
Semantic Role Labeling using Linear-Chain CRF

Melanie Tosik

University of Potsdam, Department Linguistics

Seminar: Advanced Language Modeling (Dr. Thomas Hanneforth)

September 22, 2015

Abstract

The aim of this paper is to present a simplified take on applying linear-chain conditional
random fields (CRF) to semantic role labeling (SRL), with a focus on German. The dataset
is adapted from the semantic parsing track of the CoNLL-2009 shared task on syntactic
and semantic dependencies in multiple languages. By treating SRL as a sequence labeling
task, the framework architecture becomes very simple. Building on a set of hand-crafted
features, a linear-chain CRF model is trained which jointly performs argument identifica-
tion and classification in a single step. The best results on the sequence tagging task are
obtained by the model which integrates basic argument and predicate features, as well as a
binary feature indicating if a given argument is a syntactic child of the predicate in the de-
pendency tree. We found that for our system, employing more distinct features on syntactic
dependents of the predicate impaired model performance.

1 Introduction
In natural language processing (NLP), SRL (sometimes also called case role analysis, thematic
analysis, or shallow semantic parsing) refers to the task of identifying the semantic arguments
of each predicate (typically the verb) in the sentence, and classifying them into their predicate-
specific semantic roles. Dating back to Fillmore (1968), semantic roles originated in the lin-
guistic notion of case. Common semantic role labels include Agent (actor of action), Patient
(entity affected by the action), Instrument (tool used to perform action), Beneficiary (entity for
whom action is performed), Source (origin of the effected entity), or Destination (destination of
the affected entity). For example:

[ John ]AGENT hit [ Mary ]PATIENT [ with a stick ]INSTRUMENT .

To date, SRL has been successfully applied to a variety of NLP tasks. Most commonly, it
is used in questing answering (QA) systems, where semantic arguments can frequently answer
the questions of Who?, What?, How? etc., and machine translation (MT), where semantic roles
are usually expressed using language-specific syntactical structures. Because of this correlation
between syntax and semantics, syntactic positions of predicate arguments tend to be good in-
dicators of the semantic role they play in the sentence. For example, while subjects are often
agents, direct objects are likely to be patients, and objects of with-prepositional phrases (PPs)
are probably instruments (just like in the example above).
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However, SRL is not a trivial problem. In order to build a complete SRL system, it is neces-
sary to determine the correct parse tree for each sentence, as well as the correct word senses and
the corresponding semantic roles. Word sense disambiguation is a crucial prerequisite to argu-
ment classification because semantically ambiguous words may require different numbers and
realizations of semantic roles for each possible word sense. For example, the English verb walk
can take one to three, and possibly even more semantic arguments, depending on the context:

(1) John walks home.

(2) John walks the dog.

(3) John walks the dog to the vet.

Typically, statistical methods are used to automatically acquire and apply the complex
knowledge that is needed for effective and efficient SRL systems. To this end, many of the
standard machine learning techniques can be employed with varying success rates. For ex-
ample, in the CoNLL-2005 Shared Task1 on PropBank SRL (Kingsbury and Palmer, 2002),
19 teams participated with a wide range of learning approaches, including maximum entropy
(MaxEnt), support vector machine (SVM), SNoW (an ensemble of enhanced perceptrons), deci-
sion trees, AdaBoost (an ensemble of decision trees), nearest neighbor, tree conditional random
field (CRF), as well as different combinations of these approaches.

2 Conditional Random Fields (CRF)
Conditional random fields (CRF) is a state-of-the-art sequence labeling framework introduced
by Lafferty et al. (2001). CRF is an undirected, graphical model, which is trained to maximize
a conditional probability distribution over a given set of features.

The most common graphical structure used with CRF is linear-chain, a special case of gen-
eral CRF restricted in that every output label yi only depends on the h labels that are directly
preceding it (in practice, h is usually set to 1). Assume Y = (y1, ..., yT ) denotes a sequence of
labels, andX = (x1, ..., xT ) denotes the corresponding observations sequence. The sequence of
labels is the concept we wish to predict, e.g. named-entities, part-of-speech (POS) tags, or se-
mantic role labels. The observations are the strings in the input sequence. Given a linear-chain
CRF, the conditional probability p(Y |X) is then computed as

p(Y |X) =
1

ZX

T∏
t=1

exp

{
K∑
k=1

λkfk(yt, yt−1, xt)

}
,

where ZX is a normalizing constant such that all the terms normalize to one, fk is a feature
function, and λk is a feature weight. CRF offers an advantage over generative approaches such
as hidden Markov models (HMMs) by relaxing the conditional independence assumption and
allowing for arbitrary features in the observation.

For all our experiments we use CRFsuite2, an implementation of CRF for labeling sequen-
tial data provided by Okazaki (2007). We choose an appropriate learning algorithm based on
accuracy on the test set and use Limited-memory BFGS optimization (Nocedal, 1980).

1http://www.cs.upc.edu/˜srlconll/
2http://www.chokkan.org/software/crfsuite/
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3 Experimental setup

We start by describing our datasets in Section 3.1. Section 3.2 details the feature sets imple-
mented in the models. Section 3.3 specifies how the models are evaluated.

3.1 Data

The dataset is adapted from the CoNLL-2009 Shared Task on syntactic and semantic dependen-
cies in multiple languages3. Since only training and development data are still freely available
for German, the development set is used as test set. A detailed description of the CoNLL-2009
data format can be found on the task website. In short, annotated data in dependency for-
mat is provided for statistical training, where the dependency labels have been extracted from
manually annotated treebanks such as the German TIGER Treebank (Brants et al., 2002). The
dependency trees have additionally been enriched with semantic labels and relations such as
those captured in the PropBank and similar resources.

An overview of the data columns is given below. P-columns are automatically predicted
variants of the gold-standard LEMMA, POS, FEAT, HEAD, and DEPREL columns produced
by independently (or cross-)trained taggers and parsers. FEAT is a set of morphological features
(separated by |) defined for a particular language. FILLPRED contains Y for lines where PRED
is filled. PRED is the column for the predicate along with its specific verb sense. APRED
contains the semantic roles. is used for unknown, unannotated, unfilled, etc. values.

Gold fields ID FORM LEMMA POS FEAT HEAD DEPREL

Predicted fields PLEMMA PPOS PFEAT PHEAD PDEPREL

Additional fields FILLPRED PRED APREDs

The original CoNLL-2009 Shared Task objective was to perform and evaluate SRL using a
dependency-based representation for both syntactic and semantic dependencies, for predicates
of all major POS categories. Due to a limited availability of the extensive resources needed
to recreate the exact task, several simplifying changes have been made to the original datasets.
First, both datasets are pre-processed to only contain sentences with exactly one verb predicate.
Sentences with more than one predicate rarely occur in the data, and filtering them eases the
computation of the corresponding semantic role labels. Table 1 provides an overview of the
number of predicates per sentence for each dataset.

Furthermore, the main focus of this work is on labeling argument candidates with a predicate-
specific semantic role. Therefore, instead of automatically determining the word sense for each
predicate, gold annotations for each predicate were given as input to our system.

Last, we limit the semantic role label set to A0-A9 (following the PropBank label set),
corresponding to the number of possible semantic arguments for each predicate, where the A0
label is usually assigned to arguments which are understood as agents, the A1 label is assigned
to the patient argument, and so on.

3http://ufal.mff.cuni.cz/conll2009-st/index.html
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Training set Test set

# Predicates

none 21738 1468
1 11562 480
2 2370 48
3 311 3
4 31 (n/a)
5 7 (n/a)
6 1 (n/a)

Table 1: Number of sentences with their number of predicates for training and test set.

3.2 Features

As indicated in Section 2, the CRF model learns based on a number of pre-defined features. In
the case of SRL, the model tries to extract a semantic role for each argument candidate. Since
we are dealing with a dependency representation of the data, no pruning is done to obtain a pre-
defined set of syntactic constituents that are likely to be argument candidates. Instead, every
input word is individually considered a potential semantic argument to the predicate.

Extracting the right set of features is crucial for successfully applying any machine learning
algorithm. In order for the learning algorithm to discover truly relevant patterns in the data, we
have to provide it with domain specific knowledge and, ultimately, human insight. Thus, for the
SRL labeling task, an obvious set of features will at least contain the word form, lemma, POS,
and morphological features for each word, as well as its dependency relation to the predicate
(recall that subjects, for instance, are likely to be semantic agents). We automatically extract
these features from the training data, and use them as argument baseline features.

In the next step, we identify the verb predicate for each sentence, and enhance the model by
integrating the form, lemma, POS, morphological features, and the DEPREL value of the predi-
cate as predicate features. Moreover, we define a binary feature indicating if the current word is
the sentence predicate or not. In addition, we introduce a binary flag which is true if the current
word is a syntactic child of the predicate, and false otherwise. We also experimented with in-
corporating the full set of features for each syntactic child (form, lemma, POS, morphological
features, dependency relation) as predicate children features, and splitting the morphological
features in FEAT into its different individual features, e.g. gender, case, number, etc.

3.3 Evaluation

We evaluate five different models based on the features above (cf. Table 2).
The first baseline model uses only the argument baseline features. For the following models,

we add the predicate features, the binary Is child? feature, the predicate children features, as
well as the field splitting of the morphological features, respectively.

However, since the majority of predicates do not take more than three semantic arguments,
most words in any given sentence are not going to be assigned a semantic role (but instead).
Therefore, if the model was to simply assign to every single word, the overall model accuracy
would still be fairly high. To prevent the results from being distorted, we thus evaluate exact
match precision, recall, and F1 score for each label individually. Labels A0 and A1 are the most
frequent labels, and equally distributed over the test set (360 and 361 occurrences, respectively).
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While 74 instances of label A3 are present in the test set, label A4 is found in 19 sentences.
Labels A5-A9 are discarded from the evaluation because one average, they each only occur
once in the test data.

4 Results

The exact match precision, recall, and F1 scores for each label in the test set are shown in
Table 2. In addition, Table 3 contains a description of the features implemented in the CRF
models. Note that, except for the baseline model, each model builds on the previous one(s),
thus extending the feature space with every new model, not entirely replacing it.

Test set
[%]

A0 A1 A2 A3 A4

Model P R F1 P R F1 P R F1 P R F1 P R F1

#1 56.0 58.3 57.1 42.6 19.9 27.2 20.0 0.8 1.4 0.0 0.0 0.0 0.0 0.0 0.0
#2 59.7 65.8 62.6 52.0 31.6 39.3 51.2 16.4 24.9 60.0 16.2 25.5 57.14 21.0 30.8
#3 74.9 65.6 69.9 72.0 61.2 66.2 63.6 41.8 50.5 69.4 46.0 55.3 75.0 31.6 44.4
#4 62.5 57.8 60.0 59.1 46.8 52.2 0.5 28.4 36.2 38.2 17.6 24.1 46.7 36.8 41.2
#5 70.3 66.9 68.6 63.9 54.9 59.0 55.3 31.3 40.0 44.4 21.6 29.1 50.0 31.6 38.7

Table 2: Precision (P), recall (R), and F1 scores of the CRF models for each label.

Model #1 Baseline argument features
Model #2 + Predicate features
Model #3 + Is child? (y/n) feature
Model #4 + Children features
Model #5 + Field splitting for morphological features

Table 3: Model descriptions.

As can be seen, the baseline Model #1 starts off with a decent performance on identifying
A0 roles (57.1% F1 score), but then rapidly gets worse for every subsequent label. Labels A3
and A4 do not get assigned at all, resulting in 0% F1 score for those roles. The second Model #2
adds the predicate features, resulting in large performance gains across all labels. The biggest
improvement is concerning role A4, with a boost in F1 score of +30.8%.

Model #3 only adds a single new feature, namely a positive binary flag for every word that
has been identified as a syntactic dependent (child) of the predicate. Again, we are able to
increase model performance by several points in F1 score for roles A0, A1, and A4, and more
than doubling the accuracy for labels A2 and A3. This is explained by the fact that the model
finally has a robust indicator of which words are very likely to be semantic arguments in the first
place: since the data is represented in dependency tree format, the verb predicate is generally the
syntactic root of the sentence; thus, any syntactic children are directly the semantic arguments
of the predicate. Model #3 gives the overall best results across all models and role labels.
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As has been suggested in related work (see, for example, Björkelund et al. (2009)), we
implement features for every syntactic child of the predicate in Model #4. However, these
features did not seem to help the model uncover additional ties between the input sequences
and their corresponding role labels. Since there is only ever a single predicate present in each
sentence, adding the predicate features is a reasonable and effective way to enhance the learning
algorithm. For syntactic dependents, on the other hand, flooding the model with a possibly large
number of properties of individual syntactic children has the opposite effect and actually causes
the model performance to drop significantly for every role label, with a loss in F1 score of up
to -31.2% for label A3.

Except for A4, adding the morphological feature splitting in Model #5 brings model accu-
racy back up by a few points for every label. To verify the affect of the additional individual
morphological features, they have been implemented in several other model architectures not
mentioned here. The results did not prove effective, suggesting that the morphological features
in the FEAT column are similar enough to already contribute their share if adopting the original
concatenated representation.

In general, we find that the models consistently yield a higher accuracy for A0 than for
every other semantic role. While this might be expected for labels A2-4, it appears significant
with respect to A1. Since both labels occur equally often in the data, this could be treated as
evidence that it is intrinsically harder to automatically infer the semantic patient of a sentence
than it is to identify an agent. In addition, the results also confirm what has already been stated in
many recent publications using linear-chain CRF architectures: namely that the system’s recall
performance is predominantly lower than precision accuracies. In this case, this is increasingly
observed for labels A2-A4, but could be explained by the lack of a sufficient number of training
examples in the training data.

5 Conclusion and future work

Semantic role labeling (SRL) remains a challenging task for researchers in natural language
processing (NLP). In this paper, we presented a simple method of performing and evaluating
SRL by treating it as a straightforward sequence labeling task. The extraction task is solved
by integrating a number of pre-defined features into the linear-chain conditional random fields
(CRF) framework introduced by Lafferty et al. (2001).

We built a SRL dataset for German based on the training and development data released in
the context of the semantic parsing track of the CoNLL-2009 Shared Task. We modified the
data by filtering out all sentences that did not comprise a single verb predicate only, and keeping
gold predicate senses instead of automatically performing the word sense disambiguation.

We found that in our case, we obtained the best results on the extraction task by employing a
cascaded model that incorporates semantic and syntactic information for every argument word,
as well the sentence predicate. In addition, a binary feature for syntactic dependents of the
predicate is used.

From here, there are many directions future work might take. The current system could
bit by bit be extended to eventually meet all the official requirements posed by the CoNLL-
2009 SRL Shared Task. Furthermore, it could be worthwhile to compare the performance of
the linear-chain CRF architecture to a tree-structured CRF model, which could operate on full
syntactic analyses rather than a dependency-based language representation, and thus learn to
assign semantic roles to complete syntactic constituents rather than individual words.
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