕ′(G) ∈
S.

Similarly, we can suppose that rm = f .
We can now apply Lemma 4.9 which shows that ri = αi

with αi ∈ Σ ∪ {ε} \ {⊥}. Therefore, there exists a formula
of the form

∃z (s(x, z1) ∧ σ2(z1, z2) ∧ · · · ∧ f(zm, y) ∧ ψ(x, y))

with σi ∈ Σ, such that qϕ(G) ∈ S.
Now, as ϕ is acyclic there is only one path from x to

y. This path is labelled by a single word w = α1 . . . αm.
Therefore, for each i ≤ m, there is a path from si to fi
labelled with w, and hence Ai accepts w′ = γ−1(w), i.e.
w′ ∈

⋂

i≤n L(Ai).
To conclude the proof, note that the size of the set S is

fixed (it does not depend on the Ai nor on n). Therefore, the
reduction goes as follows. Given n DFA we build the graph
G (whose size is polynomial in the automata). Then, for
each set S ∈ S we check whether S is ACRPQ-definable. If
one of them is, then the intersection is not empty, otherwise
it is. The latter is known as a truth table reduction.
Finally note that this reduction is also valid for the class

of LCRPQs.

4.3 General Case
In this section, we shed some light on the complexity of

DEF(CRPQ). We present an expspace algorithm for decid-
ing definability for the general class of binary CRPQs. We
show that if there exists a query defining the given relation,
then there exists one of size at most exponential in the size
of the graph. Essentially, the algorithm guesses the query
and then verifies that it indeed defines the given set. For
proving the bound on the size of the query, we show that (i)
the size of the regular expressions appearing in the query,
(ii) the number of variables, and (iii) the number of occur-
rences of each variable, are all bounded by an exponential
in the size of the graph.
We say that a CRPQ is in word normal form if every

regular expression occurring in it is a disjunction of words.

Lemma 4.11. Let G = (V,E) be a graph, S ⊆ V × V ,
and let ϕ be a CRPQ. There exists a CRPQ ψ with qϕ(G) =
qψ(G) such that ψ is in word normal form and the size of ψ
is at most exponential in the size of G.

Proof. We construct ψ by replacing every regular ex-
pression in ϕ by a disjunction of at most |S| words of length
exponential in the size of G. Let r(x, y) be a conjunct in ϕ.
Denote qL(r)(G) by Sr. Then (G,Sr) is REG-definable and,
by Proposition 3.1, (G,Sr) is F-definable. By Lemma 3.2,
it follows that for every (u, v) ∈ Sr,

LG(u, v) 6⊆
⋃

(x,y) 6∈Sr

LG(x, y).

So, for each (u, v) ∈ Sr, there is a word w(u,v) with

w(u,v) ∈ LG(u, v) \ (
⋃

(x,y)/∈Sr

LG(x, y)).

Then qR(G) = Sr, for R = {w(u,v) | (u, v) ∈ Sr}. As
⋃

(x,y) 6∈Sr
LG(x, y) can be represented by an NFA of size

linear in the sum of the sizes of the languages LG(x, y) (see
Lemma 3.2), the witness of non-inclusion can be chosen with
a length bounded by an exponential in the size of G.

The next lemma shows that exponentially many variables
are enough to define a given set if this set is CRPQ-definable.

Lemma 4.12. Let G = (V,E) be a graph, S ⊆ V ×V , and
ϕ a CRPQ with qϕ(G) = S. Then, there is a CRPQ ψ with

qψ(G) = S that has at most |V ||S| variables.

Proof. Assume ϕ is a CRPQ defining S with the small-
est number of variables. Towards a contradiction, assume
that number is larger than |V |ℓ, for ℓ = |S|. Let {x, y} ∪ Y
be the variables occurring in ϕ(x, y). As qϕ(G) = S, for
each pair (s1, s2) ∈ S there is a valid assignment hs1,s2 from
{x, y} ∪ Y to V that maps x on s1 and y on s2. Then,
there are two variables z1, z2 ∈ Y , such that hs1,s2(z1) =
hs1,s2(z2) for all (s1, s2) ∈ S. Indeed, let S = {p1, . . . , pℓ}
and consider the mapping v(z) = (hp1(z), . . . , hpℓ(z)) ∈ V ℓ.
Since there are |V |ℓ elements in V ℓ and more than |V |ℓ vari-
ables in ϕ, there exist z1, z2 ∈ Y with v(z1) = v(z2). That
is, hs1,s2(z1) = hs1,s2(z2) for all (s1, s2) ∈ S.

Theorem 4.13. DEF(CRPQ) is in expspace.

Proof. Given a graph G = (V,E) and S ⊆ V × V , we
argue that if there exists a CRPQ ϕ with qϕ(G) = S, then
there exists one of size at most exponential in the size of G.
The algorithm then reduces to guessing such a CRPQ ϕ of
at most exponential size and verifying that it defines S on
G. The verification step is achieved by testing for every pair
(u, v) ∈ S that (u, v) ∈ qϕ(G) and for every pair (u, v) 6∈ S

that (u, v) 6∈ qϕ(G). The latter is done by cycling through
all variable assignments (which are of size exponential in G)
and using Theorem 2.2.

By Lemma 4.11, the regular expressions in any CRPQ are
equivalent to one of size at most exponential in the size of
G. By Lemma 4.12, the number of variables is at most ex-
ponential in the size of G. We next argue that the number
of occurrences of each variable is also at most exponential
in the size of G. We say that two conjuncts r(z1, z2) and
r′(z1, z2) are G-equivalent whenever qL(r)(G) = qL(r′)(G).

As qL(r)(G) is a subset of S × S, there are at most 2|S×S|

non G-equivalent regular expressions. Therefore two vari-
ables, z1 and z2, occur in no more than 2|S×S| non-equivalent
conjuncts of the form r(z1, z2).

4.4 Union of CRPQs
In this section, we consider unions of conjunctive regular

path queries. We say that a pair of nodes (v1, v2) is CRPQ-
distinguishable from a pair (v′1, v

′
2) in a graph G iff there is

a CRPQ ϕ such that (v1, v2) ∈ qϕ(G) and (v′1, v
′
2) 6∈ qϕ(G).

We first show that the complexity of checking whether a
single pair of nodes is distinguishable in CRPQ from another
pair of nodes, is in conp. Then to decide whether a relation
is definable using a union of CRPQs, amounts to checking if
each of the pairs in the relation is definable by some query,
and then constructing the union of all those queries. This is
in contrast to what has been observed above for the CRPQ-
definability problem, as the queries that can distinguish each
individual pair in the set of pairs given as input, cannot
necessarily be combined into a single CRPQ.

A formula ψ(x) is a union of CRPQs (UCRPQs) if it is of
the following form:

ϕ1(x) ∨ · · · ∨ ϕk(x)

where each ϕi is a CRPQ. Let G = (V,E) be a graph, a
tuple of nodes (v1, . . . , vn) ∈ V n satisfies the query ψ(x) =

150

ϕ1(x) ∨ · · · ∨ ϕk(x) if it satisfies one of the ϕi. Then qψ(G)

is defined as
⋃k

i=1
qϕi

(G).
The following lemma essentially shows that homomor-

phisms preserve paths.

Lemma 4.14. Let G = (VG, EG) and H = (VH , EH) be
two graphs and let h be a homomorphism from G to H. Then
LG(v1, v2) ⊆ LH(h(v1), h(v2)), for any two nodes v1, v2 ∈
VG.

Next, we observe that two pairs of nodes can not be distin-
guished by a CRPQ iff there is an endomorphism mapping
one pair to the other.

Lemma 4.15. Let G = (V,E) be a graph and let (v1, v2)
and (v′1, v

′
2) be two pairs of nodes of G. There exists an

endomorphism e on G, with e(v1) = v′1 and e(v2) = v′2
if and only if the pair (v1, v2) is not CRPQ-distinguishable
from (v′1, v

′
2) over G.

The following lemma will be used in Theorem 4.17.

Lemma 4.16. Given a graph G = (V,E) and two pairs of
nodes (v1, v2), (v

′
1, v

′
2) ∈ V ×V , checking whether there is an

endomorphism h on G with h(v1) = v′1 and h(v2) = v′2, is
np-complete.

As a consequence of the previous lemmas we show (proof
omitted) that UCRPQ-definability is conp-complete.

Theorem 4.17. DEF(UCRPQ) is conp-complete.

5. CQ-DEFINABILITY
In this section, we discuss CQ-definability where CQ stands

for the class of traditional conjunctive queries [1]. To this
end, a graph G is represented in the usual way over the vo-
cabulary (Eσ)σ∈Σ consisting of binary relations Eσ where

Eσ(u, v) holds in G iff u
σ
−→G v.

Of course, CQ-definability implies CRPQ-definability. We
next, show that the converse does not hold. To this end,
consider the graph G1

1 2 3 4
a b

with S1 = {(1, 2), (3, 4)}. Furthermore, let ϕ = [a ∨ b](x, y).
Then, qϕ(G1) = S1. It should be obvious that there is no
CQ defining S1. The latter can also be formally proved em-
ploying the semantical characterization of CQ-definability in
terms of closure under polymorhpisms (see, e.g., [31, 22]).
Specifically, and rephrased in our formalism, it is shown

that a relation S is not CQ-definable over a graph G iff there
exists a polymorphism of G = (V, (Eσ)σ∈Σ) of arity at most
n which does not preserve S and where n = |S|. To explain
the latter statement we need to introduce some terminology.
Let s = (s1, . . . , sk) be a k-tuple of elements over V n. Let
proj(s) = {(s1[i], . . . , sk[i]) | 1 ≤ i ≤ n}, where s[i] denotes
the ith component of tuple s. Then, a function h : V n → V

preserves a k-ary relation R at s if proj(s) ⊆ R implies that
(h(s1), . . . , h(sk)) ∈ R. Furthermore, h preserves R if h
preserves R at every k-tuple in (V n)k. We then say that h
is a polymorphism of G (of arity n) if h preserves every Eσ.
We are now ready to prove that (G,S1) is not CQ-definable.

Define h : V 2 → V as follows: h(i, i) = i for i ∈ {1, . . . , 4},
h(1, 3) = 2 and h(2, 4) = 3. The remainder of h can be

chosen arbitrarily. Observe that h does not preserve S1.
Indeed, take s = ((1, 3), (2, 4)). Then proj(s) = S1 but
(h(1, 3), h(2, 4)) = (2, 3) 6∈ S1. Furthermore, h does pre-
serve Ea and Eb. Indeed, the only sequence s for which
proj(s) ⊆ Ea is s = ((1, 1), (2, 2)) and (h(1, 1), h(2, 2)) =
(1, 2) ∈ S1. A similar reasoning applies for Eb. It then
follows that (G,S1) is not CQ-definable

As mentioned in the introduction, CQ-definability is shown
to be complete for conexptime. The above shows that
neither the upper bound nor the lower bound can be di-
rectly carried over to determine the complexity of CRPQ-
definability.

Denote by UCQ the class of unions of conjunctive queries.
We argue that UCQ-definability coincides with UCRPQ-
definability. It suffices to show that on a given graph G,
every CRPQ ϕ can be rewritten into an equivalent UCQ ψ,
that is, qϕ(G) = qψ(G). Thereto, let ϕ = ∃z̄(r1(z1, z

′
1)∧· · ·∧

rn(zn, z
′
n)) be a CRPQ. From Proposition 3.1 it follows that

for every ri there is a set of words Wi = {wi,1, . . . , wi,ki}
with qL(ri)(G) = qWi

(G). Denote by Ki the set {1, . . . , ki},
and let K = K1 × · · · ×Kn. Then, define

ψ :=
∨

(j1,...jn)∈K

∃z̄(w1,j1(z1, z
′
1) ∧ · · · ∧ wn,jn(zn, z

′
n)).

Obviously, every conjunct w(z, z′) can be replaced by the
CQ ∃x̄Eσ1(z, x1) ∧ . . . ∧ Eσn(xn−1, z

′) for w = σ1 · · ·σn. It
now follows that qϕ(G) = qψ(G).

Therefore, we have the following corollary:

Corollary 5.1. DEF(UCQ) is conp-complete.

6. RELATED WORK
As already mentioned in the Introduction, the present pa-

per is similar in spirit to the work on language complete-
ness of Banchilhon [2] and Paredaens [27] but then from a
complexity point of view. Geerts and Poggi [18] study BP-
completeness in the context of K-relations, an extension of
the relational model where tuples are assigned a unique value
in a semiring [19]. CQ-definability has been studied in the
context of constraint languages under a variety of names in-
cluding the expressibility problem [31], PP-definability prob-
lem [29], and existential inverse satisfiability problem [12,
11]. CQ-definability is an instance of the structure identifi-
cation problem [13] which asks whether a given relation can
be “represented” by a formula in some logical formalism and
has been shown to be conexptime-complete by Willard [31].
See also the note of Ten Cate and Dalmau [30] for a re-
lationship with the product homomorphism problem which
implies that CQ-definability is already conexptime-hard for
unary queries over a fixed schema consisting of a single bi-
nary relation. Moreover, definability can be semantically
characterized in terms of closure under polymorphisms [31,
22]. It would be interesting to come up with such language
independent characterizations for CRPQ as well.

There has been a renewed interest in studying naviga-
tional query languages over graphs (see, e.g., [15, 21]). Lose-
mann and Martens [25] study the semantics of property
paths as defined in SPARQL [20]. Property paths are fun-
damental to SPARQL and are of the form x · r · y where
x and y are variables (to be interpreted by nodes), and r

is a regular expression. Specifically, they study the com-
plexity of deciding whether there exists a path from x to y
matching r and the complexity of counting the number of

151

paths from x to y matching r. In particular, they observe
that in general adopting a simple walk semantics, where
paths can not revisit nodes, increases the complexity. Eval-
uation of regular expressions over graphs under the simple
path semantics has been studied before by Mendelzon and
Wood [26]. Initially, conjunctive regular path queries have
been studied mainly from the angle of query containment [9,
17, 14]. More recently, the conjunctive regular paths queries
received renewed attention especially w.r.t. the complexity
of query answering and expressiveness [5, 24, 4, 3].

7. CONCLUSIONS
We conclude by a discussion of some directions for future

work. One immediate direction is the search for tractable
cases. A recipe for tractability, of course, is to consider
classes of languages/queries for which there are at most
polynomially many elements which could distinguish any
(G,S). Indeed, then one could simply enumerate all mem-
bers and test if they define S. Examples are, for instance,
SOREs when Σ is considered fixed. Another possibility for
future work is to find matching bounds in the case of CRPQs
and to try to find semantical characterizations for CRPQ-
definability.

8. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] F. Bancilhon. On the completeness of query languages
for relational data bases. In MFCS, pages 112–123.
Springer, 1978.

[3] P. Barceló, C. A. Hurtado, L. Libkin, and P. T. Wood.
Expressive languages for path queries over
graph-structured data. In PODS, pages 3–14. ACM,
2010.

[4] P. Barceló, L. Libkin, and J. L. Reutter. Querying
graph patterns. In PODS, pages 199–210. ACM, 2011.

[5] P. Barceló, J. Pérez, and J. L. Reutter. Relative
expressiveness of nested regular expressions. In AMW,
pages 180–195. CEUR-WS.org, 2012.

[6] G. J. Bex, W. Gelade, F. Neven, and
S. Vansummeren. Learning deterministic regular
expressions for the inference of schemas from XML
data. ACM Transactions on the Web, 4(4), 2010.

[7] G. J. Bex, F. Neven, T. Schwentick, and
S. Vansummeren. Inference of concise regular
expressions and DTDs. ACM Transactions on
Database Systems, 35(2), 2010.

[8] P. Buneman, W. Fan, and S. Weinstein. Query
optimization for semistructured data using path
constraints in a deterministic data model. In DBPL,
pages 208–223, 2000.

[9] D. Calvanese, G. D. Giacomo, M. Lenzerini, and
M. Y. Vardi. Containment of conjunctive regular path
queries with inverse. In KR, pages 176–185, 2000.

[10] D. Colazzo, G. Ghelli, and C. Sartiani. Efficient
inclusion for a class of XML types with interleaving
and counting. Inf. Syst., 34(7):643–656, 2009.

[11] N. Creignou, P. G. Kolaitis, and B. Zanuttini.
Structure identification of boolean relations and plain
bases for co-clones. J. Comput. Syst. Sci.,
74(7):1103–1115, 2008.

[12] V. Dalmau. Computational complexity of problems
over generalized formulas, 2000. PhD thesis,
Universitat Politécnica de Catalunya.

[13] R. Dechter and J. Pearl. Structure identification in
relational data. Artif. Intell., 58(1-3):237–270, 1992.

[14] A. Deutsch and V. Tannen. Optimization properties
for classes of conjunctive regular path queries. In
DBPL, pages 21–39. Springer, 2001.

[15] G. H. L. Fletcher, M. Gyssens, D. Leinders, J. V. den
Bussche, D. V. Gucht, S. Vansummeren, and Y. Wu.
Relative expressive power of navigational querying on
graphs. In ICDT, pages 197–207. ACM, 2011.

[16] G. H. L. Fletcher, M. Gyssens, J. Paredaens, and
D. V. Gucht. On the expressive power of the relational
algebra on finite sets of relation pairs. IEEE Trans.
Knowl. Data Eng., 21(6):939–942, 2009.

[17] D. Florescu, A. Y. Levy, and D. Suciu. Query
containment for conjunctive queries with regular
expressions. In PODS, pages 139–148, 1998.

[18] F. Geerts and A. Poggi. On database query languages
for k-relations. J. Applied Logic, 8(2):173–185, 2010.

[19] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In PODS 2007, pages 31–40.
ACM, 2007.

[20] S. Harris and A. Seaborne. SPARQL 1.1 query
language. Tech. report, World Wide Web Consortium
(W3C), January 2012.

[21] J. Hellings, B. Kuijpers, J. Van den Bussche, and
X. Zhang. Walk logic as a framework for path query
languages on graph databases. ICDT, 2013.

[22] P. Jeavons, D. A. Cohen, and M. Gyssens. How to
determine the expressive power of constraints.
Constraints, 4(2):113–131, 1999.

[23] D. Kozen. Lower bounds for natural proof systems. In
FOCS, pages 254–266. IEEE Computer Society, 1977.

[24] L. Libkin and D. Vrgoc. Regular path queries on
graphs with data. In ICDT, pages 74–85. ACM, 2012.

[25] K. Losemann and W. Martens. The complexity of
evaluating path expressions in SPARQL. In PODS,
pages 101–112. ACM, 2012.

[26] A. O. Mendelzon and P. T. Wood. Finding regular
simple paths in graph databases. SIAM J. Comput.,
24(6):1235–1258, 1995.

[27] J. Paredaens. On the expressive power of the relational
algebra. Inf. Process. Lett., 7(2):107–111, 1978.

[28] L. J. Stockmeyer and A. R. Meyer. Word problems
requiring exponential time: Preliminary report. In
STOC, pages 1–9. ACM, 1973.

[29] B. ten Cate. Notes on AIM CSP workshop,3 2008.

[30] B. ten Cate and V. Dalmau. A note on the product
homomorphism problem and CQ-definability.
Manuscript, 2012. http://arxiv.org/abs/1212.3534

[31] R. Willard. Testing expressibility is hard. In CP,
pages 9–23. Springer, 2010.

3http://www.aimath.org/WWN/constraintsatis/
constraintsatis.pdf

152

