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Critical current of a long Josephson junction in the presence of a perturbing Abrikosov vortex
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We investigate theoretically how the proximity of an Abrikosov vortex influences the physical properties of
a long Josephson junction. We find théit,, the contribution to the critical current associated with the
presence of the vortex, is generally posititee critical current is increasgdnd is crucially dependent on the
specific boundary conditions satisfied by the transport current. In the case in which the latter has a bulk
component in the vicinity of the vortexjl . is proportional to the couplings between the vortex and the
junction. The situation is however more complex when the transport current is purely a surface phenomenon.
In this casedl . strongly depends on the distance between the vortex and the edges of the junction, and is in
general much smaller than that of the bulk current case unless a special commensurability condition is met. In
particular we show that a contribution # . proportional toy is obtained in this case only when an integer
number of Josephson vortices can be accommodated between the location of the vortex and one of the edges
of the junction.[S0163-182@8)10137-9

I. INTRODUCTION the vicinal Abrikosov vorteXVAYV), is close enough to the
plane of the junction to substantially influence the Josephson
The physics of a Josephson junction in the presence gihase. Our approach is based on a macroscopic analysis in
Abrikosov vorticegAV) has in recent years received a greatwhich the critical current is evaluated as the maximum pos-
deal of attentiort® Some work on this problem has also sible current which the system can admit in absence of volt-
been carried out for the case of the strongly anisotropic highage. The situation is simple enough to allow for an analytic
T. cuprates which can for some purposes be modeled dseatment.

Josephson coupled systeffis!® Contrary to the case of short junctions in a LJJ, the pres-
In previous papers most of the interest was focused on thence of a VAV does in general modify the value of the
case of “short” Josephson junctions whose lengtts much  Josephson phase in the interior of the junction. This process
shorter that the Josephson penetration dagthit was found  in turn generates possible new paths for the transport current.
that in such systems the presence of AV's does in generahs a consequence the critical current of a LJJ in the presence

lead to quenching of the critical current. This behavior isof a VAV can in principleexceedhe value obtained for the
simply understood in terms of the deviations, caused by thenperturbed junction. This phenomenon can be simply un-
presence of the vortices in the interior of the junction, of thederstood by means of the following argument. While in a
Josephson phase difference from its optimum vah/@. short junction the Josephson current density is in general
More recently the interesting case of “long” Josephsonfinite throughout the plane of the junction, in a LJJ, if no
junctions (LJ) has been the subject of some theoretical a®AV’s are present, the Josephson current only flows near the
well as experimental stu®®?%*In this case, at variance edges of the junctiofsee Fig. 1 Accordingly the Josephson
with the situation encountered in “short” junctions, the con- phase is vanishingly small in the interior of such junction.
dition L>\; holds. For these systems a theory of the inter-The presence of a VAV can upset this situation, and lead to
action of one AV with a quasi-one-dimensional junction wasa finite Josephson phase inside the junction. This in turn
developed for a number of interesting geometrical arrangeamounts to the appearance of an extra contribugigrto the
ments in Refs. 8 and 9. In these papers the problem of theritical current.
critical current was not discussed. It is important to realize that the actual value of the criti-
A generalization of this picture also leads to the recentlycal current of a particular LJJ will not only depend on the
developed theory of inhomogeneous Josephson junttion. presence of AV's in the proximity of its plane, but also on
Some experimental work on the influence of AV’s on thethe presence and distribution of AV’s in the bulk of its elec-
critical current of LJJ's has been carried out in speciallytrodes. This is due to the fact that the density distribution of
prepared junctions based on Nb film$here, an unexpected AV’s in the electrodes also determines the flow pattern for
increase of the critical current was observed in the smalthe transport current. In general there will be several possible
magnetic field range, corresponding to the regime in whicrcurrent pattern configurations. In the present paper we will
only a small number of AV’s is in the proximity of the focus our attention on the two most relevant cases.
junction. Although a qualitative understanding of some as- If the AV lattice (ordered or otherwigesupports a bulk
pects of this phenomenon has been achiévedjate, a gen- current in both the electrodes then it is possible for an exter-
eral theoretical framework for the description of the physicalnal current to flow past the location of the VAV in the inte-
behavior of these systems is lacking. rior of the junction(see Fig. 3. As we will show this con-
In this paper we present a theory of the critical current offiguration leads to the largesl ..
a long junction when one pinned AV, henceforth referred as A second configuration is attained when no bulk path is
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lying on they,z plane (see Fig. ], in the absence of any
other external perturbations the critical current of the junc-
tion is given by the standard resilt

lc=2WN\;jo. 2

This current is carried within a layer of approximate thick-

X Ly ness\ ;. In this configuration the junction can be considered
as quasi-one-dimensional so that the relevant physical quan-
tity is here represented by the Josephson phgsg®. The
Josephson phase configuration corresponding to the current
of Eq. (2) is schematically shown at the bottom of Fig. 1.

If an Abrikosov vortex is located in the immediate vicin-

AN ity of the junction the properties of the junction are modified.

R The effects of a VAV on the Josephson phase can be quite

generally described by the fundamental equafidn:

0 O L o= o (x—xay), 0=x< &)
— — —Sin o= 6’ (X—Xay), < X<,
a2 )\3 ¢ AV

wherex,y is the location of the VAV, and} is the strength

> of the coupling which is here taken to be proportional to the
X first derivative of the delta function. This particular form of
G G ical or the iunction di d _the coupling is justified in the limit in which the range of the

FIG. 1. Geometrical arrangement for the junction discussed i, yay inction coupling is much smaller than the Josephson
the text. For simplicity only one edge of the junction is dlsplayed.Iength The situation is particularly simple for the case in
The thin lines represent schematically the transport current Whichwhich .the VAV is oriented alona the axis. In this case the
in absence of Abrikosov vortices, is carried within a layer of thick- g thg ’

strength of the coupling is proportional & 12av/L (|z,y |

ness\ ; from the edge. The magnetic field is here aligned along the>™ ) .
y direction. The corresponding spatial dependence of the Josephsebr‘?'ng thez coordinate of the VAY, while the range of the

v . . 7'8’17 . . .
phase is also shown. Notice that for clarity the spatial gap be- Interaction is of the order o, . For misaligned vorti-
tween the electrodes is greatly exaggerated as compaveglto €€, Or vortices threading only one side of the junction, the

situation is more complicated. In both cases however the
present for the external current. In this case the transpof@nge of the coupling is determined kY, the width of the
current reaches the location of the VAV from one of thejunction along they direction:

junction edgegsee Fig. 4 We will show that this situation ~_In view of the form of the coupling term appearing in Eq.
is particularly interesting in thadl . strongly depends on the (3), it is possible to solve this equation by making use of the
specific location of the VAV. solutions of the corresponding homogeneous problem:

The paper is organized as follows: In Sec. Il we provide a
description of the system at hand and present the theoretical de(x) 2[C r—COos¢(X)]
approach; in Sec. Il we discuss the case in which the trans- dx \2 ' S

port current flows past the VAV via the bulk of the elec-
trodes; in Sec. IV we analyze instead the case in which thgpject to the boundary conditiop(X,) — ©(Xay) = . In
transport current reaches the VAV through the edges of thgq "(4) the constants,  characterize the solution respec-
junction; finally Sec. V provides a discussion of our resultstive|y to the left and to the right of the locatiog,, of the

and the conclusions. vortex, and are determined by the appropriate physical
boundary conditions.
Il. GENERAL THEORY In the general case for the geometry of Fig. 1, in which

only one edge is considered, the total Josephson current can

We consider a Josephson junction of lenigttnuch larger then be shown to be given by

than the Josephson penetration depth

. I =W\ ;joV2[CL—cos ¢, (0)]+AlS9, (5)

Ny=T——, (o
J [—lGWejO)\L where

wherej, is the local critical current density of the junction

and )\ is the London penetration depth, and\; set the

length scales for variations of the magnetic field respectively

along thez and thex direction. The geometry of the situation represents the contribution associated with the discontinui-

is depicted in Fig. 1. ties ofdp(x)/dx stemming from the transport current in the
If the current lead is attached to one of the edges in sucfunction. From Eq(5) the critical current is readily found to

a way that the transport current is localized near the edgbe

de(x")  de(x;)
dx  dx |/’ ©)

AN =wAFjo2,
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FIG. 2. Josephson junction in the absence of transport current. A
vicinal Abrikosov vortex is present near the plane of the junction at K
Xav - The corresponding spatial dependence of the Josephson phase "
¢ is also shown. Here the vortex is taken with its axis alongythe
direction. The thin lines are a schematic for the current pattern F|G. 3. Same situation as in Fig. 2 but with a finite transport
which can be seen as a structure whose properties are a combinatigirrent. Here there is a bulk path for the current near the vicinal

of both an Abrikosov as well as a Josephson vortex. Since in the\prikosov vortex. The Josephson component of the vortex is shown
present contexh <\, the London penetration depth is here not tg pe displaced by the presence of the net current.

resolved.

X

_ and the plane of the junction. Accordingly the whole vortex
| =W\ 3jov2(1+Cyp)+AITS9 (7)  structure acquires a hybrid nature while the total flux associ-
ated with it is still quantized.
where the second term is the valuef(%s®) corresponding

to the critical configuration. ll. BULK TRANSPORT CURRENT CASE

For the sake of comparison, it is useful to describe briefly ] ] ) ]
here the situation in which no transport current is present \We consider here the case in which there is a path for the
(see Fig. 2 In this case if the VAV is sufficiently distant transport current through the bulk of the junction electrodes
from the edgedi.e., Xay>\;), by symmetryC, =Cgr=1, SO that a net current can flow through the plane of the junc-
and Eq.(4) leads to the following expressions fgiz, (x), ~ tion at the location of the VAV. This situation requires a

the value of the Josephson phase on the two sides of tH#hite density of AV's in the bulk of the electrodes. In what
VAV: 17 follows we focus our attention on the case in which only one

of the AV’s is close enough to the plane of the junction to
have a measurable effect. This situation is schematically dis-
) (8) played in Fig. 3.
Since at the location of the VAV the magnetic field is
discontinuous(on a distance of ordex,) it is possible to
The corresponding current density distribution is then giverchoose the value€, =Cr=1 in Eq. (3). In this case the

T (x— 4
PrL(X)=*4 arcta+e+<x XAV)/)\Jtang

by expressions for the Josephson phase on the two sides of the
VAV corresponding to the possible maximum current are
U\ |x—Xav] found to be
(X=Xay) sinh In tan§ B
()= —joro— ) oL (X)=4 arctarie "), (10
|X=Xavl cost Il ta ¥\ [X=Xavl
8 \; and
The behavior of the phase and the current density are sche- er(X)=4 arctar(le‘<x_x0)”‘3), (11

matically displayed in Fig. 2 for the case of an VAV whose ) )

axis is along they direction. Notice the phase discontinuity Where the parameter, determines the phase jump sty
of magnitudey atx,y . In this case, in fact, the phase varies @nd is found from the condition

over a length of the order of, .

It is interesting to mention here that when the VAV is
very close to the plane of the junction, the Josephson current
distribution can be seen as that of a Josephson vortex of the
same circulation sign of the VAV in such a way as to lead toThe behavior of the phase in this situation is displayed at the
a current density cancellation in the region between the VAVbottom of Fig. 3.

4

arctarje” *av—X0/\3) — grctarfe*av M) = 7 12
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FIG. 4. Same situation as in Fig. 2 but with a finite transport.
current. Here the transport current is only carried near the edges
the junction. In the particular case depicted, two complete Joseph—
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Clearly determining?A\, amounts to finding the critical cur-
rent for this case.

An equation for;AV (corresponding to the requirement of
a maximum currentcan be obtained by solving E¢l). We
find

de

L — P
\/2¢ Singay +4 smzz

where, in view of the conditiogy<1, in the lower limit of

the integral we have approximated, (Xay) With @ay -
Moreover, in Eq.(18) we have set the value of the phase at
the edge of the junction equal te+ 2nsr in order to achieve

a maximum current.

The corresponding expression fgr,, depends on the
value of the integen whose meaning is related to the num-
ber of Josephson vortices located in the junction between the
relevant edge and the location of the VAV. When the VAV

; (18)

A

Xav f77+277n

PAV

Is located near the edge in the sense thgtxay

<\;|In|¢|, thenn=0, and the corresponding expression for

son vortices are present between the active edge and the location 6v 1S, to logarithmic accuracy, given by

the vicinal Abrikosov vortex.

Clearly in this case the contributiafi . of the VAV to the
critical current of the junction only comes frotl (%, We
find here that such a contribution is given by

Xo— X X
8le=WA\;jo coshl(u>—coshl<ﬂ) , (13
A A
which, for small couplingy, finally reduces to
S8l =W ;jol . (14

It should be mentioned here that the quankity deter-

mined from Eq.(12), represents here the location of the cen-

pav=e"av M, (19

For n\|In|#d|<xay=<(n+1)\;,|In|¢|, on the other hand,
n=1 and, within the same approximation the average phase
at X,y Is given by

_ — |
@szexp[ _ Xav nA,| ”|</f||] 20

(n+1)A,

The general expression for the contributioh. to the
critical current for the present case is finally given by

5IC:W)\J|¢|Joe p{_XAv_m\J“nWH] (21)

2 (n+1)A;

ter of the virtual Josephson vortex associated with the con-

figuration of maximum current.

IV. SURFACE TRANSPORT CURRENT CASE

V. DISCUSSION

We have developed the theory of the critical current of a
long Josephson junction in the presence of a vicinal Abriko-

We study next the case in which no bulk path is availablegoy vortex(VAV ). We have found that, at variance with the

so that the transport current at the locatiq of the VAV
comes from the junction edgésee Fig. 4. In this case, at

case of a small junction, the presence of a VAV can lead to
an increase of the critical current in a LJJ. This result is in

variance with the situation discussed in the previous sectioragreement with the recent findings of Ref. 5.

the external magnetic field is continuouscat, and therefore
A1(9s9 vanishes. This allows us to choose

Cr=1 (19
so that
- Y —
C,=1+2 sin;singay , (16)

where we have defined the average phasein as ZAV
=[ oL (Xay) T ¢r(Xay)1/2. For smally these conditions sim-
ply read

CL: 1+ l// Sin;AV .

Cr=1, (17)

The increase in the critical current can be expressed in
terms of an extra contributiodl . directly associated with
the VAV. We find that the maximum value acquired bl
turns out to be proportional to the dimensionless coupling
strengthys between the vortex and the junction. This quantity
does in turn strongly depend on the type of Abrikosov vor-
tices present in the junctiofn®’

Our analysis also shows thék. is crucially dependent on
the boundary conditions obeyed by the transport current.
Two distinct situations have been identified and examined.

In the first, the transport current reaches the VAV via the
bulk of the electrodesFig. 3). This configuration corre-
sponds in general to the largest increase of the critical cur-
rent. In this casél . is given by Eq.(14). Therex, [a length
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determined in Eq(13)] can be physically interpreted as the the other hand, the situation is more complex and a very
location of the center of the virtual Josephson vortex associnteresting commensuration effect is found. In fact, while for
ated with the structur® It should be noticed that because of generic values okay, 8l is again exponentially small, in
the presence of the transport currexy, differs from X,y the commensurate casg, =n\;|In||, 8. [Eq. (20)] ac-
(compare Figs. 2 and)3 quires a value as large as that found in the case in which the
A more interesting physical scenario is however encountransport current has a bulk component. This last result sug-
tered when the transport current reaches the VAV only Vigyests that dynamical properties will be displayed by Joseph-
one of the edges of the junctidifrig. 4). In this case the g4, junctions of the type studied here, with respect to the
actual value acquired byl strongly depends on the dis- mqtion (thermal and otherwigeof vicinal Abrikosov vorti-
tance between the edge of the junction ang (Fig. 4). The  aq.
physics of the situation is determined in this case by the |i s interesting and important to generalize the present
penetratlon of Josephson vortices from the edge of the JUNGnalysis to study the problem in which a finite density of
tion from where the transport current flows to the VAV. As apikosov vortices are located in the immediate proximity of
shown in Eq.(18) the coupling strengthy determines the 5 |ong Josephson junction. Some work on this subject has

optimum separatiottin the sense of the maximum current 4jready been carried out. A detailed analysis of this problem
between the Josephson vortices. This separation is given Ryjj| pe presented elsewhet@.

the expression ;|In|y|. If the VAV is too close to the edge

in the sense that ;<x,y<\;|In|¢|, then no Josephson vor-

tex.W|II penetrate. If one Fild, it would be closer than ener- ACKNOWLEDGMENT

getically allowed to the virtual Josephson vortex present at
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