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Abstract. We present a Sage patch for computing with Combinatorial Hopf algebras. It includes a new Category
(pattern), several concrete Hopf algebras: FQSym, WQSym, PQSym, PBT, FSym, and easily allows imple-
mentation of other ones.

Résumé. Nous présentons un patch Sage permettant le calcul sur des algèbres de Hopf combinatoires. Il inclut une
nouvelle Category (ou pattern) ainsi que plusieurs algèbres de Hopf concrètes: FQSym, WQSym, PQSym,
PBT, FSym. De plus, ce patch permet d’en implémenter facilement d’autres.
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1 Introduction
There have been some attempts to implement combinatorial Hopf algebras in various computer algebra
systems [13, 1, 16, 15]. However, implementation of such combinatorial and algebraic structures requires
many specific features from the targeted software or language. If elements of an algebra are in general
linear combinations (in computer memory) of some basis elements, a Hopf algebra is a unique object that
one want to implement with different flavors: a combinatorial Hopf algebra is a single object (abstract, a
priori) with different explicit basis.

Developing a complete and general framework for combinatorial Hopf algebra has been a long-time
goal for the *-combinat project [13, 6]. The new design of Sage-combinat has been modeled with
this aim. Most of the basic combinatorial families of objects are already implemented (permutations,
partitions, combinations, integer vectors, ...). Sage, whose language is based on Python, provides a
hierarchy of abstract classes (aka the category framework dues to N. M. THIÉRY) to model advanced
algebraic structures, together with the morphisms between them (aka the coercion model). The choice of
the platform Sage was particularly motivated by the availability of the following features: tensor prod-
ucts, cartesian products, linear maps, set of linear combinations indexed by anything, matrices indexed by
anything, abstract algebras with multiple practical realizations which all can be used in a wild generality.
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Several different projects are currently trying to enhance Sage with some Hopf algebras. Symmetric
functions provide a nice example in a relatively final form (J. BANDLOW, M. HANSEN, A. SCHILLING,
N. M. THIÉRY, M. ZABROCKI). These abstract algebras have, in Sage version 5.6, 5 different bases
implemented (monomials, Schur, powersum, homogeneous, elementary) with transformations morphisms
for each pair of them. On the other side, J. BANDLOW, C. BERG and F. SALIOLA, N. THIÉRY are currently
developing an implementation for the pair NCSF/ QSym (Non Commutative Symmetric Functions /
Quasi-Symmetric Functions). All these different teams are currently gathering their implementations on
the sage-combinat project to try to set up a proper design of code which will allow to factorize the generic
code and be also compatible with each of these classes of algebras.

We present our contribution to the design of the implementation of combinatorial Hopf algebras. We
improved the existing graded Hopf algebra category; and we implemented two news categories for the
definition and computation of combinatorial Hopf algebras and bidendriform combinatorial Hopf alge-
bras [3]. Several combinatorial Hopf algebras are implemented namely FQSym [9, 2], WQSym [10],
PQSym [11], PBT [8, 4, 5] and FSym [7, 12]. In this paper, we propose to explain how to imple-
ment a combinatorial Hopf algebras and we illustrate the various tools provided by it by focusing on the
example of FQSym.

This paper is illustrated with some examples of computations using the Sage console and has been
automatically generated with the Sagetex package.

2 Combinatorial Hopf algebras
A combinatorial Hopf algebra is above all a module or a vector space whose bases are labelled by combi-
natorial objects. Sage contains severals classical combinatorial objects like

• several kind of trees due to F. HIVERT, F. CHAPOTON, al.;

• Alternating sign matrices due to M. HANSEN and al.;

• Dyck words due to M. HANSEN and al.;

• Integer Compositions due to N. M. THIÉRY and M. HANSEN;

• k-tableaux, Lyndon words, Non decreasing parking functions, Parking functions . . .

We will assume that the reader is familiar with this.

2.1 General pattern
Given a combinatorial class, we will explain how to implement a combinatorial Hopf algebra associated
with it (if that makes sense. . . ) with the following pattern of code:

from sage.structure.unique_representation import UniqueRepresentation
from sage.structure.parent import Parent
from sage.misc.bindable_class import BindableClass
from sage.combinat.free_module import CombinatorialFreeModule

class MyCHA(UniqueRepresentation, Parent):
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def __init__(self, R):
r"""
Here, we made the promess that our new object will be a combinatorial
Hopf algebra with multiples bases.
"""
from sage.categories.all import Rings
assert(R in Rings())
Parent.__init__(self, base=R,

category=CombinatorialHopfAlgebras(R).WithRealizations())

def _repr_(self):
return "Combinatorial Hopf algebra MyCHA over %s" %self.base_ring()

def basis_keys(self):
r"""
Returns the combinatorial class of objects which indices
the bases of MyCHA.
"""
return something

def a_realization(self):
r"""
Return an example of a basis of MyCHA.
"""
return MyFirstBasis

class MyFirstBasis(CombinatorialFreeModule, BindableClass):
def __init__(self, MyCHA):

CombinatorialFreeModule.__init__(self,
MyCHA.base_ring(), MyCHA.basis_keys(),
prefix="something", latex_prefix="something",
bracket=False, category=MyCHA.Bases())

def product_on_basis(self, cba1, cba2):
r"""
Returns the element which is the product of the bases elements
indexed by ‘‘cba1‘‘ and ‘‘cba2‘‘.
"""
return something

def coproduct_on_basis(self, cba):
r"""
Returns the element which is the coproduct of the basis element
indexed by ‘‘cba‘‘.
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"""
return something

def dual_basis(self):
r"""
Returns the dual of the MyFirstBasis basis.

If not implemented, it will be automatically computes
"""
return something

# another basis
class OtherBasis(CombinatorialFreeModule, BindableClass):

def __init__(self, MyCHA):
CombinatorialFreeModule.__init__(self,

MyCHA.base_ring(), MyCHA.basis_keys(),
prefix="something", latex_prefix="something",
bracket=False, category=MyCHA.Bases())

# if not implemented, the operations of product and coproduct will
# be automatically deduce from another basis by coercion (if it can)
def _build_morphisms(self):

r"""
register coercions between different bases whose the one is
OtherBasis
"""

2.2 Free quasi-symmetric functions
The combinatorial Hopf algebras of free quasi-symmetric functions FQSym [9, 2] is a module whose
bases are labelled by permutations. The following code allows to implement this abstract combinatorial
Hopf algebra FQSym.

class FreeQuasiSymmetricFunctions(UniqueRepresentation, Parent):
def __init__(self, R):

from sage.categories.all import Rings
assert(R in Rings())
Parent.__init__( self, base=R,

category=CombinatorialHopfAlgebras(R).WithRealizations())

def _repr_(self):
cha = "Combinatorial Hopf algebra of Free Quasi-Symmetric Functions "
return cha + "over %s" %self.base_ring()
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def basis_keys(self):
return Permutations()

We can build this abstract combinatorial Hopf algebra FQSym in Sage:

sage: FQSym = FreeQuasiSymmetricFunctions(ZZ); FQSym
Combinatorial Hopf algebra of Free Quasi-Symmetric Functions over Integer Ring

Several bases are implemented in this abstract algebra.

2.2.1 Fundamental basis of FQSym

The first basis: the fundamental basis. Let us add this new class for the definition of the fundamental
basis.

class Fundamental(CombinatorialFreeModule, BindableClass):
def __init__(self, FQSym):

CombinatorialFreeModule.__init__(self,
FQSym.base_ring(), FQSym.basis_keys(),
prefix="F", latex_prefix="{\\bf F}",
bracket=False, category=FQSym.Bases())

def product_on_basis(self, sigma1, sigma2):
from sage.combinat.words.word import Word
R = self.base_ring()
d = {self.basis().keys()(list(w)): R(1)

for w in Word(sigma1).shifted_shuffle(Word(sigma2))}
return self._from_dict(d)

def coproduct_on_basis(self, sigma):
from sage.combinat.permutation import to_standard
std = to_standard, R = self.base_ring()
d = {(std(sigma[:i]), std(sigma[i:])): R(1)

for i in xrange(sigma.size() + 1)}
return self.tensor_square()._from_dict(d)

# simple shortland to use FreeQuasiSymmetricFunctions(ZZ).F()
F = Fundamental

One obtains a first basis that we can explicitely manipulate

sage: F = FQSym.F(); F
Combinatorial Hopf algebra of Free Quasi-Symmetric Functions over Integer Ring in the Fundamental

basis

In this practical realization, one can build an element indexed by a permutation:

sage: u = F(Permutation([1, 2])); u
F12

In the fundamental basis, the product rule is given by the shifted shuffle of permutations:
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sage: F([1, 2]) * F([1, 3, 2])
F12354 + F13254 + F13524 + F13542 + F31254 + F31524 + F31542 + F35124 + F35142 + F35412

and the coproduct rule is the deconcatenation of words, followed by standardization of all prefixes and
suffixes:

sage: F([3, 1, 4, 5, 2]).coproduct()
1⊗ F31452 + F1 ⊗ F1342 + F21 ⊗ F231 + F213 ⊗ F21 + F2134 ⊗ F1 + F31452 ⊗ 1

The definition of this operator is extended by linearity and the coproduct is an algebra morphism:

sage: u = F([1, 2])
sage: v = F([2, 1])
sage: (u * v).coproduct() == u.coproduct() * v.coproduct()
True

The previous computation illustrates the fact that the following diagram commutes:

FQSym⊗ FQSym
µ

//

∆⊗∆

��

FQSym

∆

��

FQSym⊗2 ⊗ FQSym⊗2

µ(2)

// FQSym⊗ FQSym

since FQSym is a combinatorial Hopf algebra, where µ and ∆ are respectively the product and the
coproduct defined in the fundamental basis and µ(2) is defined on pure tensors by

µ(2) ((x1 ⊗ y1)⊗ (x2 ⊗ y2)) = µ(x1 ⊗ x2)⊗ µ(y1 ⊗ y2).

The antipode is then automatically deduced from the coproduct:

sage: F([1, 3, 4, 2]).antipode()
(−1)F2143 + (−1)F2413 + (−1)F2431 +F3142 +F3214 +F3241 +F3412 + 2F3421 + (−1)F4213 +

(−1)F4231

2.2.2 Elementary basis of FQSym

Most basis transformations are expressed by an order relation on objects indexing the bases. The elemen-
tary basis, expressed through the fundamental basis, is a sum over an interval of the weak order:

class Elementary(CombinatorialFreeModule, BindableClass):
def __init__(self, FQSym):

CombinatorialFreeModule.__init__(self,
FQSym.base_ring(), FQSym.basis_keys(),
prefix="E", latex_prefix="{\\bf E}",
bracket=False, category=FQSym.Bases())

def _build_morphisms(self):
F = self.realization_of().F(); E = self
R = self.realization_of().base_ring()
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SumOfGreater = lambda sigma: F._from_dict({s: R(1)
for s in sigma.permutohedron_greater()})

E_to_F = E.module_morphism(on_basis=SumOfGreater,
category=CombinatorialHopfAlgebras(R),
codomain=F, triangular="lower", unitriangular=True)

E_to_F.register_as_coercion()
(˜E_to_F).register_as_coercion()

def product_on_basis(self, s1, s2):
n = s1.size()
R = self.realization_of().base_ring()
d = {self.basis().keys()(s1[:] + map(lambda t: t+n, s2[:])): R(1)}
return self._from_dict(d)

E = Elementary

sage: E = FQSym.E(); E
Combinatorial Hopf algebra of Free Quasi-Symmetric Functions over Integer Ring in the Elementary

basis
sage: F(E([4, 1, 2, 3]))
F4123 + F4132 + F4213 + F4231 + F4312 + F4321

The definition of the elementary basis ensures that the base change between the elementary basis and the
fundamental basis is triangular. With some manipulations of a technical nature, we compute, using the
Sage labelled matrix framework of A. MATHAS, the transformation matrix from the fundamental basis
to the elementary basis restricted in size 3:

[1, 2, 3] [1, 3, 2] [2, 1, 3] [2, 3, 1] [3, 1, 2] [3, 2, 1]
[1, 2, 3] 1 . . . . .
[1, 3, 2] 1 1 . . . .
[2, 1, 3] 1 . 1 . . .
[2, 3, 1] 1 . 1 1 . .
[3, 1, 2] 1 1 . . 1 .
[3, 2, 1] 1 1 1 1 1 1

This basis is a multiplicative basis. Using the product rule in the fundamental basis, we compute the
product in the elementary basis:

sage: sigma = Permutation([2, 3, 1])
sage: tau = Permutation([4, 2, 1, 3])
sage: E(F(E(sigma)) * F(E(tau)))
E2317546

This composition is indeed the product in the elementary basis:

sage: E(F(E(sigma)) * F(E(tau))) == E(sigma) * E(tau)
True
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which illustrates the commutativity of the following diagram:

E⊗E
µE //

ϕ⊗ϕ
��

E

F⊗ F
µF

// F

ϕ−1

OO

since the basis transformation is an algebra isomorphism, where µE and µF are respectively the product
rule in the elementary basis and the fundamental basis and ϕ is the algebra isomorphism from E to F.
The coproduct in the elementary basis is automatically computed by using the coproduct defined in the
fundamental basis in the following way:

sage: tensor((E, E))(F(E([1, 2, 3])).coproduct())
1⊗E123 + 3E1 ⊗E12 + 3E12 ⊗E1 + E123 ⊗ 1

2.2.3 Duality in FQSym

The combinatorial Hopf algebra FQSym is self-dual and the dual basis of Fσ is Gσ . The code of the
dual basis of the fundamental basis is easy. The information that these bases are dual is given to each of
them and the product and coproduct rule is induced by the isomorphism Fσ 7→ Gσ−1 .

sage: G = FQSym.G(); G is F.dual basis()
True

For the dual basis of the elementary basis, we are in the following case. The previous bases are dual and
we know the isomorphism ϕ from the fundamental basis to the elementary basis. So, the dual basis to the
elementary basis is completely determined by ϕ:

F
dual //

ϕ

��

G

E
dual
// E∗

tϕ

OO

When the dual bases are not implemented, they are then instantiated by constructing isomorphisms
induced by duality:

sage: E = FQSym.E()
sage: Edual = E.dual basis(); Edual
Combinatorial Hopf algebra of Free Quasi-Symmetric Functions over Integer Ring expressed in the

dual basis to the Elementary basis
sage: Edual([2, 1])**2
2E∗

2143 + E∗
2413 + E∗

2431 + E∗
3142 + E∗

3241 + E∗
4132 + E∗

4213 + 2E∗
4231 + E∗

4321

sage: Edual([2, 1, 4, 3]).coproduct()
1⊗E∗

2143 + E∗
21 ⊗E∗

21 + E∗
2143 ⊗ 1

In the same way as for the elementary basis, the homogeneous basis is obtained from the fundamental
basis as a sum over the weak order. By transitivity, the dual bases to the elementary and homogeneous
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bases are isomorphic. Hence, any element expressed in the dual basis to the homogeneous basis can be
expressed in the dual basis to the elementary basis:

sage: Hdual = H.dual basis(); Hdual
Combinatorial Hopf algebra of Free Quasi-Symmetric Functions over Integer Ring expressed in the

dual basis to the Homogeneous basis
sage: Edual(Hdual([2, 3, 1]))
(−1)E∗

132 + (−1)E∗
312 + (−1)E∗

321

The basis transformation between the elementary and homogeneous bases and the one between the dual
bases to the elementary and homogeneous bases are dual. Here is the matrix transformation from E to H:

[1, 2, 3] [1, 3, 2] [2, 1, 3] [2, 3, 1] [3, 1, 2] [3, 2, 1]
[1, 2, 3] . . . 1 1 1
[1, 3, 2] . . . . −1 .
[2, 1, 3] . . . −1 . .
[2, 3, 1] . −1 . . −1 −1
[3, 1, 2] . . −1 −1 . −1
[3, 2, 1] 1 1 1 1 1 1

Here is the matrix transformation from H∗ to E∗:
[1, 2, 3] [1, 3, 2] [2, 1, 3] [2, 3, 1] [3, 1, 2] [3, 2, 1]

[1, 2, 3] . . . . . 1
[1, 3, 2] . . . −1 . 1
[2, 1, 3] . . . . −1 1
[2, 3, 1] 1 . −1 . −1 1
[3, 1, 2] 1 −1 . −1 . 1
[3, 2, 1] 1 . . −1 −1 1

which emphasizes the fact that the matrix representing the two bases transformations at each graded
component are transposed.

3 Status of the code and further development
3.1 Status of the code
Our code is currently constituted by 9 Python modules for a total of 4500 lines of code. This number of
lines is underestimated as we are adding documentation and tests as the code begin to be final.

We implemented from scratch the combinatorial family of packed words using the Parent/Element
structures, the DisjointUnionEnumeratedSets features and the SetWithGrading category.
We implemented two new categories to model abstract combinatorial Hopf algebras with realizations and
abstract bidendriform combinatorial Hopf algebras with realizations. All generic code and method live in
these two modules. Each Hopf algebra (FQSym, WQSym, PQSym, PBT, FSym) is a new module
in which the python class modeling the abstract algebra inherit (Python inheritance) from our two



10 R. MAURICE, J.-B. PRIEZ

categories. Products, coproducts and morphisms are always only defined on basis elements and extended
on whole algebras by linearity.

The code is available on the Sage-combinat server http://combinat.sagemath.org/.
This document has been automatically generated with the Sagetex package (embedding of Sage results
in tex document). As we are currently using experimental new features, this documents depends on:

• a patch for labeled matrices indexed by any Sage objects from A. MATHAS,

• a patch to enhance the coercion between tensor products of combinatorial free module,

• a patch for the category of set with a grading,

• a patch to enhance the category of graded morphism between graded modules with basis,

• a patch modifying the Sage permutations adding them a grading.

All of these patches present the technical issues for our code to be ready to be submitted to Sage. As all
of these points has been largely discussed, we expect a short term integration.

3.2 Further improvements
In combinatorics research, computer exploration is of great importance. Part of the program has been
designed in this direction and is a continuation of the Sage category framework of N. THIÉRY. It remains
to improve a finer management of the morphisms, of the duality in order to, for example, construct on the
fly any realization.
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