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EXISTENCE OF BEST PROXIMITY POINTS: GLOBAL

OPTIMAL APPROXIMATE SOLUTION

HEMANT KUMAR NASHINE

Abstract. Given non-empty subsets A and B of a metric space, let
S : A → B and T : A → B be non-self mappings. Taking into account
the fact that, given any element x in A, the distance between x and
Sx, and the distance between x and Tx are at least d(A,B), a common
best proximity point theorem affirms global minimum of both functions
x → d(x, Sx) and x → d(x, Tx) by imposing a common approximate
solution of the equations Sx = x and Tx = x to satisfy the constraint
that d(x, Sx) = d(x, Tx) = d(A,B). In this work we introduce a new no-
tion of proximally dominating type mappings and derive a common best
proximity point theorem for proximally commuting non-self mappings,
thereby producing common optimal approximate solutions of certain si-
multaneous fixed point equations when there is no common solution. We
furnish suitable examples to demonstrate the validity of the hypotheses
of our results.

1. Introduction

Many problems of physical world are modelled in the form of operator
equations. The fixed point equation Tx = x is one among them. Fixed point
theory constitutes an important tool in dealing with such situations. A very
powerful tool in solving existence problems in many branches of analysis
is the Banach fixed point theorem [7] (or Banach’s contraction principle),
which assures that every contraction from a complete metric space into itself
has a unique fixed point. Recall that a self-mapping T : X → X, where
(X, d) is a metric space, is said to be a contraction if there exists 0 < k < 1
such that for all x, y ∈ X,

d(Tx, Ty) ≤ kd(x, y). (1)
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In case, the fixed point equation does not possess a solution, the “Best appro-
ximation pair theorems” and “Best proximity pair theorems” are explored
as alternative.

A best approximation theorem provides sufficient conditions to ascertain
the existence of an element x0, known as best approximant, such that

d(x0, Tx0) = d(Tx0, A)

where d(X,Y ) = inf{p(x − y) : x ∈ X and y ∈ Y } for any non-empty
subsets X and Y of topological vector space E with continuous seminorm p
and T is mapping with domain A. An important contribution in this regards
was made by Ky Fan [10] as below:
Theorem 1. [10]. Let C be a non-empty compact convex subset of Haus-
dorff locally convex topological vector space X with a continuous semi-norm
p and T : C → X is a single valued continuous map, then there exists an
element x0, called a best approximant, in C such that

p(x0 − Tx0) = dp(Tx0, C) = inf{p(Tx0 − y) : y ∈ C}. (2)

Subsequently, this result has been generalized in various directions by sev-
eral authors, including Prolla [21], Reich [22] and Sehgal and Singh [31, 32].
Interestingly, Vetrivel et al. [34] have furnished the unification of all such
best approximation theorems. Even though the best approximation theo-
rems are congenial for providing an approximate solution to the equation
Tx = x, such results may fail to produce an approximate solution that is op-
timal. On the contrary, best proximity point theorems yield an approximate
solution that is optimal. Indeed, a best proximity point theorem establishes
sufficient conditions for the existence of an element x such that the error
d(x, Tx) is minimum. Essentially, a best proximity point theorem is de-
voted to the global minimization of the real valued function x → d(x, Tx),
which quantifies the error involved for an approximate solution of the equa-
tion Tx = x. In light of the fact that, for a non-self mapping T : A → B,
d(x, Tx) is at least d(A,B) for all x in A and y in B, a best proximity point
theorem accomplishes global minimum of the error d(x, Tx) by postulating
an approximate solution x of the equation Tx = x to satisfy the condition
that d(x, Tx) = d(A,B). Such an optimal approximate solution of the equa-
tion Tx = x is designated as a best proximity point of the non-self mapping
T : A → B. Another interesting aspect of best proximity point theorems is
that they evolve as a natural generalization of fixed point theorems, since a
best proximity point becomes a fixed point if the underlying mapping is a
self-mapping.

A best proximity point theorem for contraction has been elicited in [27].
Anuradha and Veeramani [6] have investigated best proximity point the-
orems for proximal pointwise contraction mappings. Also, best proximity
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point theorems for many variants of contractions can be found in [1, 4, 9]
and [14]. A best proximity point theorem for contractive mappings has been
established in [26]. Anthony Eldred et al. [4] have examined a best proximity
point theorem for relatively non-expansive mappings, a different approach
to which has been considered in [30]. For detail see also [2]- [37] and their
references therein.

Let us suppose that A and B are nonempty subsets of a metric space. Let
S : A→ B and T : A→ B be non-self mappings. Considering the fact S and
T are non-self-mappings, it is feasible that the equations Sx = x and Tx = x
are likely to have no common solution, known as a common fixed point of
the mappings S and T. In fact, common best proximity point theorems
scrutinize the existence of such optimal approximate solutions, known as
common best proximity points, to the equations Sx and Tx in the event that
the equations have no common solution. As a matter of fact, common best
proximity point theorems inspect the existence of such optimal approximate
solutions, called common best proximity points, to the equations Sx = x
and Tx = x in the case that there is no common solution. It is highlighted
that the real valued functions x → d(x, Sx) and x → d(x, Tx) assess the
degree of the error involved for any common approximate solution of the
equations Sx = x and Tx = x. Considering the fact that, given any element
x in A, the distance between x and Sx, and the distance between x and Tx
are at least d(A,B), a common best proximity point theorem affirms global
minimum of both functions x → d(x, Sx) and x → d(x, Tx) by imposing
a common approximate solution of the equations Sx = x and Tx = x to
satisfy the constraint that d(x, Sx) = d(x, Tx) = d(A,B).

The purpose of this paper is to furnish a solution to the problem that is
more generic than the one just detailed. In this paper we introduce a general-
ized proximally dominating mappings for a pair of non-self maps and discuss
the existence and uniqueness of a common best proximity point theorem pre-
sented in this paper assures a common optimal solution at which both the
real-valued multiobjective functions x → d(x, Tx) and x → d(x, Sx) fur-
nishing common optimal approximate solutions of simultaneous fixed point
equations Sx = x and Tx = x in the circumstance that there is no exact
common solution, where S : A → B and T : A → B are proximally com-
muting non-self mappings. We furnish suitable examples to demonstrate
the validity of the hypotheses of our results. Our results are extension of
the results of Basha [29]. Further, it subsumes a common fixed point theo-
rem, due to Banach [7], Chatterjea [8], Hardy and Rogers [11], Jungck [12],
Kannan [13] for commuting self-mappings.
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2. Preliminaries

Let A and B be two nonempty subsets of a metric space. This section
recalls the following notation and notions that will be used in the subsequent
section:

d(A,B) := inf{d(x, y) : x ∈ A and y ∈ B}
A0 := {x ∈ A : d(x, y) = d(A,B) for some y ∈ B}
B0 := {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

In the framework of normed linear spaces, if A and B are closed subsets
satisfying the condition that d(A,B) > 0, then it can be ascertained that
A0 and B0 are contained in the boundaries of A and B respectively [24].
Furthermore, if A intersects B, then A∩B is contained in both A0 and B0.

Definition 1. An element x∗ in A is said to be a common best proximity
point of the non-self mappings S : A→ B and T : A→ B if it satisfies the
condition that d(x∗, Sx∗) = d(x∗, Tx∗) = d(A,B).

It should be observed that a common best proximity point is an element
at which the multi objective functions x→ d(x, Sx) and x→ d(x, Tx) attain
common global minimum, since d(x, Sx) ≥ d(A,B) and d(x, Tx) ≥ d(A,B)
for all x.

Definition 2. A is said to be approximatively compact with respect to B
if every sequence {xn} of A satisfying the condition that d(y, xn)→ d(y,A)
for some y in B has a convergent subsequence.

It is evident that every set is approximatively compact with respect to
itself. Also, every compact set is approximatively compact with respect to
any set. Further, it can be seen that ifA is compact andB is approximatively
compact with respect to A, then the sets A0 and B0 are non-empty.
Definition 3. [29] The mappings S : A → B and T : A → B are said to
commute proximally if they satisfy the condition that

[d(u, Sx) = d(v, Tx) = d(A,B)] ⇒ Sv = Tu

for all x, u and v in A.

It is easy to observe that proximal commutativity of self-mappings is just
commutativity of the mappings.
Definition 4. [29] A mapping T : A → B is said to dominate a mapping
S : A→ B proximally if there exists a nonnegative number α < 1 such that

d(u1, Sx1) = d(u2, Sx2) = d(A,B) and d(v1, Tx1) = d(v2, Tx2) = d(A,B)

imply the inequality that

d(u1, u2) ≤ αd(v1, v2)
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for all u1, u2, v1, v2, x1, x2 in A.

Next we introduce a generalized proximally dominating mappings for a
pair of non-self maps.

Definition 5. A mapping T : A → B is said to dominate a mapping
S : A → B generalized proximally of first kind if there exist non-negative
numbers α, β, γ with α+ 2β + 2γ < 1 such that

d(u1, Sx1) = d(u2, Sx2) = d(A,B) and d(v1, Tx1) = d(v2, Tx2) = d(A,B)

imply the inequality that

d(u1, u2) ≤ αd(v1, v2) +β[d(v1, u1) +d(v2, u2)] +γ[d(v1, u2) +d(v2, u1)] (3)

for all u1, u2, v1, v2, x1, x2 in A.

If β = 0 = γ, then T dominates S proximally.
If T and S are self-mappings on A, then the requirement in the preceding

definition reduces to the condition that

d(Sx1, Sx2) ≤ αd(Tx1, Tx2) + β[d(Tx1, Sx1) + d(Tx2, Sx2)]

+ γ[d(Tx1, Sx2) + d(Tx2, Sx1)].

The following example illustrates the notion of generalized proximally
dominating mappings:

Example 1. Consider R2 with Euclidean metric. Let

A := {(x, y) : x ≤ 0} and B := {(x, y) : x ≥ 1}.
Let S : A→ B and T : A→ B be defined as

S(x, y) =
(
−3x,

y

5

)
T (x, y) =

(
−5x,

y

3

)
.

Then, d(A,B) = 1, A0 = {(0, y) : y ∈ R} and B0 = {(1, y) : y ∈ R}. In
addition, T dominates S generalized proximally of first kind for α = 3

5 and

β = 1
12 = γ.

3. Common best proximity point for generalized proximally
dominating mappings

In this section, we prove existence of a common best proximity point
for generalized proximally dominating mappings and proximally commuting
non-self mappings.

Theorem 2. Let A and B be non-empty closed subsets of a complete met-
ric space. Also, assume that A0 and B0 are non-empty. Let the non-self
mappings S : A→ B and T : A→ B satisfy the following conditions:
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(a) T dominates S generalized proximally of first kind;
(b) S and T are continuous;
(c) S and T commute proximally;
(d) S(A0) ⊆ B0;
(e) S(A0) ⊆ T (A0).

Then, there exists an unique element x ∈ A such that

d(x, Tx) = d(A,B), d(x, Sx) = d(A,B). (4)

Proof. Let x0 be an element in A0. The fact that S(A0) is contained in T (A0)
guarantees the existence of an element x1 in A0 such that Sx0 = Tx1. Again,
since S(A0) is contained in T (A0), there exists an element x2 in A0 satisfying
the condition that Sx1 = Tx2. This process can be continued. Proceeding
inductively, it is easy to assert that there exists a sequence {xn} of elements
in A0 such that

Sxn−1 = Txn

for all positive integral values of n, because of the fact S(A0) is contained
in T (A0).

On account of the fact that S(A0) is contained in B0, there exists an
element un in A0 such that

d(Sxn, un) = d(A,B)

for all positive integral values of n.
Further, it follows from the choice of xn and un that

d(Sxn+1, un+1) = d(A,B),

d(Txn, un−1) = d(A,B),

d(Txn+1, un−1) = d(A,B).

By the generalized proximally dominating property, we have

d(un, un+1) ≤ αd(un−1, un) + β[d(un−1, un) + d(un, un+1)]

+ γd(un−1, un+1)

≤ αd(un−1, un) + β[d(un−1, un) + d(un, un+1)]

+ γ[d(un−1, un) + d(un, un+1)].

This implies that

d(un, un+1) ≤ kd(un−1, un)

where the constant k = α+β+γ
1−β−γ is strictly less than 1. It follows that {un}

is a Cauchy sequence and hence converges to some u in A. Because of the
fact that the mappings S and T are commuting proximally,

Tun = Sun−1
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for every positive integer n.
Therefore, the continuity of the mappings S and T ensures that Su and

Tu are identical.
In view of the fact that S(A0) is contained in B0, there exists an element

x in A such that

d(x, Su) = d(A,B), d(x, Tu) = d(A,B).

As S and T commute proximally, Sx and Tx are identical.
Then since S(A0) is contained in B0, there exists an element z in A such

that
d(z, Sx) = d(A,B), d(z, Tx) = d(A,B).

From (3), we have

d(x, z) ≤ (α+ 2γ)d(x, z),

which implies that x = z, that is, x and z are identical.
Thus, it follows that

d(x, Tx) = d(z, Tx) = d(A,B),

d(x, Sx) = d(z, Sx) = d(A,B).

Therefore, x is a common best proximity point of the nonself-mappings S
and T .

Suppose that x∗ is another common best proximity point of the mappings
S and T so that

d(x∗, Sx∗) = d(A,B)

d(x∗, Tx∗) = d(A,B).

From (3), we have

d(x, x∗) ≤ (α+ 2γ)d(x, x∗),

which in turn implies that x = x∗. This completes the proof of the theorem.
�

The following example demonstrates the validity of the Theorem 2:

Example 2. Consider R2 with Euclidean metric. Let

A := {(x, y) : x ≤ 0} and B := {(x, y) : x ≥ 1}.
Let S : A→ B and T : A→ B be defined as

S(x, y) =
(
−4x,

y

5

)
T (x, y) =

(
−5x,

y

4

)
.

Then, d(A,B) = 1, A0 = {(0, y) : y ∈ R} and B0 = {(1, y) : y ∈ R}.
Moreover, T dominate S generalized proximally of first kind for α = 4

5 and
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β = 1
30 = γ with α+2β+2γ < 1. It is easy to see that the other hypotheses

of Theorem 2 are satisfied. Furthermore, (0, 0) is a unique common best
proximity point of S and T .

4. Consequences

In this section, we derive some fixed point theorems from our main result
given by Theorem 2.

Corollary 1. Let A and B be non-empty closed subsets of a complete met-
ric space. Also, assume that A0 and B0 are non-empty. Let the non-self
mappings S : A→ B and T : A→ B satisfy the following conditions:

(a)’ T dominates S proximally such that

d(u1, u2) ≤ αd(v1, v2) + β[d(v1, u1) + d(v2, u2)]

for all u1, u2, v1, v2, x1, x2 in A, where α, β are non-negative numbers
with α+ 2β < 1;

(b)’ S and T are continuous;
(c)’ S and T commute proximally;
(d)’ S(A0) ⊆ B0;
(e)’ S(A0) ⊆ T (A0).

Then, there exists an unique element x ∈ A such that

d(x, Tx) = d(A,B), d(x, Sx) = d(A,B).

Corollary 2. Let A and B be non-empty closed subsets of a complete met-
ric space. Also, assume that A0 and B0 are non-empty. Let the non-self
mappings S : A→ B and T : A→ B satisfy the following conditions:

(a)” T dominates S proximally such that

d(u1, u2) ≤ αd(v1, v2) + γ[d(v1, u2) + d(v2, u1)]

for all u1, u2, v1, v2, x1, x2 in A, where α, γ are non-negative numbers
with α+ 2γ < 1;

(b)” S and T are continuous;
(c)” S and T commute proximally;
(d)” S(A0) ⊆ B0;
(e)” S(A0) ⊆ T (A0).

Then, there exists an unique element x ∈ A such that

d(x, Tx) = d(A,B), d(x, Sx) = d(A,B).

Remark 1. Corollary 1 and 2 extend and generalizes the Theorem 3.1 [29].

Corollary 3. Let X be a complete metric space. Let the self mappings
S : X → X and T : X → X satisfy the following conditions:
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(a)”’ there are non-negative real numbers α, β with α+ 2β < 1 such that

d(Sx1, Sx2) ≤ αd(Tx1, Tx2) + β[d(Tx1, Sx1) + d(Tx2, Sx2)]

+ γ[d(Tx1, Sx2) + d(Tx2, Sx1)] (5)

for all x1 and x2 in X;
(b)”’ T is continuous;
(c)”’ S and T commute;
(d)”’ S(X) ⊆ T (X).

Then, the mappings S and T have a unique common fixed point.

Remark 2. Corollary 3 extends and generalizes many existing fixed point
theorems in the literature [7, 8, 11, 12, 13].

References

[1] M. A. Al-Thagafi and N. Shahzad, Convergence and existence results for best proxim-
ity points, Nonlinear Anal., 70 (10) (2009), 3665-3671, doi:10.1016/j.na.2008.07.022.

[2] M.A. Al-Thagafi and N. Shahzad, Best proximity pairs and equilibrium pairs for
Kakutani multimaps, Nonlinear Anal., 70 (3), (2009), 1209-1216, doi:10.1016/
j.na.2008.02.004.

[3] M. A. Al-Thagafi and N. Shahzad, Best proximity sets and equilibrium pairs for a
finite family of multimaps, Fixed Point Theory Appl., (2008), page 10, (Article ID
457069).

[4] A. Anthony Eldred and P. L. Veeramani, Existence and convergence of best proximity
points, J. Math. Anal. Appl., 323 (2006), 1001-1006, doi:10.1016/j.jmaa.2005.10.081.

[5] A. Anthony Eldred, V. A. Kirk and P. Veeramani, Proximinal normal structu-
re and relatively nonexpanisve mappings, Studia Math., 171 (3) (2005), 283-293,
doi:10.4064/sm171-3-5.

[6] J. Anuradha and P. Veeramani, Proximal pointwise contraction, Topol. Appl., 156
(18)(2009), 2942-2948, doi:10.1016/j. topol.2009.01.017.

[7] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux
equations itegrales, Fund. Math., 3 (1922), 133–181.

[8] S. K. Chatterjea, Fixed point theorems, C.R. Acad. Bulgare Sci., 25 (1972), 727–730.
[9] C. Di Bari, T. Suzuki and C. Vetro, Best proximity points for cyclic Meir-Keeler con-

tractions, Nonlinear Anal., 69 (11) (2008), 3790-3794, doi:10.1016/j.na.2007.10.014.
[10] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 112 (1969),

234-240, doi:10.1007/BF01110225.
[11] G. E. Hardy and T. D. Rogers, A Generalization of a fixed point theorem of Reich,

Canad. Math. Bull., 16 (2) (1973), 201–206.
[12] G. Jungck, Commuting mappings and fixed points, Am. Math. Mon., 83 (1976), 261-

263.
[13] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 10 (1968), 71–76.
[14] S. Karpagam and S. Agrawal, Best proximity point theorems for p-cyclic Meir-Keeler

contractions, Fixed Point Theory Appl., 9 (2009), Article ID 197308.
[15] W. K. Kim, S. Kum and K. H. Lee, On general best proximity pairs and equilib-

rium pairs in free abstract economies, Nonlinear Anal., 68 (8) (2008), 2216–2227,
doi:10.1016/j.na.2007.01.057.



240 HEMANT KUMAR NASHINE

[16] W. A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity
pair theorems, Numer. Funct. Anal. Optim., 24 (2003), 851–862, doi:10.1081/NFA-
120026380.

[17] H. K. Nashine and C. L. Dewangan, An application of KKM-map principle to best
proximity pair, Varahmihir J. Math. Sci., 6 (1) (2006), 49-55.

[18] H. K. Nashine and C. L. Dewangan, Existence results on best proximity pair for
multifunction, Afr. Diaspora J. Math., 5 (1) (2007), 71–81.

[19] H. K. Nashine, Existence results on best proximity pair in metrizable topological vector
spaces, Nonlinear Funct. Anal. Appl., 13 (4) (2008), 587–596.

[20] H. K. Nashine, C. L. Dewangan and Z. D. Mitrović, Best proximity pair theorem in
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