
A Linear Algorithm for Finding Total Colorings
of Partial k-Trees

Shuji Isobe?, Xiao Zhou??, and Takao Nishizeki? ? ?

Graduate School of Information Sciences, Tohoku University
Aoba-yama 05, Sendai, 980-8579, Japan.

Abstract. A total coloring of a graph G is a coloring of all elements of
G, i.e. vertices and edges, in such a way that no two adjacent or incident
elements receive the same color. The total coloring problem is to find
a total coloring of a given graph with the minimum number of colors.
Many combinatorial problems can be efficiently solved for partial k-trees,
i.e., graphs with bounded tree-width. However, no efficient algorithm has
been known for the total coloring problem on partial k-trees although a
polynomial-time algorithm of very high order has been known. In this
paper, we give a linear-time algorithm for the total coloring problem on
partial k-trees with bounded k.

1 Introduction

A total coloring is a mixture of ordinary vertex-coloring and edge-coloring. That
is, a total coloring of a graph G is an assignment of colors to its vertices and
edges so that no two adjacent vertices have the same color, no two adjacent ed-
ges have the same color, and no edge has the same color as one of its ends. The
minimum number of colors required for a total coloring of a graph G is called the
total chromatic number of G, and denoted by χt(G). Figure 1 illustrates a total
coloring of a graph G using χt(G) = 4 colors. This paper deals with the total
coloring problem which asks to find a total coloring of a given graph G using
the minimum number χt(G) of colors. Since the problem is NP-complete for
general graphs [Sán89], it is very unlikely that there exists an efficient algorithm
for solving the problem for general graphs. On the other hand, many combi-
natorial problems including the vertex-coloring problem and the edge-coloring
problem can be solved for partial k-trees with bounded k very efficiently, mostly
in linear time [ACPS93,AL91,BPT92,Cou90,CM93,ZSN96]. However, no efficient
algorithm has been known for the total coloring problem on partial k-trees. Alt-
hough the total coloring problem can be solved in polynomial time for partial
k-trees by a dynamic programming algorithm, the time complexity O(n24(k+1)+1)
is very high [IZN99].
? E-Mail: iso@nishizeki.ecei.tohoku.ac.jp

?? E-Mail: zhou@ecei.tohoku.ac.jp
? ? ? E-Mail: nishi@ecei.tohoku.ac.jp

A. Aggarwal, C. Pandu Rangan (Eds.): ISAAC’99, LNCS 1741, pp. 347–356, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357594711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

348 S. Isobe, X. Zhou, and T. Nishizeki

color c1

color c2

color c3

color c4

v1 v4

v2

v7

v3

v6

v5

Fig. 1. A total coloring of a graph with four colors.

In this paper, we give a linear-time algorithm to solve the total coloring
problem for partial k-trees with bounded k. The outline of the algorithm is as
follows. For a given partial k-tree G = (V, E), we first find an appropriate subset
F ⊆ E inducing a forest of G, then find a “generalized coloring” of G for F and
an ordinary edge-coloring of the subgraph H = G[F̄] of G induced by F̄ = E−F ,
and finally superimpose the edge-coloring on the generalized coloring to obtain
a total coloring of G. The generalized coloring is an extended version of a total
coloring and an ordinary vertex-coloring, and is newly introduced in this paper.
Since F induces a forest of G, a generalized coloring of G for F can be found
in linear time. Since H is a partial k-tree, an edge-coloring of H can be found
in linear time. Hence the total running time of our algorithm is linear. Thus
our algorithm is completely different from an ordinary dynamic programming
approach.

The paper is organized as follows. In Section 2, we give some basic definitions.
In Section 3, we give a linear algorithm for finding a total coloring of a partial
k-tree, and verify the correctness of the algorithm.

2 Terminologies and Definitions

In this section we give some basic terminologies and definitions.
For two sets A and B, we denote by A − B the set of elements a such that

a ∈ A and a /∈ B.
We denote by G = (V, E) a simple undirected graph with a vertex set V and

an edge set E. For a graph G = (V, E) we often write V = V (G) and E = E(G).
We denote by n the cardinality of V (G). We denote by χ′(G) the minimum
number of colors required for an ordinary edge-coloring of G, and call χ′(G) the
chromatic index of G.

For a set F ⊆ E and a vertex v ∈ V , we write dF (v, G) = |{(v, w) ∈
F : w ∈ V }| and ∆F (G) = max{dF (v, G) : v ∈ V }. In particular, we call
d(v, G) = dE(v, G) the degree of v, and ∆(G) = ∆E(G) the maximum degree of
G.

A Linear Algorithm for Finding Total Colorings of Partial k-Trees 349

Let F be a subset of E, called a colored edge set, and let C be a set of colors.
A generalized coloring of a graph G for F is a mapping f : V ∪F → C satisfying
the following three conditions:
(1) the restriction of the mapping f to V is a vertex-coloring of G, that is,

f(v) 6= f(w) for any pair of adjacent vertices v and w in G;
(2) the restriction of the mapping f to F is an edge-coloring of the subgraph

G[F] of G induced by F , that is, f(e) 6= f(e′) for any pair of edges e, e′ ∈ F
sharing a common end; and

(3) f(v) 6= f(e) for any pair of a vertex v ∈ V and an edge e ∈ F incident to v.

v1 v4

v2

v7

v3

v6

v5

color c1

color c2

color c3

uncolored edges

Fig. 2. A generalized coloring of a graph with three colors.

Note that the edges in F̄ = E − F are not colored by the generalized coloring
f . We call the edges in F colored edges and the edges in F̄ uncolored edges. A
total coloring of G is a generalized coloring for a colored edge set F = E, while
a vertex-coloring is a generalized coloring for a colored edge set F = ∅. Thus
a generalized coloring is an extension of a total coloring and a vertex-coloring.
It should be noted that a generalized coloring of G for F is a total coloring of
G[F] but a total coloring of G[F] is not always a generalized coloring of G for
F . The minimum number of colors required for a generalized coloring of G for
F is called the generalized chromatic number of G, and is denoted by χt(G, F).
In particular, we denote χt(G, E) by χt(G), and call χt(G) the total chromatic
number of a graph G. Clearly χt(G, F) ≥ ∆F (G) + 1 and χt(G) ≥ ∆(G) + 1.
Figure 2 depicts a generalized coloring of a graph G using χt(G, F) = 3 colors for
the colored edge set F = {(v1, v2), (v3, v5), (v3, v7), (v4, v6), (v5, v6)}, where the
uncolored edges (v1, v4), (v2, v7), (v3, v6) and (v4, v5) in F̄ are drawn by dotted
lines.

Suppose that g is a generalized coloring of G for F , h is an ordinary edge-
coloring of the subgraph H = G[F̄] of G induced by F̄ , and g and h use disjoint
sets of colors. Then, superimposing h on g, one can obtain a total coloring f of
G. Unfortunately, the total coloring f obtained in this way may use more than
χt(G) colors even if g uses χt(G, F) colors and h uses χ′(H) colors, because
χt(G) ≤ χt(G, F) + χ′(H) but the equality does not always hold; for example,
χt(G) = 4, χt(G, F) = 3 and χ′(H) = 2, and hence χt(G) < χt(G, F)+χ′(H) for

350 S. Isobe, X. Zhou, and T. Nishizeki

the graph G in Figure 2. However, in Section 3, we will show that, for a partial
k-tree G = (V, E) with the large maximum degree, there indeed exists F ⊆ E
such that χt(G) = χt(G, F) + χ′(H), and show that such a set F , a generalized
coloring of G for F and an edge-coloring of H can be found in linear time.

A graph G = (V, E) is defined to be a k-tree if either it is a complete graph
of k vertices or it has a vertex v ∈ V whose neighbors induce a clique of size k
and the graph G − {v} obtained from G by deleting the vertex v and all edges
incident to v is again a k-tree. A graph is defined to be a partial k-tree if it is a
subgraph of a k-tree [Bod90]. In the paper we assume that k = O(1). The graph
in Figure 1 is a partial 3-tree.

For a natural number s, an s-numbering of a graph G = (V, E) is a bijection
ϕ : V → {1, 2, · · · , n} such that |{(v, x) ∈ E : ϕ(v) < ϕ(x)}| ≤ s for each vertex
v ∈ V . A graph having an s-numbering is called an s-degenerated graph. Every
partial k-tree G is a k-degenerated graph, and its k-numbering can be found in
linear time.

For an s-numbering ϕ of G and a vertex v ∈ V , we define

Efw
ϕ (v, G) = {(v, x) ∈ E : ϕ(v) < ϕ(x)};

Ebw
ϕ (v, G) = {(x, v) ∈ E : ϕ(x) < ϕ(v)};

dfw
ϕ (v, G) = |Efw

ϕ (v, G)|; and
dbw

ϕ (v, G) = |Ebw
ϕ (v, G)|.

The edges in Efw
ϕ are called forward edges, and those in Ebw

ϕ backward edges. The
definition of an s-numbering implies that dfw

ϕ (v, G) ≤ s for each vertex v ∈ V .

3 A Linear Algorithm

In this section we prove the following main theorem.

Theorem 1. Let G = (V, E) be a partial k-tree with bounded k. Then there
exists an algorithm to find a total coloring of G with the minimum number χt(G)
of colors in linear time.

We first have the following lemma [ZNN96,IZN99].

Lemma 1. For any s-degenerated graph G, the following (a) and (b) hold:
(a) if ∆(G) ≥ 2s, then χ′(G) = ∆(G); and
(b) χt(G) ≤ ∆(G) + s + 2.

Using a standard dynamic programming algorithm in [IZN99], one can solve
the total coloring problem for a partial k-tree G in time O(nχ24(k+1)

t) where
χt = χt(G); the size of a dynamic programming table updated by the algorithm
is O(χ24(k+1)

t). Since G is a partial k-tree, G is k-degenerated. Furthermore k =
O(1). Therefore, if ∆(G) = O(1), then χt(G) = O(1) by Lemma 1(b) and hence
the algorithm takes linear time to solve the total coloring problem. Thus it
suffices to give an algorithm for the case ∆(G) is large, say ∆(G) ≥ 8k2.

A Linear Algorithm for Finding Total Colorings of Partial k-Trees 351

Our idea is to find a subset F of E such that χt(G) = χt(G, F) + χ′(H) as
described in the following lemma.

Lemma 2. Assume that G = (V, E) is an s-degenerated graph and has an s-
numbering ϕ. If ∆(G) ≥ 8s2, then there exists a subset F of E satisfying the
following conditions (a)–(h):

(a) ∆(G) = ∆F (G) + ∆F̄ (G), where F̄ = E − F ;
(b) ∆F (G) ≥ s + 1;
(c) ∆F̄ (G) ≥ 2s;
(d) the set F can be found in linear time;
(e) ϕ is a 1-numbering of G′ = (V, F), and hence G′ is a forest ;
(f) χt(G, F) = ∆F (G) + 1, and a generalized coloring of G for F using

∆F (G) + 1 colors can be found in linear time;
(g) χ′(H) = ∆F̄ (G), where H = (V, F̄); and
(h) χt(G) = χt(G, F) + χ′(H).

Proof. The proofs of (a)–(e) will be given later. We now prove only (f)–(h).
(f) Let C be a set of ∆F (G) + 1 colors. For each i = 1, 2, · · · , n, let vi be a

vertex of G such that ϕ(vi) = i, let N fw(vi) = {x ∈ V : (vi, x) ∈ E, ϕ(vi) <
ϕ(x)}, and let Efw

F (vi) = {(vi, x) ∈ F : ϕ(vi) < ϕ(x)}. Since ϕ is an s-numbering
of G, dfw

ϕ (vi, G) = |N fw(vi)| ≤ s for each i = 1, 2, · · · , n. By (e) ϕ is a 1-
numbering of G′ = (V, F), and hence dfw

ϕ (vi, G
′) = |Efw

F (vi)| ≤ 1 for each i =
1, 2, · · · , n.

We construct a generalized coloring g of G for F using colors in C as follows.
We first color vn by any color c in C: let g(vn) := c. Suppose that we have
colored the vertices vn, vn−1, · · · , vi+1 and the edges in Efw

F (vn−1)∪Efw
F (vn−2)∪

· · · ∪ Efw
F (vi+1), and that we are now going to color vi and the edge in Efw

F (vi)
if Efw

F (vi) 6= ∅. There are two cases to consider.
Case 1: Efw

F (vi) 6= ∅.
In this case Efw

F (vi) contains exactly one edge e = (vi, vj), where i < j ≤ n.
We first color e. Let C ′ = {g((vj , vl)) : (vj , vl) ∈ F, i + 1 ≤ l ≤ n} ⊆ C, then

we must assign to e a color not in {g(vj)} ∪ C ′. Since e = (vj , vi) ∈ F , we have

|{(vj , vi)} ∪ {(vj , vl) ∈ F : i + 1 ≤ l ≤ n}| ≤ d(vj , G
′)

and hence |C ′| ≤ d(vj , G
′) − 1. Clearly d(vj , G

′) ≤ ∆F (G) = |C| − 1. Therefore
we have |C ′| ≤ |C| − 2. Thus there exists a color c′ ∈ C not in {g(vj)} ∪ C ′. We
color e by c′: let g(e) := c′.

We next color vi. Let C ′′ = {g(x) : x ∈ N fw(vi)}, then we must assign to vi

a color not in {c′} ∪ C ′′. Since |C ′′| ≤ |N fw(vi)| ≤ s and ∆F (G) ≥ s + 1 by (b)
above, we have |{c′}∪C ′′| ≤ s+1 ≤ ∆F (G) = |C| − 1. Thus there exists a color
c′′ ∈ C not in {c′} ∪ C ′′, and we can color vi by c′′: let g(vi) := c′′.
Case 2: Efw

F (vi) = ∅.
In this case we need to color only vi. Similarly as above, there exists a color

c′′ ∈ C not in C ′′ since |C ′′| ≤ s < ∆F (G) < |C|. Therefore we can color vi by
c′′: let g(vi) := c′′.

352 S. Isobe, X. Zhou, and T. Nishizeki

Thus we have colored vi and the edge in Efw
F (vi) if Efw

F (vi) 6= ∅. Repeating
the operation above for i = n − 1, n − 2, · · · , 1, we can construct a generalized
coloring g of G for F using colors in C. Hence χt(G, F) ≤ |C| = ∆F (G) + 1.
Clearly χt(G, F) ≥ ∆F (G) + 1, and hence we have χt(G, F) = ∆F (G) + 1.
Clearly the construction of g above takes linear time. Thus we have proved (f).

(g) Since G is s-degenerated, the subgraph H of G is s-degenerated. By (c)
we have ∆(H) = ∆F̄ (G) ≥ 2s. Therefore by Lemma 1(a) we have χ′(H) =
∆(H) = ∆F̄ (G). Thus we have proved (g).

(h) We can obtain a total coloring of G by superimposing an edge-coloring of
H on a generalized coloring of G for F . Therefore we have χt(G) ≤ χt(G, F) +
χ′(H). Since χt(G) ≥ ∆(G) + 1, by (a), (f) and (g) we have

χt(G) ≥ ∆(G) + 1
= ∆F (G) + ∆F̄ (G) + 1
= χt(G, F) + χ′(H).

Thus we have χt(G) = χt(G, F) + χ′(H).

We now have the following theorem.

Theorem 2. If G is an s-degenerated graph and ∆(G) ≥ 8s2, then χt(G) =
∆(G) + 1.

Proof. By (a), (f), (g) and (h) in Lemma 2 we have

χt(G) = χt(G, F) + χ′(H)
= ∆F (G) + 1 + ∆F̄ (G)
= ∆(G) + 1.

We are now ready to present our algorithm to find a total coloring of a given
partial k-tree G = (V, E) with ∆(G) ≥ 8k2.
[Total-Coloring Algorithm]

Step 1. Find a subset F ⊆ E satisfying Conditions (a)–(h) in Lemma 2.
Step 2. Find a generalized coloring g of G for F using χt(G, F) = ∆F (G)+

1 colors.
Step 3. Find an ordinary edge-coloring h of H using χ′(H) = ∆F̄ (G) co-

lors.
Step 4. Superimpose the edge-coloring h on the generalized coloring g to

obtain a total coloring f of G using χt(G) = ∆(G) + 1 colors.
Since G is a partial k-tree, G is k-degenerated. Since ∆(G) ≥ 8k2, by

Lemma 2(d) one can find the subset F ⊆ E in Step 1 in linear time. By
Lemma 2(f) one can find the generalized coloring g in Step 2 in linear time.
Since G is a partial k-tree, a subgraph H of G is also a partial k-tree. Therefore,
in Step 3 one can find the edge-coloring h of H in linear time by an algorithm
in [ZNN96] although χ′(H) is not always bounded. Thus the algorithm runs in
linear time.

A Linear Algorithm for Finding Total Colorings of Partial k-Trees 353

This completes the proof of Theorem 1.
In the remainder of this section we prove (a)–(e) of Lemma 2. We need the

following two lemmas.

Lemma 3. Let G=(V,E) be an s-degenerated graph, and let ϕ be an s-numbering
of G. If ∆(G) is even, then there exists a subset E′ of E satisfying the following
three conditions (a)–(c):

(a) ∆(G′) = ∆(G′′) = ∆(G)/2;
(b) ϕ is an ds/2e-numbering of G′; and
(c) |E′| ≤ |E|/2,

where G′ = (V, E′) and G′′ = (V, E − E′). Furthermore, such a set E′ can be
found in linear time.

Proof. Omitted in this extended abstract due to the page limitation.

Lemma 4. Let G = (V, E) be an s-degenerated graph, and let α be a natural
number. If ∆(G) ≥ 2α ≥ 2s, then there exists a subset E′ of E such that
∆E′(G) + ∆Ē′(G) = ∆(G) and ∆E′(G) = α where Ē′ = E − E′. Furthermore,
such a set E′ can be found in linear time.

Proof. Since G is an s-degenerated graph and ∆(G) ≥ 2α ≥ 2s, there exists a
partition {E1, E2, · · · , El} of E satisfying the following three conditions (i)–(iii)
[ZNN96, pp. 610]:

(i)
∑l

i=1 ∆Ei(G) = ∆(G);
(ii) ∆Ei

(G) = α for each i = 1, 2, · · · , l − 1; and
(iii) α ≤ ∆El

(G) < 2α.
Let E′ = E1. Then ∆E′(G) = ∆E1(G) = α and by (ii), clearly

∆Ē′(G) ≥ ∆(G) − ∆E′(G). (1)

On the other hand, since Ē′ = E2 ∪ E3 ∪ · · · ∪ El, by (i) we have

∆Ē′(G) ≤
l∑

i=2

∆Ei
(G)

= ∆(G) − ∆E1(G)
= ∆(G) − ∆E′(G). (2)

Thus by Eqs. (1) and (2) we have ∆Ē′(G) = ∆(G)−∆E′(G), and hence ∆E′(G)+
∆Ē′(G) = ∆(G). Since the partition {E1, E2, · · · , El} of E can be found in linear
time [ZNN96], the set E′ = E1 can be found in linear time.

We are now ready to give the remaining proof of Lemma 2.
Remaining Proof of Lemma 2: Since we have already proved (f)–(h) before,
we now prove (a)–(e).

Let p = blog ∆(G)c. Then 2p ≤ ∆(G) < 2p+1. Since ∆(G) ≥ 8s2, we have
p = blog ∆(G)c ≥ 3 + b2 log sc > 2 + 2 log s. Therefore we have ∆(G) ≥ 2p >
22+2 log s = 4s2 > 2s.

354 S. Isobe, X. Zhou, and T. Nishizeki

Let q = dlog se. Then 2q−1 < s ≤ 2q. We find F by constructing a sequence

of q + 1 spanning subgraphs G0, G1, · · · , Gq of G as follows.

1 procedure FIND-F

2 begin

3 by Lemma 4, find a subset E0 of E such that

(3-1) ∆E0(G) = 2p−1; and

(3-2) ∆E0(G) + ∆Ē0
(G) = ∆(G), where Ē0 = E − E0;

{Choose α = 2p−1, then ∆(G) ≥ 2p = 2α ≥ 2s, and hence

there exists such a set E0 by Lemma 4}
4 let G0 := (V, E0) and let s0 := s;

{∆(G0) = 2p−1 and ϕ is an s0-numbering of G0}
5 for i := 0 to q − 1 do

6 begin

7 by Lemma 3, find a subset E′
i of Ei satisfying

(7-1) ∆(G′
i) = ∆(G′′

i) = ∆(Gi)/2; {∆(Gi) is even}
(7-2) ϕ is an si+1-numbering of G′

i, where si+1 = dsi/2e;
and

(7-3) |E′
i| ≤ |Ei|/2,

where G′
i = (V, E′

i), G′′
i = (V, E′′

i) and E′′
i = Ei − E′

i;

8 let Ei+1 := E′
i and let Gi+1 := (V, Ei+1);

9 end

10 let F := Eq;

11 end.

We first prove (a). Since F = Eq, ∆F (G) = ∆Eq (G) = ∆(Gq). Therefore we
have

∆F̄ (G) ≥ ∆(G) − ∆F (G) = ∆(G) − ∆(Gq). (3)

By line 7 and line 8 in the procedure above, we have Gi+1 = G′
i, ∆(Gi+1) =

∆(G′
i) and ∆(G′

i) + ∆(G′′
i) = ∆(Gi), and hence ∆(G′′

i) = ∆(Gi) − ∆(Gi+1) for
each i = 0, 1, · · · , q − 1. Therefore we have

q−1∑

i=0

∆(G′′
i) =

q−1∑

i=0

(∆(Gi) − ∆(Gi+1))

= ∆(G0) − ∆(Gq). (4)

Since ∆(G0) = ∆E0(G), by (3-2) in the procedure above we have

∆(G0) + ∆Ē0
(G) = ∆(G). (5)

A Linear Algorithm for Finding Total Colorings of Partial k-Trees 355

Furthermore, since F̄ = E−F = Ē0∪E′′
0 ∪E′′

1 ∪· · ·∪E′′
q−1 and ∆E′′

i
(G) = ∆(G′′

i)
for each i = 0, 1, · · · , q − 1, by Eqs. (4) and (5) we have

∆F̄ (G) ≤ ∆Ē0
(G) +

q−1∑

i=0

∆E′′
i
(G)

= ∆Ē0
(G) +

q−1∑

i=0

∆(G′′
i)

= ∆Ē0
(G) + ∆(G0) − ∆(Gq)

= ∆(G) − ∆(Gq). (6)

Therefore by Eqs. (3) and (6) we have ∆F̄ (G) = ∆(G) − ∆(Gq). Since ∆(Gq) =
∆F (G), we have ∆F̄ (G) = ∆(G)−∆F (G), and hence ∆F (G)+∆F̄ (G) = ∆(G).
Thus we have proved (a).

We next prove (b). By (7-1) and line 8 in the procedure above we have
∆(Gi+1) = ∆(G′

i) = ∆(Gi)/2 for each i = 0, 1, · · · , q − 1, and by (3-1) we have
∆(G0) = 2p−1. Therefore we have

∆F (G) = ∆(Gq) =
∆(G0)

2q
= 2p−q−1. (7)

Since 2p > 4s2 and 2q−1 < s, we have ∆F (G) = 2p−q−1 > 4s2/4s = s. Thus we
have ∆F (G) ≥ s + 1, and hence (b) holds.

We next prove (c). By (a) and Eq. (7) we have ∆F̄ (G) = ∆(G) − ∆F (G) =
∆(G) − 2p−q−1, and hence

∆F̄ (G) = ∆(G) − 2p

2q+1

≥ ∆(G) − ∆(G)
2q+1

= ∆(G)(1 − 1
2q+1)

≥ 8s2(1 − 1
2s

)

= 4s(2s − 1)
≥ 2s

since ∆(G) ≥ 8s2, ∆(G) ≥ 2p and s ≤ 2q. Thus we have proved (c).
We next prove (d). By Lemma 4, line 3 can be done in time O(|E|). By

Lemma 3, line 7 can be done in time O(|Ei|). Therefore the for statement in
line 5 can be done in time O(

∑q−1
i=0 |Ei|) time. Since |E0| ≤ |E| and |Ei+1| =

|E′
i| ≤ |Ei|/2 for each i = 0, 1, · · · , q − 1 by (7-3) in the procedure above, we

have
∑q−1

i=0 |Ei| ≤ 2|E|. Thus one can know that the for statement can be done
in time O(|E|). Thus F can be found in linear time, and hence (d) holds.

356 S. Isobe, X. Zhou, and T. Nishizeki

We finally prove (e). Since s = s0 ≤ 2q and si = dsi−1/2e ≤ si−1/2 + 1/2 for
each i = 1, 2, · · · , q, we have

sq ≤ s0

2q
+

1
2

+
1
22 + · · · + 1

2q

=
s0

2q
+ 1 − 1

2q

< 2,

and hence sq = 1. Therefore ϕ is a 1-numbering of G′ = (V, F). Thus we have
proved (e).

This completes the proof of Lemma 2.

References

ACPS93. S. Arnborg, B. Courcelle, A. Proskurowski and D. Seese, An algebraic
theory of graph reduction, J. Assoc. Comput. Mach. 40(5), pp. 1134–1164,
1993.

AL91. S. Arnborg and J. Lagergren, Easy problems for tree-decomposable graphs,
J. Algorithms, 12(2), pp. 308–340, 1991.

Bod90. H.L. Bodlaender, Polynomial algorithms for graph isomorphism and chro-
matic index on partial k-trees, Journal of Algorithms, 11(4), pp. 631–643,
1990.

BPT92. R. B. Borie, R. G. Parker and C. A. Tovey, Automatic generation of linear-
time algorithms from predicate calculus descriptions of problems on recur-
sively constructed graph families, Algorithmica, 7, pp. 555–581, 1992.

Cou90. B. Courcelle, The monadic second-order logic of grpahs I: Recognizable
sets of finite graphs, Inform. Comput., 85, pp. 12–75, 1990.

CM93. B. Courcelle and M. Mosbath, Monadic second-order evaluations on tree-
decomposable graphs, Theoret. Comput. Sci., 109, pp.49–82, 1993.

IZN99. S. Isobe, X. Zhou and T. Nishizeki, A polynomial-time algorithm for fin-
ding total colorings of partial k-trees, Int. J. Found. Comput. Sci., 10(2),
pp. 171–194, 1999.

Sán89. A. Sánchez-Arroyo. Determining the total colouring number is NP-hard,
Discrete Math., 78, pp. 315–319, 1989.

ZNN96. X. Zhou, S. Nakano and T. Nishizeki, Edge-coloring partial k-trees, J.
Algorithms, 21, pp. 598–617, 1996.

ZSN96. X. Zhou, H. Suzuki and T. Nishizeki, A linear algorithm for edge-coloring
series-parallel multigraphs, J. Algorithm, 20, pp. 174-201, 1996.

	Introduction
	Terminologies and Definitions
	A Linear Algorithm

