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Abstract

The popularity of image sharing on social
media reflects the important role visual con-
text plays in everyday conversation. In
this paper, we present a novel task, Image-
Grounded Conversations (IGC), in which
natural-sounding conversations are generated
about shared photographic images. We in-
vestigate this task using training data derived
from image-grounded conversations on so-
cial media and introduce a new dataset of
crowd-sourced conversations for benchmark-
ing progress. Experiments using deep neural
network models trained on social media data
show that the combination of visual and tex-
tual context can enhance the quality of gen-
erated conversational turns. In human evalu-
ation, a gap between human performance and
that of both neural and retrieval architectures
suggests that IGC presents an interesting chal-
lenge for vision and language research.

1 Introduction

Significant advances in image captioning (Chen et
al., 2015; Fang et al., 2014; Donahue et al., 2014;
Chen et al., 2015) have enabled much interdisci-
plinary research in vision and language, from video
transcription (Rohrbach et al., 2012; Venugopalan
et al., 2015), to answering questions about images
(Antol et al., 2015; Malinowski and Fritz, 2014), to
storytelling around series of photos (Huang et al.,
2016). Much of the focus has been on understand-
ing images in terms of either describing (captioning)

* This work was conducted at Microsoft.

User1: My son is ahead and surprised!
User2: Did he end up winning the race?
User1: Yes he won, he can’t believe it!

Figure 1: A naturally-occurring Image-Grounded
Conversation.

the image or answering questions about their con-
tent (Visual Question Answering (VQA)). In VQA,
questions are constrained to be answerable from the
image, i.e., they might be asked by someone unable
to see the image. Understanding an image, however,
involves more than captioning what is explicitly vis-
ible. Figure 1 illustrates a conversation between two
users on social media. The conversation is grounded
not only in visible objects (e.g., the boys, the bike)
but more importantly, in events and actions (e.g., the
race, winning) implied by the image. To humans
viewing the images, these may be the most interest-
ing and meaningful aspects. Visual Question Gener-
ation (VQG) (Mostafazadeh et al., 2016a) attempts
to address the challenge of how to generate ques-
tions that involve such commonsense understanding
of image content.

We extend VQG by introducing multimodal
conversational context when formulating questions
around images and training on naturally occurring
social media data. To this end, we introduce the task
of Image-Grounded Conversation (IGC), which re-
quires a system to generate questions and responses
in a natural-sounding conversation around a given
image. IGC thus falls on the continuum between
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chit-chat models and goal-directed conversation de-
signed to accomplish a task. Visual grounding in an
image constrains the topic while providing objects
or inferrable events of interest so that a system can
proactively drive the conversation forward. In this
paper we focus principally on generating questions
as conversation drivers.

This work thus draws together two threads of in-
vestigation that have hitherto remained largely un-
related: vision & language and data-driven con-
versation models. The contributions of this paper
are threefold: (1) We extend VQG by introducing
multimodal conversational context when formulat-
ing questions around images. To support this, we
introduce the task of Image-Grounded Conversa-
tion (IGC) via a crowd-sourced dataset of 4,222 6-
turn image-grounded conversations that will be pub-
licly released, and compare IGC with other vision
& language tasks by analyzing the characteristics
of our IGC datasets and the effect of multimodal
context (Section 4). (2) We investigate the appli-
cation of deep neural generation and retrieval ap-
proaches for question and response generation tasks
(Section 5), using models trained on 250K 3-turn
image- grounded conversations found on Twitter and
evaluated on our crowdsourced dataset. (3) Our ex-
periments suggest that the combination of visual and
textual context improves the quality of generated
conversational turns and that visual context is more
important than textual (Section 8). It is our hope
that this work will furnish useful baselines to others
working on multimodal conversation generation.

2 Related Work

2.1 Vision and Language

When trained on large datasets, such as the COCO
dataset (Lin et al., 2014), Visual features combined
with language modeling have shown good perfor-
mance both in image captioning (Devlin et al., 2015;
Fang et al., 2014; Donahue et al., 2014) and in Vi-
sual Question Answering (VQA) (Antol et al., 2015)
and (Malinowski and Fritz, 2014). In VQA, ques-
tions are constrained to be answerable from the im-
age, i.e., they might be asked by a person who cannot
see the image. Das et al. (2016) extend the VQA
scenario by collecting questions from people who
are shown only an automatically generated caption,
not the image itself, and demonstrate that system

performance is improved by treating questions as a
series in a dialog rather than separate QA pairs. This
form of dialog is best considered a simple one-sided
QA exchange, in which only humans can ask ques-
tions and the system can only provide answers. (Ray
et al., 2016) refine VQA by modeling whether the
image contains enough information to answer the
question; they observe that a model that can com-
ment on the answerability of the question is prefer-
able to a system that always answers.

Mostafazadeh et al. (2016a) introduce the task of
visual question generation (VQG), in which the sys-
tem itself outputs questions about the image. Ques-
tions are required to be ‘natural and engaging’, i.e.
a person would find them interesting to answer, and
may not be answerable from the image alone. In
this work, we build on Mostafazadeh et al. (2016a)
by introducing multimodal context when formulat-
ing questions and responses.

2.2 Data-Driven Conversational Modeling
This work is also closely linked to research on
data-driven conversation modeling. Ritter et al.
(2011) posed the response generation as a machine
translation task, learning conversations from paral-
lel message-response pairs found on social media.
Their work has been successfully extended with the
use of deep neural models (Sordoni et al., 2015;
Shang et al., 2015; Serban et al., 2015; Vinyals and
Le, 2015; Li et al., 2016a; Li et al., 2016b). Sor-
doni et al. (2015) introduce a context-sensitive neu-
ral language model that selects the most probable re-
sponse conditioned on the conversation history (i.e.,
a text-only context). In this paper, we extend the
contextual approach with the addition of multimodal
features to build models that are capable of asking
questions on topics of interests to a human, and that
might allow a conversational agent to proactively
drive the conversation forward.

3 Image-Grounded Conversations

For present purposes, we define the scope of IGC as
the following two consecutive conversational steps:
• Question Generation: Given a visual context I
and a textual context T (e.g., the first statement in
Figure 1), generate a coherent, natural question Q
about the image as the second utterance in the con-
versation. As seen in Figure 1, the question may not



be directly answerable from the image.
• Response Generation: Given a visual context I, a
textual context T, and a question Q, generate a coher-
ent, natural, response R to the question as the third
utterance in the conversation. The response may be
an answer, as expected in the VQA or Visual Di-
alog tasks, or it may be a comment, deflection, or
other kind of response. The present work does not
attempt time to generate responses from generated
questions, a task that we leave to future work.

4 Data Collection

4.1 IGCTwitter

Previous work in neural conversation modeling (Rit-
ter et al., 2010; Sordoni et al., 2015) has successfully
used Twitter as the source of millions of natural con-
versations. In recent years, uploading a photo along
with an accompanying tweet has become increas-
ingly popular: multimedia tweets have risen 15%
per year (as of June 2015, 28% total), with 42%
of retweets containing non-verbal context (Morris
et al., 2016). For training data, we sampled 250K
quadruples of {visual context, textual context, ques-
tion, response} tweet threads from a larger dataset
of 1.4 million, extracted from the Twitter Firehose
over a 3-year period beginning in May 2015 and
filtered to select just those conversations in which
the initial turn was associated with an image and
the second turn was a question. Regular expres-
sions were used to detect questions. To improve the
likelihood that the authors are experienced Twitter
conversationalists, we further limited extraction to
those exchanges where users had actively engaged
in at least 30 conversational exchanges during a 3-
month period. Twitter data is notoriously noisy;
we performed simple normalizations, and filtered
out tweets that contained mid-tweet hashtags, were
longer than 80 characters1 and contained URLs not
linking to the image. Table 1 presents example con-
versations from this dataset. Although the filters re-
sult in significantly higher quality of the extracted
conversations, issues remain. A random sample of
tweets suggests that about 46% of the Twitter con-
versations is affected by prior history between users,
making response generation particularly difficult. In
addition, the abundance of screen shots and non-

1Pilot studies showed that 80 character limit more effec-
tively retains one-sentence utterances that are to the point.

Figure 2: Comparison of V&L datasets.

Figure 3: Distribution of the number of tokens
across datasets.

photograph graphics is potentially a major source of
noise in extracting features for neural generation.

We use the IGCTwitter dataset as primary training
data. For validation and test sets during model build-
ing, we held out a set of Twitter conversations, in
which images and conversations had been vetted by
crowd workers to be contentful and free of the kinds
of image-related noise noted above.

4.2 IGCCrowd

To permit benchmarking of progress in the ICG
task, we constructed test and validation datasets with
more controlled parameters on the basis of the VQG
dataset (Mostafazadeh et al., 2016a). We designed a
crowdsourcing platform based on Turkserver (Mao
et al., 2012), which enables synchronous and real-
time interactions between crowd workers on Ama-
zon Mechanical Turk (Mturk). Multiple workers
wait in a virtual lobby to be paired with another
worker who will be their conversation partner. After
being paired, one of the users selects an image from
a large photo gallery, after which the two users enter
a chat window in which they have a short conversa-
tion about the selected image.

Images were sampled from the VQG dataset by
querying a search engine using event-centric query
terms that aggregated ‘event’ and ‘process’ hy-
ponyms in WordNet (Miller, 1995) and using fre-



Visual
Context
Textual
Context

Oh my gosh, i’m so buy-
ing this shirt.

I found a cawaii bird. Stocking up!! Only reason I come to car-
nival.

Question Where did you see this for
sale?

Are you going to collect
some feathers?

Ayee! what the prices
looking like?

Oh my God. How the hell
do you even eat that?

Response Midwest sports There are so many crows
here I’d be surprised if I
never found one.

Only like 10-20% off..I
think I’m gonna wait a lit-
tle longer.

They are the greatest
things ever chan. I could
eat 5!

Table 1: Example conversations in the IGCTwitter dataset.

Figure 4: Distributions of n-gram sequences in questions in VQG, IGCTwitter, and IGCCrowd.

IGCTwitter (train set)
# conversations = # images 250k
total # utterances 750k

IGCTwitter (val and test sets, split: 50% each)
# conversations = # images 4653
total # utterances 13,959

IGCCrowd (val and test sets, split: 40% and 60%)
# conversations = # images 4,222
total # utterances 25,332
average # utterances per conversation 4
# all workers participated 308
Max # conversations by one worker 20
Average work time per worker (min) 9.5
Median work time per worker (min) 10.0
IGCCrowd−multiref (val and test sets, split: 40% and 60%)
# additional references per question/response 5
total # multi-reference utterances 42,220

Table 2: Basic Dataset Statistics.

quent TimeBank events (Pustejovsky et al., 2003).
Table 3 shows three full conversations found in the
IGCCrowd dataset. As the examples show, eventful
images lead to conversations which are semantically
very rich and would seem to require commonsense
reasoning. Although the present work utilizes only
three conversational turns, we collected up to six ut-
terances per image for use in future work. To enable
multi-reference evaluation (Section 6), we crowd-
sourced four additional questions and responses for
the best IGCCrowd contexts and initial questions, as
ranked by human annotators. The IGCCrowd dataset
will be publicly released to the research community.

4.3 Dataset Characteristics
Table 2 summarizes basic dataset statistics. Fig-
ure 2 compares IGC questions with VQG and VQA
questions in terms of vocabulary size, percentage of



Visual
Context

Textual
Context

This wasn’t the way I imagined my
day starting.

I checked out the protest yesterday. A terrible storm destroyed my
house!

Question do you think this happened on the
highway?

Do you think America can ever
overcome its racial divide?

OH NO, what are you going to do?

Response Probably not, because I haven’t
driven anywhere except around
town recently.

I can only hope so. I will go live with my Dad until the
insurance company sorts it out.

Turn 4 I would have to hate to change the
tire on the highway.

Was the protest peaceful? it’s great that you can stay with
someone!

Turn 5 Agreed, I should be grateful that I
noticed it before I left my home.

Yes, it was, thankfully. Yes he will be happy to have me for
a while.

Turn 6 Call AAA, they will change it for
you!

I hope the voices of minorities will
be heard, and lead to changes in
policing.

That’s good to hear.

VQG
Question

What caused that tire to go flat? Where was the protest? What caused the building to fall
over?

Table 3: Example full conversations in our IGCCrowd dataset. For comparison, we also include VQG ques-
tions in which the image is the only context.

abstract terms, and inter-annotation textual similar-
ity. The COCO image captioning dataset is also in-
cluded as a point of reference. The IGCTwitter dataset
has by far the largest vocabulary size, making it a
more challenging dataset for training purposes. The
IGCCrowd and IGCTwitter, in order, have the highest
ratio of abstract to concrete terms. Broadly, abstract
terms refer to intangibles, such as concepts, quali-
ties, and feelings, whereas concrete terms refer to
things that can be experienced with the five senses.
It appears that conversational content may often in-
volve abstract concepts than either captions or ques-
tions targeting visible image content.

It has been shown that humans achieve greater
consensus on what a natural question to ask given
an image (the task of VQG) than on caption-
ing or asking a visually verifiable question (VQA)
(Mostafazadeh et al., 2016b). The right-most plot in
Figure 2 compares the inter-annotation textual simi-
larity of our IGCCrowd questions using a smoothed
BLEU metric (Lin and Och, 2004). IGCTwitter
is excluded from this analysis as the data is not
multireference. Contextually grounded questions
of IGCCrowd are competitive with VQG in inter-

annotation similarity. Figure 3 shows the distribu-
tion of the number of tokens per sentence. On aver-
age, the IGCTwitter dataset has longer sentences. Fig-
ure 4 visualizes the n-gram distribution (with n=6)
of questions across datasets. IGCTwitter is the most
diverse set, with the lighter-colored part of the circle
indicating sequences with less than 0.1% represen-
tation in the dataset.

The Effectiveness of Multimodal Context: The
task of IGC emphasizes modeling of not only visual
but also textual context. We presented human judges
with a random sample of 600 triplets of image, tex-
tual context, and question (I, T,Q) and asked them
to rate the effectiveness of the image and the textual
context, i.e., the degree to which the image or text
is required in order for the sample question to sound
natural. As Figure 5 shows, overall, both visual and
textual contexts are indeed highly effective, and un-
derstanding both would be required for the question
that was asked. We note that the crowd dataset more
often requires understanding of the textual context
than the Twitter set does.

Frame Semantic Analysis: The grounded con-
versations with questions in our datasets are full of



Figure 5: The effectiveness of textual and visual
context for asking questions.

stereotypical commonsense knowledge. To get a
better sense of the richness of our IGCCrowd dataset,
we manually annotated a random sample of 330
(I, T,Q) triplets in terms of Minsky’s Frames:2 We
annotated the FrameNet (Baker et al., 1998) frame
evoked by the image (IFN ), and then textual con-
text (TFN ). Then, for the asked question, we anno-
tated the frame slot3 (QFN−slot) associated with a
context frame (QFN ). These annotations can be ac-
cessed through https://goo.gl/MVyGzP. As
the example in Table 4 shows, the image in isolation
often does not evoke any uniquely contentful frame,
whereas the textual context frequently does. In only
14% of cases does IFN=TFN , which further sup-
ports the complementary effect of our multimodal
contexts. Moreover, QFN=IFN for 32% our anno-
tations, whereas QFN=TFN for 47% of the triplets,
again showing the effectiveness of textual context in
determining the question to be asked.

5 Models

We use the VGGNet architecture (Simonyan and
Zisserman, 2014) for computing deep convolu-
tional image features. We primarily use the 4096-
dimensional output of the last fully connected layer
(fc7) as the input to all the models sensitive to visual
context.

2Minsky defines ‘frame’ as follows: “When one encounters
a new situation, one selects from memory a structure called a
Frame” (Minsky, 1974). According to Minsky, a frame is a
commonsense knowledge representation data-structure for rep-
resenting stereotypical situations, such as a wedding ceremony.
Minsky further connects frames to the nature of questions:
“[AFrame] is a collection of questions to be asked about a
situation”. These questions can ask about the cause, intention,
or side-effects of a presented situation.

3For 17% of cases we could not find a corresponding
QFN−slot in FrameNet.

Visual Context Textual Con-
text

Question

Look at all this
food I ordered!

Where is that
from?

FN Food Request-Entity Supplier

Table 4: FrameNet (FN) annotation of an example
triplet.

5.1 Generation Models
Figure 6 overviews our three generation models.
The conversation shown is based on the first con-
versation in Table 3.

Visual Context Sensitive Model (V-Gen). Simi-
lar to Recurrent Neural Network (RNN) models for
image captioning (Devlin et al., 2015; Vinyals et al.,
2015), (V-Gen) transforms the image feature vector
to a 500-dimensional vector that serves as the initial
recurrent state to a 500-dimensional one-layer Gated
Recurrent Unit (GRU) which is the decoder module.
The output sentence is generated one word at a time
until the <EOS> (end-of-sentence) token is gener-
ated. We set the vocabulary size to 6000. Unknown
words are mapped to an <UNK> token during train-
ing, which is not allowed to be generated at decoding
time.

Textual Context Sensitive Model (T-Gen). This
is a neural Machine Translation-like model that
maps an input sequence to an output sequence
(Seq2Seq model (Cho et al., 2014; Sutskever et al.,
2014)) using an encoder and a decoder RNN. The
decoder module is like the model described above,
in this case the initial recurrent state being the 500-
dimensional encoding of the textual context. For
consistency, we use the same vocab size and num-
ber of layers as in the (V-Gen) model.

Visual & Textual Context Sensitive Model
(V&T-Gen). This model fully leverages both tex-
tual and visual contexts. The vision feature is trans-
formed to a 500-dimensional vector, and the textual
context is likewise encoded into a 500-dimensional
vector. The textual feature vector can be obtained
using either a bag-of-words (V&T.BOW-Gen) repre-
sentation, or an RNN (V&T.RNN-Gen), as depicted
in Figure 7. The textual feature vector is then con-
catenated to the vision vector and fed into a fully
connected (FC) feed forward neural network. As



Figure 6: Question generation using the Visual Context Sensitive Model (V-Gen), Textual Context Sensitive
Model (T-Gen), and the Visual & Textual Context Sensitive Model (V&T.BOW-Gen), respectively.

Figure 7: The visual & textual context sensitive
model with RNN encoding (V&T.RNN-Gen).

a result, we obtain a single 500-dimensional vec-
tor encoding both visual and textual context, which
then serves as the initial recurrent state of the de-
coder RNN.

In order to generate the response (the third ut-
terance in the conversation), we need to represent
the conversational turns in the textual context input.
There are various ways to represent conversational
history, including a bag of words model, or a con-
catenation of all textual utterances into one sentence
(Sordoni et al., 2015). For response generation, we
implement a more complex treatment in which ut-
terances are fed into an RNN one word at a time
(Figure 7) following their temporal order in the con-
versation. An <UTT> marker designates the end of
one utterance and the beginning of the next.

Decoding and Reranking. For all generation
models, at decoding time we generate the N-best
lists using left-to-right beam search with beam-size
25. We set the maximum number of tokens to 13
for the generated partial hypotheses. Any partial hy-
pothesis that reaches <EOS> token becomes a viable
full hypothesis for reranking. The first few hypothe-
ses on top of the N-best lists generated by Seq2Seq
models tend to be very generic,4 disregarding the in-
put context. In order to address this issue we rerank

4An example generic question is where is this? and a generic
response is I don’t know.

the N-best list using the following score function:

log p(h|C) + λ idf(h,D) + µ|h|+ κ V (h) (1)

where p(h|C) is the probability of the generated hy-
pothesis h given the context C. The function V
counts the number of verb POS in the hypothesis
and |h| denotes the number of tokens in the hypoth-
esis. The function idf is the inverse document fre-
quency, simply computing how common a hypothe-
sis is across all the generated N-best lists. Here D is
the set of all N-best lists and d is a specific N-best
list. We define idf(h, D) = log |D|

|{d∈D:h∈d}| , where
we set N=10 to cut short each N-best list. We op-
timize all the parameters of the scoring function to-
wards maximizing the smoothed-BLEU score (Lin
and Och, 2004) using the Pairwise Ranking Opti-
mization algorithm (Hopkins and May, 2011).

5.2 Retrieval Models
In addition to generation, we implemented two re-
trieval models customized for the tasks of question
and response generation. Work in vision and lan-
guage has demonstrated the effectiveness of retrieval
models, where one uses the annotation (e.g., cap-
tion) of a nearest neighbor in the training image set
to annotate a given test image (Mostafazadeh et al.,
2016a; Devlin et al., 2015; Hodosh et al., 2013; Or-
donez et al., 2011; Farhadi et al., 2010).

Visual Context Sensitive Model (V-Ret). This
model only uses the given image for retrieval. First,
we find a set of K nearest training images for the
given test image based on cosine similarity of the
fc7 vision feature vectors. Then we retrieve thoseK
annotations as our pool ofK candidates. Finally, we
compute the textual similarity among the questions
in the pool according to a Smoothed-BLEU (Lin and
Och, 2004) similarity score, then emit the sentence
with the highest similarity to the rest of the pool.
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The weather was amazing at this
baseball game.

I got in a car wreck today! My cousins at the family reunion.

Gold
Question

Nice, which team won? Did you get hurt? What is the name of your cousin
in the blue shirt?

V&T-Ret U at the game? or did someone take
that pic for you?

You driving that today? U had fun?

V-Gen Where are you? Who’s is that? Who’s that guy?
V&T-Gen Who’s winning? What happened? Where’s my invite?

R
es

po
ns

e
G

en
er

at
io

n Textual
Context

The weather was amazing at this
baseball game. <UTT> Nice, which
team won?

I got in a car wreck today!
<UTT> Did you get hurt?

My cousins at the family reunion.
<UTT> What is the name of your
cousin in the blue shirt?

Gold
Response

My team won this game. No it wasn’t too bad of a bang up. His name is Eric.

V&T-Ret 10 for me and 28 for my dad. Yes. lords cricket ground . beautiful.
V&T-Gen ding ding ding! Nah, I’m at home now. He’s not mine!

Table 5: Example baseline question and response generations on IGCCrowd test set. All the generation
models use beam search with reranking. In the textual context, <UTT> separates different utterances. The
generations in bold are acceptable utterances given the underlying context.

Visual & Textual Context Sensitive Model
(V&T-Ret). This model uses both visual and textual
contexts to retrieve a question or a response. A linear
combination of fc7 and word2vec feature vectors is
utilized for retrieving similar training instances.

6 Evaluation Setup

We provide both human and automatic evaluations
for our question and response generation tasks. We
crowdsource our human evaluation on an AMT-like
crowdsourcing system, asking seven crowd workers
to each rate the quality of candidate questions or re-
sponses on a three-point Likert-like scale, ranging
from 1 to 3 (the highest). In order to ensure a cali-
brated rating, we show the human judges all system
hypotheses for a particular test case at the same time.
System outputs were randomly ordered to prevent
judges from guessing which systems were which on
the basis of position. After collecting judgments, we
averaged the scores throughout the test set for each
model. We discarded as spammers all annotators
whose ratings varied from the mean by more than
2 standard deviations.

Although human evaluation is to be preferred, and
currently essential, in open-domain generation tasks
involving intrinsically diverse outputs, it is useful
to have an automatic metric for day-to-day evalua-
tion. For ease of replicability, we use the standard
Machine Translation metric, BLEU (Papineni et al.,
2002), which captures n-gram overlap between hy-
potheses and references. Results reported below em-
ploy BLEU with equal weights up to 4-grams.

7 Experimental Results

We experiment with all the models presented in
Section 5. For question generation, we use a vi-
sual & textual sensitive model that uses bag-of-
words (V&T.BOW-Gen) to represent the textual con-
text, which achieved better results. Earlier vi-
sion & language work such as VQA (Antol et al.,
2015) has shown that a bag-of-words baseline out-
performs LSTM-based models for representing tex-
tual input when visual features are available (Zhou
et al., 2015). In response generation, which needs
to account for textual input consisting of two turns,
we use the V&T.RNN-Gen model as the visual &



Human Generation (Greedy) Generation (Beam, best) Generation (Reranked, best) Retrieval
Gold Textual Visual V & T Textual Visual V & T VQG Textual Visual V & T Visual V & T

Q
. Twitter 2.26 1.39 2.13 1.57 1.06 2.35 1.90 1.49 1.03 1.72 1.71 1.71 1.68

Crowd 2.68 1.46 1.58 1.86 1.07 1.86 2.28 2.24 1.03 2.06 2.13 1.59 1.54

R
. Twitter 2.44 1.26 – 1.60 1.13 – 1.68 – 1.05 – 1.60 – 1.59

Crowd 2.75 1.24 – 1.40 1.12 – 1.49 – 1.04 – 1.44 – 1.48

Table 6: Human judgment results. The maximum score is 3. The Q. rows correspond to the question
generation task and theR. rows correspond to response generation. Per model, the human score is computed
by averaging across multiple images. The boldfaced numbers show the highest score among the systems
and underline signifies the overall highest score.

Generation Retrieval
Textual Visual V & T VQG Visual V & T

Q
. Twitter 0.94 2.06 2.13 0.37 0.61 0.75

Crowd 0.65 0.9 1.25 1.23 0.44 0.40
Crowdm 1.71 3.23 4.41 8.61 0.76 1.16

R
. Twitter 0.35 – 0.44 – – 0.24

Crowd 0.0 – 0.29 – – 0.15
Crowdm 1.34 – 1.57 – – 0.66

Table 7: Results of evaluating various models ac-
cording to automatic metric. Crowdm refers to the
multi-reference test set.

textual-sensitive model in the R. rows of tables 6 and
7. Since generating a response solely from the vi-
sual context is unlikely to be successful, we do not
use the V-Gen model in response generation.

Table 5 presents a few example generations by our
best performing systems. Tables 6 and 7 provide the
human and automatic evaluation results for all of our
models. All models are trained on IGCTwitter (train-
ing set), except for the model labeled VQG, which is
the same (V-Gen) model, but trained on 7,500 ques-
tions from the VQG dataset (Mostafazadeh et al.,
2016b). All systems have been tuned/tested on the
corresponding IGC dataset. As a point of reference,
we include the gold standard human reference in the
human evaluations.

In human evaluation, the model that encodes both
visual and textual context outperforms others, ex-
cept for the question generation on Twitter in which
the visual model wins. It appears the visual con-
text is more effective in Twitter dataset, as we have
shown in Section 4. We note that human judges
preferred the top generation in the n-best list over
the reranked best, likely due to tradeoff between a
safe and generic utterance and a riskier but content-
ful one. As shown in Table 6, our best performing

generation system scores higher than human on the
Twitter test set for question generation, but other-
wise the human gold references in our Crowd set are
consistently favored throughout the table. We take
this as evidence that IGCCrowd provides a robust and
challenging test set for benchmarking the progress
on the task.

BLEU scores are low, as is characteristic for lan-
guage tasks with intrinsically diverse outputs (Li et
al., 2016b; Li et al., 2016a). Automatic evaluation
in Table 7 provides confirmation that the IGCCrowd
test set is more challenging to models that have
been trained on IGCTwitter. On BLEU, the multi-
modal V&T model outperforms all the other models
across test sets, except for the multireference test set
(Crowdm in Table 7), in which the VQG model does
significantly better. We attribute this to differences
in the Twitter and our Crowd datasets, as discussed
in Section 4.

Overall, in both automatic and human evaluation,
our question generation models are more successful
than response generation. More sophisticated mod-
els and larger training data sets may overcome this
disparity in the future.

8 Conclusions

We have introduced a new task of multimodal
image-grounded conversation, in which, when given
an image and a natural language text, the system
must generate meaningful conversation turns. To
support this task, we are releasing to the research
community a crowdsourced dataset of 4,222 high-
quality conversations about eventful images with up
to 6 turns each, and multiple references.

Our experiments provide evidence that capturing
multimodal context improves the quality of genera-
tion. The gap between the performances of our best



models and humans opens opportunities further re-
search in the continuum from casual conversation to
more task- and topic-oriented vision and language
dialog. We expect also that addition of other kinds
of grounding may further improve performance of
systems.
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