
Impact of Web 2.0 and Cloud Computing Platform on Software Engineering
Radha Guha

Dept. of Engineering Mathematics and Science
Texas A&M International University, TX 78041

Radha.guha@tamiu.edu

David Al-Dabass
School of Computing and Informatics
Nottingham Trent Univ., NG11 8NS

David.al-dabass@ntu.ac.uk

Abstract— Current era of Web 2.0 is enabling new
business models for using the semantic web. One such
business model is leasing out computing platform of
hardware and software over the internet to the tenants
and is dubbed as Cloud Computing. The anticipated
future trend of computing is believed to be this cloud
computing as it promises a lot of benefits like no capital
expenditure, speed of application deployment, shorter
time to market, lower cost of operation and easier
maintenance for the tenants. This paper analyses how
cloud computing on the background of Web 2.0 is going
to impact the software engineering process to develop
quality software. As the cloud provider is an external
entity or third party, how difficult will be the interaction
with them? How to separate the roles of SW engineers
and cloud providers? SW engineering should include
framework activities to leverage all the benefits of cloud
computing systematically and strategically. This paper
extends the traditional agile process model named
Extreme Programming (XP) and integrates interaction
with the cloud provider to facilitate acceptance of cloud
computing.
Keywords- Web 2.0; Cloud Computing; Software
Engineering; Agile Process Model

I. INTRODUCTION

In the era of semantic web or Web 2.0 [1], [2], [3], [4]
emergence of several web technologies are enabling
innovative use of the web. In Web 2.0, metadata written in
XML (extensible markup language) describing the web
content can be read and processed by the computers
automatically. Other XML based web protocols like service
oriented architecture (SOA), simple object access protocol
(SOAP), web service description language (WSDL) and
universal description, discovery and integration (UDDI) of
web are capable of integrating applications developed on
heterogeneous computing platforms, operating systems and
with varities of programming languages. With this
capability of data integration and data exchange between
heterogeneous applications, new business models of
application deployment and delivery over the internet have
been conceptualized. Applications can be hosted on the web
and accessed via the internet by geographically dispersed
clients. These interoperable applications hosted on the web
for use by multiple clients remotely are called Web Services
which can even be discovered on the fly with no prior
knowledge of their existence. As the same service will be
catered to multiple clients they can even be customized
according to clients’ likes. Application architecture and

delivery architecture will be two separate layers for
providing this flexibility.

Applications like Hadoop and Mashup [5], [6], which
combine data and functionalities from multiple external
sources hosted as web services are producing valuable
aggregate new information and creating new web services.
Hadoop and Mashup can support high performance
computing involving distributed file system with petabytes
of data.

In another business model, the application development
infrastructure like processors, storage, memory, operating
system and application development tools and software can
all be delivered as utility to the clients over the internet.
This is what is dubbed as cloud computing where a huge
pool of physical resources hosted on the web will be shared
by multiple clients as and when required. Because of the
many benefits of this business model like no capital
expenditure, speed of application deployment, shorter time
to market, lower cost of operation and easier maintenance of
resources for the clients, cloud computing may be the
prevalent computing platform of the future.

This paper analyzes impact of Web 2.0 and cloud
computing platform on software engineering process to
develop quality software (SW). Economies of all developed
countries depend on quality SW and SW cost is more than
hardware (HW) cost. Moreover because of the involvement
of many parties, SW development is inherently a complex
process and most of the SW project fails because of lack of
communication and coordination between all the parties
involved.

The main thesis of this paper is that the prevalent SW
process models should involve the cloud provider in every
steps of decision making in software development life cycle
to make the software project a success. In Section II,
background literature on cloud computing and software
engineering is surveyed. How the software developer is
coping with the changing trend of application development
with Web 2.0 protocols and application deployment over the
web is reported. In Section III, challenges of cloud
computing platform for software engineering is analyzed. In
Section IV and V, an agile process model which
incorporates interaction with cloud provider is proposed and
analyzed. Section VI concludes the paper.

II. LITERATURE SURVEY

A. Cloud Computing
Cloud computing [7], [8], [9] is the future trend of

computing. Cloud computing is the idea of renting out

2010 International Symposium on Electronic System Design

978-0-7695-4294-2/10 $26.00 © 2010 IEEE

DOI 10.1109/ISED.2010.48

213

server, storage, network, software technologies, tools and
applications as utility or service over the internet as and
when required in contrast to owning them permanently.

Depending on what resources are shared and delivered to
the customers, there are 4 types of cloud computing. In
cloud computing terminology when hardware such as
processors, storage and network are delivered as a service it
is called infrastructure as a service (IaaS). Examples of IaaS
are Amazon’s Elastic Cloud (EC2) and Simple Storage
Service (S3). When programming platforms and tools like
Java, Python, .Net, MySQL and APIs are delivered as a
service it is called platform as a service (PaaS). When
applications are delivered as a service it is called software as
a service (SaaS).

Figure 1: Cloud Computing Platform

Depending on the amount of self governance or control on
resources by the tenant there are 3 types of cloud like
internal or private cloud, external or public cloud and hybrid
cloud (Figure 1). In private cloud an enterprise owns all the
resources on-site and shares them between multiple
applications. In public cloud the enterprise will rent the
resources from an off- site cloud provider and these
resources will be shared between multiple tenants. Hybrid
cloud is in the middle where an enterprise owns some
resources and rents some other resources from a third party.

Cloud computing is based on service oriented architecture
(SOA) of Web 2.0 and virtualization [10], [11] of hardware
and software resources (Figure 2). Because of the
virtualization technique, physical resources can be linked
dynamically to different applications running on different
operating systems. Because of the virtualization technique,
physical resources can be shared amongst all users and there
is efficient resource management which can provide higher
resource utilization and on-demand scalability. Increased
resource utilization brings down the cost of floor space and
cost of power and cooling. Power savings is the most
attractive feature of cloud computing and is the renewed
initiative of environment friendly green computing or green
IT movement of today.

Figure 2: Virtual Infrastructure [10]

Cloud computing not only reduces cost of usage of
resources but also reduces maintenance cost of resources for
the users.

Cloud computing can support on-demand scalability. An
application with occasional demand for higher resources
will pay for the higher resources only the time it is used
instead of leasing all the resources from the very beginning
in anticipation of future need. This fine-grained (hourly)
pay-by-use model of cloud computing is going to be very
attractive to the customers.

There are many other benefits of cloud computing. Cloud
infrastructure can support multiple protocols and change in
business model for applications more rapidly. It can also
handle increased performance requirements like service
scaling, response time and availability of the application, as
the cloud infrastructure is a huge pool of resources like
servers, storage and network and provide elasticity of
growth to the end users.

With this business model of catering multiple clients with
shared resources, world’s leading IT companies like
Microsoft, Google, IBM, SalesForce, HP and Amazon are
deploying clouds [Figure 1]. Web services, applications like
Hadoop and Mashup can run on these clouds. Because of all
its advantages, this cloud computing model may be the
prevalent computing model of the future.

In the next sections we first delve into software
development methodologies to develop quality software
products in traditional environment not involving web
services and cloud computing platform. We then analyze the
challenges of the current business model of application
development and deployment involving web 2.0 and cloud
computing platform. Finally we suggest methodologies to
develop quality SW that will push forward advances of the
cloud computing platform.

B. Software Engineering
Over the last half-century rapid advances of hardware

technology such as computers, memory, storage,
communication networks, mobile devices and embedded
systems is pushing the need for larger and more complex
software. Software development not only involves many
different hardware technologies, it also involves many
different parties like customers, end users and software
developers. That’s why SW development is an inherently
complex procedure. Since 1968 software developers had to
adopt the engineering disciplines i.e. systematic, disciplined
and quantifiable approach to make software development
more manageable to produce quality software products. The
success or quality of a SW project is measured by whether it
is developed within time and budget and by its efficiency,
usability, dependability and maintainability [12], [13].

Software engineering starts with an explicit process model
having framework of activities which are synchronized in a
defined way. This process model describes or prescribes
how to build software with intermediate visible work
products (documents) and the final finished product i.e. the

214

operating SW. The whole development process of SW from
its conceptualization to operation and retirement is called
the software development life cycle (SDLC).

SDLC goes through several framework activities like
requirements gathering, planning, design, coding, testing,
deployment, maintenance and retirement. These activities
are synchronized in accordance to the process model
adopted for a particular software development. There are
many process models to choose from like water fall model,
rapid application development (RAD) model, and spiral
model depending on the size of the project, delivery time
requirement and type of the project. As for example
development of an avionic embedded system will adopt a
different process model from development of a web
application.

Even though software engineering takes engineering
approach, success of SW product is more difficult than
products from other engineering domain like mechanical
engineering or civil engineering. This is because software is
intangible during its development. Software project
managers use a number of umbrella activities to monitor the
software framework activities in a more visible way. These
umbrella activities are SW project tracking and control, risk
management, quality assurance, measurements,
configuration management, work-product or documents
generation, review and reusability management. CMMI
(Capability maturity model integration) is a software
process improvement model for software development
companies by comparing their process maturity with the
best practices in the industry to deliver quality software
products.

Even after taking all these measures of sticking to the plan
and giving much importance to document generation for
project tracking and control, many SW projects failed. More
than 50% of software projects fail due to various reasons
like schedule and budget slippage, non user friendly
interface of the SW and non-flexibility for maintenance and
change of the SW. And the reasons for all these problems
are lack of communication and coordination between all the
parties involved.

Requirement changes of a SW are the major cause of
increased complexity, schedule and budget slippage.
Incorporating changes at a later stage of SDLC increases
cost of the project exponentially (Figure 3). Adding more
number of programmers at a later stage does not solve the
schedule problem as increased coordination requirement
slows down the project further. It is very important that
requirements gathering, planning and design of the SW is
done involving all the parties from the beginning.

That’s why several agile process models like Extreme
Programming (XP), Scrum, Crystal and Adaptive etc. have
been introduced in mid 1990s to accommodate continuous
changes in requirements during the development of the
software. These agile process models have shorter
development cycles where small pieces of work are “time-
boxed”, developed and released for customer feedback,

verification and validation iteratively. One time-box takes
few weeks to maximum a month of time. Agile process
model is communication intensive as customer satisfaction
is given the utmost importance.

Figure 3: Economics of Software Development

 Agile software development is possible only when the
SW developers are talented, motivated and self-organized.
Agile process model eliminates the exponential increase of
cost to incorporate changes as in the waterfall model by
keeping the customer involved throughout and validating
small pieces of work by them iteratively. These agile
process models work better for most of the SW projects as
changes are inevitable and responding to the change is key
to the success of a project.

 Figure4: Extreme Programming Process Model

Figure 4 depicts the steps of agile process model named
extreme programming (XP) for a traditional SW
development where the customer owns the developing
platform or SW developers develop in- house and deploy
the SW to the customer after it is built. XP has many
characteristics like user story card, CRC (class,
responsibility, collaboration) card narrated during the
requirement gathering stage jointly by the customer and the
SW engineers. Customer decides the priority of each story
card and the highest priority card is only considered or
“time-boxed” for the current iteration of SW development.
Construction of code is performed by two engineers sitting
at the same machine so that there is less scope of errors in
the code. This is called pair programming. Code is
continuously re-factored or improved to make it more
efficient.

C. How SW development industry is surviving in the
cloud computing age?

This section surveys how SW development industry is
trying to survive in the era of Web 2.0 with web services

215

and cloud computing. In reference [14], they present
framework activities for designing applications based on
discovery of semantic web service using software
engineering methodologies. They propose generating
semiautomatic semantic description of applications
exploiting the existing methodologies and tools of web
engineering. This increases design efficiency and reduces
manual effort of semantically annotating the new
application composed from web services of multiple
enterprises.

In reference [15], Salesforce.com finds that agile process
model works better on cloud computing platform. Before
cloud computing, release of the SW to the user took time
and getting feedback from the customer took more time
which thwarted the very concept of agile development.
Whereas now a new releases of the SW can be uploaded on
the server and used by the users immediately. Basically in
this paper what they have described is the benefits of
software as a service hosted on the internet and how it
complements agile computing methodology. They have not
considered the challenges of cloud computing in developing
new business software.

Cloud computing being the newest hype of the IT
industry, the challenges of software engineering on cloud
computing platform have not been studied yet and no
software development process model for cloud computing
platform has been suggested yet. We analyze the challenges
of the cloud computing platform on SW development
process and suggest extending the existing agile process
model, named extreme programming to mitigate all the
challenges in Section III below.

III. ANALYSIS

A. Impact of Cloud Computing on Software Engineering:
Challenges

In the rapidly changing computing environment with web
services and cloud platform, SW development is going to be
very challenging. SW development process will involve
heterogeneous platforms, distributed web services, multiple
enterprises geographically dispersed all over the world.
Existing software process models and framework activities
are not going to be adequate unless interaction with cloud
providers is included.
 Requirements gathering phase so far included customers,
users and software engineers. Now it has to include the
cloud providers as well, as they will be supplying the
computing infrastructure and maintain them too. As the
cloud providers only will know the size, architectural
details, virtualization strategy and resource utilization % of
the infrastructure, planning and design phases of SW
development also have to include the cloud providers. The
cloud providers can help in answering these questions on: 1)
How many developers are needed, 2) Component Reuse, 3)
Cost estimation, 4) Schedule Estimation, 5) Risk

Management, 6) Configuration Management, 7) Change
Management, and 8) Quality Assurance.

Because of the component reuse of web services the size
of the software in number of kilo- lines of code (KLOC) or
number of function points (FP) to be newly developed by
the SW engineer will reduce but complexity of the project
will increase many folds because of lack of documentations
of implementation details of web services and their
integration requirements. Only description that will be
available online is the metadata information of the web
services to be processed by the computers automatically.

Only coding and testing phases can be done independently
by the software engineers. Coding and testing can be done
on the cloud platform which is a huge benefit as everybody
will have easy access to the software being built. This will
reduce the cost and time for testing and validation.

 But software developers have to use the web services and
open-source software freely available from the cloud instead
of procuring them. Software developers should have more
expertise in building software from readily available
components than writing it all and building a monolithic
application. Refactoring of existing application is required
to best utilize the cloud infrastructure architecture in a cost
effective way. In latest hardware technology the computers
are multi-core and networked and the SW engineers should
train themselves in parallel and distributed computing to
complement this advances of HW and network technology.
SW engineers should train themselves in internet protocols,
XML, web service standards and layered separation of
concerns of SOA architecture of internet to leverage all the
benefits of Web 2.0. Cloud providers will insists that
software should be as modular as possible for occasional
migration from one server to another for load balancing as
required by the cloud provider [9].

Maintenance phase also should include the cloud
providers. There is a complete shift of responsibility of
maintenance of the infrastructure from software developers
to cloud providers. Now because of the involvement of the
cloud provider the customer has to sign contract with them
as well so that the “Software Engineering code of ethics”
are not violated by the cloud provider. In addition,
protection and security of the data is of utmost importance
which is under the jurisdiction of the cloud provider now.

Also occasional demand of higher resource usage of CPU
time or network from applications may thwart the pay-by-
use model of cloud computing into jeopardy as multiple
applications may need higher resource usage all at the same
time not anticipated by the cloud provider in the beginning.
Especially when applications are deployed as “Software-as-
a-Service” or “SaaS” model, they may have occasional
workload surge not anticipated in advance.

Cloud provider uses virtualization of resources technique
to cater many customers on demand in an efficient way. For
higher resource utilization occasional migration of
application from one server to another or from one storage
to another may be required by the cloud provider. This may

216

be a conflict of interest with the customer as they want
dedicated resources with high availability and reliability of
their applications. To avoid this conflict cloud providers
need to introduce quality of service provisions for high
priority tenants.

Now we analyze how difficult will be the interaction
between cloud providers and the software engineers? The
amount of interactions between software engineers and
cloud providers will depend on type of cloud like public,
private and hybrid cloud involvements. In private cloud
there is more control or self governance by the customer
than in public cloud. Customer should also consider using
private cloud instead of using public cloud to assure
availability and reliability of their high priority applications.
Benefits of private cloud will be less interaction with cloud
provider, self governance, high security, reliability,
availability of data [Figure 5]. But cheaper computing on
public cloud will always outweigh the benefits of less
complexity of SW development on private cloud platform
and is going to be more attractive.

Figure 5: Economics vs. Complexity of Software Development
on Cloud Computing Platform

IV. PROPOSED SW PROCESS MODEL
Innovative software engineering is required to leverage all

the benefits of cloud computing and mitigate its challenges
strategically to push forward its advances. Here we propose
an extended version of Extreme Programming (XP), an agile
process model for cloud computing platform and name it
Extreme Cloud Programming [Figure 6].

All the phases like planning, design, construction, testing
and deployment need interaction with the representatives
from cloud provider. The roles or activities by the cloud
provider and SW developers are separated and listed in
Table 1. Resource accounting on cloud platform will be
done by the cloud provider in the requirement gathering
phase. Software architecture, software architecture to
hardware architecture mapping, interface design, data types
design, cost estimation and schedule estimation of the
project all should be done in collaboration with the cloud
provider. During the construction phase of the application if
web services are integrated where many different enterprises
are involved then error should be mitigated with the
mediation of the cloud provider. Maintenance contract with
cloud provider will be according to the Quality of Service
agreement.

Figure 6: Extreme Cloud Programming

 Table 1: SW Engineering- Role Separation
Activity Roles

SW Developer Cloud Provider
Requirement
Gathering

Elicitation Resource
Accounting
Virtual Machine

Analysis SW Modules SW/HW
Architecture

Design Interface Design
Data Types
Cost Estimation
Schedule Estimation

Component Reuse

Construction Coding
Integration of
Web Services

Implementation
Details

Testing Unit Test
Integration Test

Integration Test

Deployment Operation &
Maintenance

A software metric is required for effort estimation of SW
development using the new extreme cloud programming
process model. This metric is required as American
consultant Tom DeMarco aptly stated in 1997 in his book
[16] about managing risk in software projects that “You
cannot control what you cannot measure”. Constructive cost
estimation model (COCOMO) is mostly used model for cost
estimation of various SW development projects. In
COCOMO model [12] three classes of SW projects have
been considered so far. These SW projects are classified as
1) Organic, 2) Semi-detached, 3) Embedded according to
the SW team size, their experiences and development (HW,
SW and operations) constraints. We extend this cost
estimation model with a new class of SW project for cloud
computing platform. In basic COCOMO model effort (man
month), development time (months) and no. of people
required are given by the following equations.
Effort Applied = a(KLOC)b [man-months]
Development Time = c(Effort Applied)d [months]
No. of People = Effort Applied/Development Time [no.]

V. RESULTS AND DISCUSSIONS

In this section we experiment with the typical values of a,
b, c, d for Cloud Computing class of SW projects in
comparison to other classes. The typical values of the

217

coefficients a, b, c, d for different classes of SW projects are
listed in Table 2.

Table 2: COCOMO
SW Proj. a b c d
Organic 2.4 1.05 2.5 .38
Semi-Detached 3.0 1.12 2.5 .35
Embedded 3.6 1.2 2.5 .32
Cloud Computing 4 1.2 2.5 .3

In anticipation of extra interaction complexity with the
cloud providers coefficient a is increased to 4 for cloud
computing platform. Coefficients a, b for cloud computing
are determined so that the effort curve is steeper than the
other 3 classes but is linear like the other 3 classes.
Similarly coefficients c, d for cloud computing are
determined so that the development time curve is less
steeper than the other 3 classes but is linear like the other 3
classes. We adjusted coefficients a, b, c, d in cloud
computing to new values of 4, 1.2, 2.5 and .3.

Because of component reuse, SW development with cloud
computing will reduce KLOC (kilo lines of code)
significantly. We deduce new KLOC = i*C + (KLOC)*C
where C is the % of component reuse and i is the
coefficient adjustment for new interface design effort.

Figure 7: Extended COCOMO For SW Effort Estimation

Figure 8: Extended COCOMO For SW Dev. Time

Figure 7 plots SW effort estimation for project size
varying from 10 to 50 KLOC for all 4 classes of projects.
We assumed 30% component reuse in cloud computing
case. If more % of component reuse is possible it will
mitigate the higher interaction complexity in coefficient a
and will be beneficial for cloud computing platform. Figure
8 plots the corresponding SW development time estimation
for all 4 classes of SW projects. With 30% component reuse
possibility, SW development on cloud computing platform
will take least amount of time.

VI. CONCLUSION
Cloud computing is a paradigm shift over traditional way

of developing and deploying of software. This will make
software engineering more difficult as they have to interact
with a third party called the “cloud provider”. The amount
of work required for developing software will reduce but
there will be added communication and coordination
requirement with the cloud provider which makes software
development project more complex. The main thesis of this
paper is that the prevalent SW process models should
incorporate this new dimension of interaction with the cloud
provider and separate roles of SW engineers and cloud
providers. A new agile process model is proposed in this
paper which includes the anticipated interaction requirement
with the cloud provider which will mitigate all the
challenges of software development on cloud computing
platform and make it more advantageous to develop and
deploy software on the cloud computing platform.

REFERENCES

[1] Radha Guha. Toward The Intelligent Web Systems. In
Proceedings of IEEE CS, First International Conference on
Computational Intelligence, Communication Systems and Network,
Pages 459-463, July 2009.
[2] J. Handler, N. Shadbolt, W. Hall, T. Berners-Lee and
D. Weitzner. Web Science: An Interdisciplinary Approach to
Understanding the Web. Communications of the ACM, Vol. 51, No.
7, July 2008.
[3] F. Chong and G. Carraro. Architecture Strategies for
Catching the Long Tail. Microsoft Corporation, April
2006.
[4] J. Banerjee and S. Aziz. SOA: The missing link between
Enterprise Architecture and Solution Architecture. SETLabs
briefing, Vol. 5, No 2, Pages 69-80, March 2007.
[5] HADOOP. http://en.wikipedia.org/wiki/Hadoop, February
2010.
[6] D. Taft. IBM's M2 Project Taps Hadoop for Massive Mashups.
www.eweek.com, February 2010.
 [7] Sun Microsystem. Introduction to Cloud Computing
architecture. White Paper, 1st Edition, June 2009
 [8]Sun Microsystem. Open Source & Cloud Computing: On-
Demand, Innovative IT On a Massive Scale.
[9] A. Singh, M. Korupolu, D. Mahapatra. Server-Storage
Virtualization: Integration and Load Balancing in Data Centers.
IEEE/ACM Supercomputing (SC), 2008
[10] VMWARE. Virtualization Overview. www.vmware.com.
[11]Reservoir Consortium. Resources and Services Virtualization
without Barriers. Scientific Report. 2009.
[12] R. Pressman. Software Engineering: A Practitioner's
Approach.7th Edition. McGraw-Hill Higher Education (2009).
[13] I. Sommerville. Software Engineering, 8th Edition, Pearson
Education, 2006.
[14] M. Brambilla et al. A Software Engineering Approach to
Design and Development of Semantic Web Service Applications
[15] Salesforce.com. Agile Development Meets Cloud Computing
for Extraordinary Results. www.salesforce.com
[16] T. DeMarco and T. Lister. Waltzing with Bears: Managing
Risk on Software Projects, Dorset House Publishing Company,
Incorporated. March 2003.

218

