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Abstract. Model-based toolkit widgets have the potential for (i) increasing 
automation and (ii) making it easy to substitute a user-interface with another 
one. Current toolkits, however, have focused only on the automation benefit as 
they do not allow different kinds of widgets to share a common model. Inspired 
by programming languages, operating systems and database systems that 
support a single data structure, we present here an interface that can serve as a 
model for not only the homogeneous model-based structured-widgets identified 
so far – tables and trees – but also several heterogeneous structured-widgets 
such as forms, tabbed panes, and multi-level browsers. We identify an 
architecture that allows this model to be added to an existing toolkit by 
automatically creating adapters between it and existing widget-specific models. 
We present several full examples to illustrate how such a model can increase 
both the automation and substitutability of the toolkit. We show that our 
approach retains model purity and, in comparison to current toolkits, does not 
increase the effort to create existing model-aware widgets.  

Keywords: tree, table, form, tab, browser, hashtable, vector, sequence, toolkit, 
model view controller, user interface management system 

1   Introduction 

User-interface toolkits strongly influence the nature of a user-interface and its 
implementation. Programmers tend to incorporate components into a user-interface 
that are easy to implement. For example, programmers use the buttons directly 
supported by a toolkit rather than define their own buttons using the underlying 
graphics and windows package. Moreover, the implementation of the user-interface 
typically follows the architecture directly supported by the toolkit. For example, in the 
early versions of the Java AWT toolkit, programmers attached semantics to widgets 
by creating subclasses of these widgets that trapped appropriate events such as button 
presses. As the newer version of AWT supports delegation, programmers now 
associate callbacks with these widgets. 

One of the major recent advances in toolkits is support for model-aware widgets, 
that is, widgets that understand the interface of the semantic or model object being 
manipulated by them. Model-aware widgets have the potential for (i) increasing 
automation and (ii) making it easy to substitute a user-interface with another one. 
Current toolkits, however, have focused only on the automation benefit as they do not 
allow different kinds of widgets to share a common model. For example, in Java’s 
Swing toolkit, the JTable and JTree model-aware widgets understand different kinds 
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of models. As a result, it is not possible to display the model of a JTable widget as a 
tree, and vice versa.  

Therefore a data structure that serves as a universal model for different widgets is 
an attractive idea. It is not possible to develop such a model for all possible widgets as 
some widget models assume fundamentally different semantics. For example, the 
model of a slider must be a numeric value and not, for example, a string or a list. In 
this paper, we show that is possible, however, to develop a universal model for all 
existing structured model-unaware widgets and several new structured components 
such as browsers for which no appropriate model interface has been defined so far. 
Thus, such a universal structured model increases both the automation and 
substitutability of the toolkit. It increases automation as it directly supports user-
interface components such as browsers that have to be manually composed today. It 
increases substitutability as it allows the model to be displayed using any of the 
existing and new model-aware structured-widgets. 

In the rest of the paper, we expand on this idea. We first show the relationship 
between the MVC (Model-View-Controller) architecture [1] and model-aware 
widgets. Once this relationship is understood, then the substitutability limitation of 
current toolkits becomes apparent. We then present requirements of a universal 
structured-model. Next we take a top-down approach to identifying such a model 
based on the work done in programming languages, operating systems and database 
systems that support a single data structure. We then do a bottom-up analysis of this 
model by exploring how it could be attached to existing and new structured user-
interface components, extending it as necessary. We end with conclusions and 
directions for future work.  

2   MVC and Toolkit Widgets  

The MVC framework, as presented in [1], requires the semantics of a user-interface to 
be encapsulated in a model, the input processing to be performed by one or more 
controllers, and the display to be defined by one or more views. In response to an 
input command, a controller executes a method to write the state of the model, which 
sends notifications to the views, which, in turn, read appropriate model state, and 
update the display.  

One issue not explicitly addressed by MVC, or any other paper with which we are 
familiar, is: what is the relationship between MVC and toolkits? The architecture 
could be implemented (i) from scratch, without using a toolkit, (ii) using model-
unaware widgets, or (iii) using model-aware widgets. As (i) does not inform toolkit 
design – the focus of this paper – let us ignore this approach. To contrast (ii) and (iii), 
we must precisely distinguish between model-aware and model-unaware widgets. 

A model-unaware widget talks to its client in a syntax-centric language. It defines 
calls allowing the widget client to set its state in display-specific terms, and sends 
notifications to the client informing it about changes to the state, again in display-
specific terms. For example, a model-unaware text-box displaying a Boolean value 
talks to its client in terms of the text it displays. It defines calls that allow the client to 
set the text and sends notifications informing the client about changes to the text. A 



model-aware widget, on the other hand, talks to its clients in a semantics-centric 
language. It receives notifications regarding changes to the client state in model-based 
terms, and converts these changes to appropriate changes to the display. When the 
display changes, the widget calls methods in the client to directly update its state. For 
example, a model-aware text-box displaying a Boolean value would talk to its client 
in terms of the Boolean it displays. When the user edits the string, it directly updates 
the Boolean, and conversely, it responds to a notification by automatically converting 
the Boolean to a string. 

Given model-unaware widgets, Figure 1(a) shows how the user-interface should be 
implemented and Figure 1(b) shows how it can be implemented. In Figure 1(a), the 
view translates a model notification into an operation on the widget; and the controller 
translates a widget notification to a call in the model. In Figure 1(b), the widget client 
is a monolithic application that performs semantics, input and output tasks. Often, 
programmers follow the architecture directly supported by a toolkit, which in this case 
means that the architecture shown in Figure 1(b) is used, resulting in a spaghetti of 
callbacks [2] mixed with semantics.  

 

.                

           (a)     (b) 

Figure 1 Using model-unaware widgets with (a) and without (b) MVC 

This problem does not, of course, occur with model-aware widgets. These widgets 
do not directly support the MVC architecture. Instead, they support a model-editor 
architecture (called subject-view in [3]), in which the editor combines the 
functionality of a view and controller, receiving notifications from the model and 
calling both read and write methods in the model. A model-aware widget is 
essentially an editor automatically implemented by the toolkit that is based on some 
model interface. As it is based on an interface rather than a class, it can be reused for 
any model class that implements the interface, as shown in Figure 2(a).  It is this 
model substitutability that increases the automation of the toolkit – for all models 
displayed using the widget, no UI code needs to be written. 

Model substitutability was not an advertised advantage of the original MVC 
framework, which, as mentioned earlier, did not address toolkits or automation. This 
substitutability is the dual of the UI/editor substitutability for which the MVC 
architecture was actually created, which is shown in Figure 2(b). Given a model, it is 



possible to attach multiple editors to it, concurrently or at different times. Attaching a 
new editor to a model does not require changes to the model or other editors – the 
only requirement is that the editor understand the model interface. Thus, given a 
model displayed as a bar-chart, adding an editor that displays it as a pie-chart does not 
require changes to the model or the existing editor. 

While toolkits have made an important advance to the MVC architecture by using 
it for automation, as designed currently, they have done so by sacrificing the original 
advantage of the architecture. The reason is that different editors supported by a 
toolkit assume different model interfaces. For example, the tree and table widgets in 
Swing assume different models. As a result, it is not possible to display the same 
model as a tree and/or a table. It is possible to display a tree or table model using a 
programmer-defined user-interface, but that involves sacrificing automation. The 
Windows/Forms toolkit has a similar problem. As our implementation is based on 
Java, we shall focus only on the Java Swing toolkit in the remainder of the paper. 

  What is needed, then, is a technique that combines both kinds of substitutabilities, 
which is shown in Figure 2(c). Here, a toolkit-provided editor can be attached to 
instances of multiple model classes. In addition, a model can be attached to instances 
of multiple editor classes. In the next section, we describe what this means in more 
depth. 
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(a)  Toolkit Model Substitutability (b) MVC UI Substitutability (c) Model/UI Substitutability 
Figure 2 Three forms of substitutability possible with model-aware widgets 

3   Requirements  

To remove the limitations of previous work mentioned above, we need a new 
toolkit design that meets the following requirements: 

1. Reduced model set: The current set of models should be replaced with a 
smaller set of models.  

2. Same or increased model-aware widget sets: The set of model-aware widgets 
automatically supported by the toolkit should not be reduced.  

3. Same or decreased programming effort: It should not be harder to create 
models and bind them to existing editors.  

4. Model purity: The models must have only semantic state. 
It is important to meet all of these requirements. It is easy to meet the first 
requirement by, for instance, simply eliminating the table model from Swing. 
However, this approach does not meet the second requirement, as the set of model-
aware widgets is also reduced. It is easy to meet both requirements by requiring a 
model to implement the interfaces of multiple existing model-aware widgets. For 
instance, combining the model interfaces defined by the tree and table widgets 



reduces the set of model interfaces, but requires programmers using the interface to 
implement both sets of methods, instead of only one of the sets, which does not meet 
the third requirement. Existing “models” in toolkits sometimes have user-interface 
information. For example, the JTable model indicates the label to be used as a 
column name. Therefore, we have put the fourth requirement to ensure the purity of 
models. It is possible to meet the first three requirements to different degrees 
depending on the extent to which the (1) model set is reduced, (2) set of model-aware 
widgets is increased, and (3) programming effort is changed. In the following 
sections, we present an approach that meets these requirements and evaluate it based 
on the above metrics. 

4   Top-Down Identification of a Universal Structured Model  

The ideal approach to meeting the above requirements is to define a universal 
model for all widgets. However, as mentioned before, it is not possible to develop 
such a model as there are widget models with fundamentally different semantics. 
Thus, we must set our sights lower and aim simply for a reduced model set rather than 
a single model. 

There are well known techniques for reducing the model set in existing toolkits. 
Previous work has shown how a model can be mapped to multiple unstructured- 
widgets [4, 5], that is, widgets displaying a single editable atomic value. In particular, 
a discrete number can be mapped to a slider or textbox, an enumeration can be 
mapped to combobox or textbox, and a Boolean can be mapped to a textbox, 
combobox, or checkbox. These techniques are gradually being implemented in 
existing toolkits. However, there has been no work for mapping a model to multiple 
structured-widgets such as tables and trees, which display composite (non-atomic) 
values. Therefore, we will focus only on such widgets in this paper. 

Can we define a single universal model for all model-aware structured-widgets 
supported so far?  If so, can it also be bound to other user-interface components that 
are not automatically supported by existing toolkits? These are the two questions we 
address in this paper. While they have not been addressed before in the user-interface 
arena, analogous questions have been posed in other fields such as database 
management systems, operating systems, programming languages, and integrated 
systems. 

Research in database management systems has tried to determine if a single data 
structure can be used to store all data that must be searched. A practical answer has 
been the relational model [6]. Similarly, research in operating systems has tried to 
determine if a single data structure can be used to store all persistent data, and a 
practical answer has been the Unix  “file”, which models devices, sockets, text files, 
binary files, and directories.  Research in programming language has tried to answer 
an even more complex question: can a single structured object be used for all 
computation? The answer in Lisp (and later functional languages such as ML) is an 
ordered list, and in Snobol (and later string processing languages such as Python) a 
hashtable. Designers of EZ [7] have proposed using a nested hashtable as the only 
structured object in a programming language that is integrated with the underlying 



operating system. For example, a directory is simply a persistent table, and changing 
to sub directory, sd, corresponds to looking up the table value associated with key sd. 

 Of course, the reduced abstraction set is not without limitations. Therefore, object-
oriented database management systems have been proposed as alternatives to 
traditional relational systems; IBM has supported structured files in its operating 
system (an idea that was supposed to be extended by the Longhorn Microsoft 
operating system); and object-oriented languages are preferred today to Lisp and 
Snobol. It is for this reason that we have added the other three requirements in 
addition to the requirement of a reduced model set. If we meet all four requirements, 
we improve the state of the art without introducing any limitations. 

We mention the research in other fields to motivate a top-down search for a 
universal structured model that is based on data structures that have been found to be 
sufficient for defining a variety of semantic state, which is the kind of state managed 
by a model. The alternative is a bottom-up approach in which we try to generalize 
models of existing structured-widgets. As the nature of the models should be 
independent of the nature of user-interfaces, the result of the top-down approach 
seems more likely to last in the long-run. In particular, as it is not based on specific 
user-interfaces, it should make it possible to automatically support new kinds of 
structured-widgets. On the other hand, this approach does not distinguish between 
displayed and internal semantic state. The second approach can identify aspects of 
displayed semantic state not captured by existing display-agnostic data models.  

For these reasons, we take an approach in which we: (1) first use the top-down 
approach of creating an interface that models the universal semantics structures 
proposed in other fields; (2) and then take the bottom-up approach of  generalizing 
this interface to connect it to existing model-aware widgets.  

The first step above requires an interface that combines elements of relations, 
nested hastables, and lists. A relation is simply a set of tuples, where each tuple is a 
record. Thus, we can reduce the above goal to supporting records, un-ordered sets, 
ordered lists, and nested hashtables. 

As we are developing a Java-based tool, let us start with an interface containing a 
subset of the methods implemented by the Java Hashtable class: 
  public interface UniversalTable <KeyType, ElementType>{ 
      public Object put(KeyType key, ElementType value); 
      public Object get(KeyType key); 
      public Object remove(KeyType key); 
      public Enumeration elements(); 
      public Enumeration keys();  
  } 

This interface completely models a hashtable because it has methods to (a) associate 
an element with a key, (b) determine the element associated with a key, and (c) 
remove a key along with the associated element. The interface is parameterized by the 
types of the keys and elements. As the element types can themselves be tables, this 
interface also models nested hashtables of the kind supported by EZ. The last two 
methods in the interface seem to have been added by Java for purely convenience 
reasons – they make it possible to treat a hashtable as a pair of collections accessed 
using CLU-like iterators [8].  However, as we show below, they also allow the 
interface to model records, ordered lists, and sets.  



A record is simply a table with a fixed number of keys. Thus, a record 
implementation of this interface simply initializes the table with the fixed number of 
keys and does not let keys to be added or deleted. This is illustrated in the following 
class, which defines a subset of the contents of an email message-header: 

//simulating a record whose fields are not ordered 

public class AMessage implements UniversalTable<String, String> {  
 Hashtable<String, String>  contents = new Hashtable();  
 public final static String SUBJECT = "Subject"; 
 public final static String SENDER = "Sender"; 
 public final static String DATE = "Date";  
 public AMessage (String theSubject, String theSender, String theDate){ 
    put(SENDER, theSender); 
    put(SUBJECT, theSubject); 
    put(DATE, theDate);}  
 public Enumeration keys() {return contents.keys();} 
 public Enumeration elements()  {return contents.elements();} 
 public String get (String key) {return contents.get(key);} 
 public Object put(String key, String val) { 
   if (contents.get(key) != null)return contents.put(key, val); 
   else return null; // record keys are fixed 
 } 
 public String remove (String key) {return null;}  
} 

The above class defines a record consisting of three fields named “Subject”, “Sender” 
and “Date”, and defines a constructor that initializes the value of these fields.  

The two iterator-based methods can be used to model an ordered list. The return 
type, Enumeration, of these methods, is given below: 

  public interface Enumeration{ 
     public boolean hasMoreElements(); 
     public Object nextElement(); 
  } 

As we see above, this type defines an order on the elements to which it provides 
access. Thus, the keys() and elements() methods of our universal table can be 
used to define an order on the keys and elements, respectively, in the table. The class, 
AMessageList, given on the next page, illustrates this concept. Like the previous 
example, this class stores the mapping between keys and elements in an instance of 
the Java Hashtable class.  However, unlike the previous class, it does not return 
these values in the order returned by the underlying Hashtable. Instead, it uses two 
vectors, one for keys and another for elements, to keep track of the order in which 
these values are added to the table, and returns them in this order. If a key is 
associated with a new element, then the new element takes the position of the old 
element associated with the key. When a key is removed, the key and the associated 
element are removed from the vectors storing them. As this code is somewhat 
complicated, we have incorporated it in a generic list class that is parameterized by 
the key and element type and implements UniversalTable.  As a client may wish to 
insert rather than append components, we add another put method to the universal 
table interface that takes the position of the key and element pair as an additional 
argument: 



public Object put(KeyType key, ElementType value, int pos); 

A set can be more simply modeled by overriding the put method to not replace the 
value associated with a key. Thus, we have been able to use a single interface to 
simulate four important structures: nested hashtables, records, ordered lists, and sets. 
Interestingly, we have done so by using a subset of the methods of an existing class – 
the Java Hashtable.  

 
// simulating an ordered list 
public class AMessageList  
          implements UniversalTable<String, AMessage>{ 
 Hashtable<String, AMessage> contents = new Hashtable(); 
 Vector<String> orderedKeys = new Vector(); 
 Vector orderedElements = new Vector(); 
  
 public Enumeration keys() { 
  return orderedKeys.elements(); 
 } 
 public Enumeration elements()  { 
  return orderedElements.elements(); 
 } 
 public AMessage get (String key) { 
  return  contents.get(key);   
 } 
 public AMessage put (String key, AMessage value) { 
  AMessage oldElement = contents.get(key);   
  AMessage retVal = contents.put(key, value); 
  if (oldElement == null) { 
   orderedKeys.addElement(key); 
   orderedElements.addElement(value); 
  } else { 
   int keyIndex = orderedKeys.indexOf(key); 
   orderedElements.setElementAt(value, keyIndex); 
  } 
   
  return retVal;   
 } 
 public AMessage remove (String key) { 
  int keyIndex = orderedKeys.indexOf(key); 
  if (keyIndex != - 1) { 
   orderedKeys.remove(keyIndex); 
   orderedElements.remove(keyIndex);   
  } 
  return contents.remove(key);   
 } 

} 
  

Finally, to make our universal table a model that can notify editors/views and other 
observers, we add the following methods to UniversalTable: 
public void addUniversalTableListener(UniversalTableListener l);  
public void removeUniversalTableListener(UniversalListener l);  

A listener of the table is informed about keys being put and removed: 
    public interface UniversalTableListener { 
        public void keyPut(Object key, Object value);  
        public void keyRemoved(Object key); 
    } 



5   Binding Universal Model to Structured-Widgets 

Let us now take the bottom-up approach of determining if instances of the 
universal table can serve as models of two existing Swing structured model-aware 
widgets: JTree and JTable?  

Let us first consider JTree, which has several requirements:  
1. Its model must  be decomposable into a tree,  
2. Both the internal and leaf nodes should have data items associated with them. 
3. The node data items should be editable, that is, it should be possible to add and 

remove children of composite tree nodes, and modify the data items of all 
nodes.  

To meet requirement 1, we must be able to decompose an instance of a universal 
table into component objects. The instance can be decomposed into its (a) key objects, 
(b) element objects, and (c) key and element objects (Figure 3).  

We provide a special call that can be used by the programmer to make this choice 
for a specific application class, as shown below: 
   ObjectEditor.setChildren(AMessageList.class, ELEMENTS_ONLY); 
   ObjectEditor.setChildren(AMessageList.class, KEYS_ONLY); 
   ObjectEditor.setChildren(AMessageList.class, KEYS_AND_ELEMENTS); 
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Figure 3 Three alternative approaches to decomposing a universal table 

These calls tell the toolkit to decompose instances of AMessageList into its 
elements, keys, or keys and elements. If a key or element is also a universal table, 
then it too can be decomposed in any of the three ways. In the case of 
AMessageList, each element is an instance of AMessage, which implements 
UniversalTable. Therefore, it too can be decomposed into sub-objects.  Figure 4 
shows the decompositions defined by the following calls: 
  ObjectEditor.setChildren(AMessageList.class, ELEMENTS_ONLY); 
  ObjectEditor.setChildren(AMessage.class, ELEMENTS_ONLY); 
  ObjectEditor.setChildren(AFolder.class, KEYS_ONLY); 
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Figure 4 Decomposing three example universal tables into components 

Here, AFolder is a universal table with keys of type AMessage and elements of type 
String, mapping message-headers to the corresponding message texts: 



 public class Folder implements UniversalTable<AMessage, String>  

Thus, AFolder and AMessageList are duals of each other in that the key type of 
one is the element type of the other. In Figure 4, an empty box is attached to an 
internal node to denote its data item, and a box with label S is used to denote a leaf 
node of type String.  

By default, a table is decomposed into its elements. A programmer can define the 
default decomposition for all universal tables by using the following call: 
   ObjectEditor.setDefaultHashtableChildren(KEYS_ONLY); 

Let us now consider the second requirement of associating the tree nodes with data 
items. We could simply use the approach used by JTree of assuming that the 
toString() method of a tree node defines the value. However, to support form user-
interfaces, we use a more complex approach described by the following routines: 

Object getTreeDataItem(node) { 
      if (getLabel() != ””) 
    if (node is leaf) 
    return getLabel(node) + ”:” + node.toString()  
    else // node is element 
  return getLabel(node) 
      else // label = ”” 
    return node 
String getLabel (node) { 
     if node is labelled and label is defined 
    return label 
     else if (node is labelled and node is element) // label not defined for element 
    return getTreeDataItem( key associated with element).toString() 
     else // label not defined for key 
    return ”” 

This algorithm is motivated and illustrated by the tree displays of AMessage,  
AMessageList, and AFolder shown in Figure 5. 

         
 (a) AMessage                    (b) AMessageList          (c) AFolder 

Figure 5 Associating model items with tree nodes 

In Figure 5(c), none of the classes has overridden the toString() method, while in 
Figures 5(a) and 5(b), AMessage and AMessageList have overridden this method to 
return the null string.  In all cases, the labeled attribute is true and the default label is 
the null string. In Figure 5(b), the data items associated with the AMessage elements 
are their keys: “1”, “2” and “3”.  In Figure 5(c), the data items associated with the 



AMessage keys are the values returned by their toString() methods. ObjectEditor 
provides routines to set the values of the labeled and label attributes.  For example, 
the following call says that, by default, the value of the labeled attribute is false: 
   ObjectEditor.setDefaultLabelled(false); 

Similarly, the following call says that the value of the labeled attribute for instances of 
type AMessage is true: 
    ObjectEditor.setLabelled(AMessage, true); 

The exact algorithm for determining the data item of a node can be expected to evolve 
– what is important here is that it depends on a programmer-specified label and takes 
into account whether the node is a key, element, leaf, or composite node. 

Now consider the requirement of allowing nodes to be editable. Inspired by Java’s 
MutableTreeNode class, we add the following method to UniversalTable to 
allow its data items to be changed: 
    public void setUserObject(Object newVal); 

The following code shows what happens when a node’s data item is changed: 
Object edit(node, newValue) { 
     if node is composite 
 node.setUserObject(newValue) 
     else if node is key // leaf key 
          parent_of_node.put (newValue, parent_of_node.get(old key)); 
          parent_of_node.remove (oldKey); 
     else // leaf element 
           parent_of_node.put (key_of_node, newValue); 

Editing the data item of a composite node results in the setUserObject() method 
to be called on the node with the new value. Editing the data item of a leaf element 
results in the key associated with the element to be bound to the new value. Thus, in 
Figure 5(a), changing “Jane Doe” to “Jane M. Doe” results in the “Sender” key to be 
associated with “Jane M. Doe”. Editing the data item of a leaf key results in the 
element associated with the old key to be associated with the new key.  Thus, in 
Figure 5(b), changing the key “1” to “One” associates the first message with “One” 
instead of “1”.    

The following code shows what happens when a new node is inserted into a 
composite node at position index: 

insert (parent, child, index) 
if (keysOnly(parent)) 
     parent.put (child, node.defaultElement(child), index); 
else if (elementsOnly(parent)) 
     parent.put (node.defaultKey(child), child, index); 
else if (keysAndElements(parent)) 
     if (isKey(parent, child, index) or index == size ) // inserting before key or at end 
           parent.put (child, node.defaultElement(child), index/2); 
     else // inserting before element 
           parent.put (node.defaultKey(child), child, (index – 1)/2);  

Based on the position of the inserted element and how the parent of the inserted 
element has been decomposed, the code determines if a key or element is to be 



inserted, and calls methods in the parent to determine the default key or element to 
serve as the new child. The isKey() method determines if the new node is a key 
based on the insertion position. The code assumes two new methods in the universal 
table interface: 
   public KeyType defaultKey(ElementType element); 
   public ElementType defaultValue(KeyType key);  

These two methods are needed only because the universal table constrains the types of 
its key and elements. If it were to accept any object as a key or element, the toolkit 
could simply create a new object as a default key or object: 
   new Object()   

The operation to remove a node is simpler. 
     remove (parent, child) 
          if isKey (child) parent.remove (child) else parent.remove (key of child) 

Finally, ObjectEditor provides a way to specify that a universal table should be 
displayed as a tree:  
   edit (UniversalTable model, JTree treeWidget); 

This operation displays the model in treeWidget. Here, the programmer explicitly 
creates the tree widget, setting its parameters such as preferred size as desired. We 
also provide the operation: 
   treeEdit (UniversalTable model) 

which creates the tree widget with default parameters. Sometimes a whole class of 
objects must be displayed using a particular kind of widget, so the following 
operation is also provided: 
   setWidget (Class universalTableClass, Class widgetClass) 

This call tells the toolkit to always display an instance of universalTableClass 
using an instance of widgetClass.  

Thus, we have met all of the requirements imposed on us by the Swing tree widget. 
Let us consider now the Swing table widget. This widget needs the following 
information: (1) a two dimensional array of elements to be displayed; (2) the most 
specific class of the elements of each column; (3) the names of the columns; and (4) 
whether an element is editable. 

The first requirement can be met by a non-nested or nested universal table. A one-
level universal table (that is a universal table whose children are leaf elements) is 
considered a table with a single row or column based on whether its alignment is 
horizontal or vertical, respectively. A two-level universal table (that is a table 
whose children are one-level tables) decomposed as keys only (elements only) is 
straightforwardly mapped to a table in which a row is created for each key (element) 
of the table consisting of the components of the key (element). A universal table 
decomposed as keys and elements whose keys are leaf values and elements are 1-level 
universal tables is decomposed into a table in which a row is created for each key of 
the object consisting of the key and children of the corresponding element. Currently, 
we do not map other universal tables to table widgets.  The second requirement above 
is met by returning the class of the default element/key depending on how the table 



has been decomposed into children. As column names can sometimes be 
automatically derived from the semantics of the model, but should not be defined 
explicitly by the model, we use the following algorithm for determining them: 

getColumnName(root, columnNum)  
     if numRows (root) > 0 return firstRow(root).column(columnNum).getLabel(); 
     else return “”; 

If the matrix is not empty, it then uses the getLabel() operation defined earlier to 
return the label of a particular column in the first row. Recall that the operation 
returns a value based on the key of an element and the label attribute of the element. 
To meet the last requirement of JTable, we provide the following methods inspired 
by the Swing JTableModel class:     
   public boolean isEditableKey(KeyType key); 
   public boolean isEditableElement(ElementType element); 
   public boolean isEditableUserObject(); 

Figure 6(a) illustrates our schemes for meeting the requirements above using an 
instance of a AMessageList. Here, AMessageList is decomposed into keys and 
elements, AMessage is decomposed into elements, the keys of AMessageList are 
not labeled, and the elements of AMessage are labeled but have no explicit label set 
by the programmer. As a result, each row consists of the atomic String key, and the 
atomic elements of AMessage; and the keys of the elements of AMessage are used as 
column names but not displayed in each row. As in the tree widget case, we provide 
routines to bind a table widget to a model.   

         
Figure 6 Table and Form Displays 

 
The fact that a universal table models a record implies that we can also support 

forms, as these have been previously created automatically from database records [9]. 
However, database records (tuples) are flat. As universal tables are nested, we can 
create hierarchical forms. In fact, we can embed tables and trees in forms. Figure 7 
shows a table embedded in a form. Here, we assume AFolder is decomposed into its 
keys, and AMessage is decomposed into keys. The algorithm for creating a form is: 

displayForm (node) { 
     panel = new Panel 
     setLabel (panel, getLabel(node)) // can put label in the border, add a label widget, …. 
     for each child of node 
               childPanel = display (child) 
     add (panel, childPanel) 
     return panel 



The operation display(node) returns a component based on the widget associated 
with the type of node. For a universal table, the widget is a form, tree, tabbed pane, or 
table. For an atomic type, it is an atomic widget such as a slider, combo-box, text-box 
or checkbox. The algorithm leaves the layout of children in a parent panel as 
implementation defined. In [10], we define a parameterized scheme for arranging 
form items in a grid. 
    Tabbed panes are similarly implemented: 

displayTabbedPane (node) { 
     tabbedPane = new tabbed pane; 
     for each child of node 
               childPanel = display (child) 
     add(tabbedPane, childPanel, getLabel(child)) 
     return panel 

Figure 7(b) shows the tabbed display for folder displayed in 7(a).  
Universal tables are ideal for creating browsers, which are common-place, but have 

not been automatically supported by any user-interface tool. To create a browser, the 
ObjectEditor provides the following call: 
   edit (UniversalTable model, Container[]  containers); 

If the array, containers, is of size n, this call creates an n-level browser. A browser 
always decomposes a universal table into its keys. The top-level model is displayed in 
container[0]. When a key is selected in container[i], it displays the 
associated element in container[i+1], where 0 <= i < n.  Figure 8 illustrates this 
scheme. Here, a three-level browser has been requested, and the top-level model is an 
instance of the class AnAccount, whose keys are strings and elements are of type 
AFolder:  
  public class AnAccount implements UniversalTable <String, AFolder> 

AnAccount has been bound to a tree widget, and AFolder to a table widget. The 
container array passed to the edit routine above consists of the left, top-right, and 
bottom-right windows, in that order. The toolkit shows the two String keys of the 
top-level model in the first container. Selecting the first String key in this container 
results in the associated folder element being displayed in the second container. 
Selecting one of the AMessage keys of this folder results in the associated String 
element to be displayed in the third container. 

 

    
(a)    (b) 

Figure 7 Nested Form and Tabbed Panes 



Like tables and trees, tabs, forms and browsers are structured model-aware widgets 
in that they are composed of components that are bound to children of the model. 
However, in the former, the nature of the automatically generated child components is 
fixed by the designer of the widget, while this is not the case in the latter. For 
example, a browser pane can consist of a table, tree, form, textbox or any other 
component to which a model is bound. The algorithms we have given above are 
independent of the exact widget bound to a model child. Support for such 
heterogeneous model-aware widget-structures is a fundamentally new direction for 
toolkits, but is consistent with the notion of supporting model-aware widgets. Some 
existing structured-widgets such as JTable do allow programmer-defined widgets to 
be embedded in a widget-structure, but the embedded widgets are not themselves 
model-aware widgets automatically supported by the toolkit. For example, a JTable 
or JTree cannot be automatically embedded in a JTable. 

 

 
Figure 8 A Three-Level Browser 

Thus, we have described an approach that allows a single model to be bound to 
both existing and new user-interface components. There are many ways of 
implementing it. From a practical point of view, it should be possible to layer it on top 
of an existing toolkit without requiring re-implementation of existing model-aware 
widgets. This, in turn, requires adapters between the universal table models and the 
existing toolkit models. We could require a separate adapter for each existing toolkit 
model. For example, we could define separate adapters for tree and table models. 
However, we take a more complicated and perhaps less modular approach in which 
we define a universal adapter that can support both existing and new widgets. This 
adapter understands the universal table interface, and implements the interfaces of the 
models of the Swing tree and table widget. This approach allows us to create a single 
adapter tree that can be dynamically bound to multiple widgets concurrently (Figure 
9). The following algorithm describes the nature of the model structure, and how it is 
created: 

UniversalAdapter createUniversalAdapter (Object model)  
      if (model is UniveralTable) 
             UniversalAdapter modelAdapter = new StructureAdapter(model); 
             for each key, element of model 
            UniversalAdapter keyAdapter = createUniversalAdapter(key) 
            UniversalAdapter elementAdapter = createUniversalAdapter(element) 
            keyAdapter.setParent(modelAdapter); 
                      elementAdapter.setParent(modelAdapter); 
            modelAdapter.setKeyElement(keyAdapter, elementAdapter); 



     else return new LeafAdapter(model);              

Unlike the model structure, the adapter structure includes back links from children 
to parents, which are required by the model of the Swing tree widget. These links also 
allow us to find the key associated with an element, which is needed to label the 
latter. Programmers can determine the universal adapter bound to a model, and 
retrieve information kept by it such as the parent adapter, children, and currently 
bound widget. Thus, they don’t have to manually keep such book-keeping 
information.  

Model
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JTreeJTree

JTableJTable
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E2K1 E1 K2 E2

StructureAdapter
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Figure 9 Implementation architecture (LA = LeafAdapter) 

Figure 10 illustrates the use of universal adapters to simultaneously display a 
model using all structured-widgets supported by the toolkit. The model is an instance 
of AnAccessRequest with three fixed String keys, “File,” “Rights,” and 
“Message”, which are associated with elements of type String, String, and 
AMessage, respectively.  

 
  

 
Figure 10 Simultaneously displaying a nested record using all structured widgets 

6   Discussion 

We have described above the interface of a model object, and techniques for 
automatically binding it to both existing and new model-aware structured widgets. 



Thus, in comparison to existing user-interface toolkits, we simultaneously support a 
reduced model set and expanded model-aware widget set. Determining if we meet the 
other two requirements presented in Section 3 requires more analysis.  

We went through (a) first a top-down phase in which we derived the interface of 
the universal table from well-established display-agnostic semantic structures, and (b) 
then a bottom-up phase in which we added additional methods to the interface needed 
by existing widgets. These methods do not increase the functionality of the model – 
their main purpose is to provide information the user-interface needs. For example, 
the user-interface needs to know the default key or element that should be added 
when the user executes the insert command. Similarly, it needs to know which keys 
and elements should be editable so that it can prevent the user from editing its visual 
representation.  

Did the second phase compromise model purity? The answer, we argue, is no. The 
MVC architecture requires that the model be unaware of details of specific user-
interfaces, so that these details can be changed without modifying the model.  It is 
aware, however, that it will have one or more user interfaces – it allows views to be 
attached to it and sends notifications to them. The methods we have added play a 
similar role. The code in them also serves the same purpose as assertions. Assertions 
describe the behavior of an object to programmers, and prevent many mistakes. The 
additional methods we added in the bottom-up phase describe the behavior of an 
object to other objects – in particular the user-interface objects – and prevent 
mistakes. Consider the isEditable() methods.  If a key or element is not editable, 
the model will not change it in the put method. However, an external object such as 
an editor would have to try to indirectly learn this behavior from repeated calls to the 
method. The isEditable() methods make this behavior explicit. Similarly, the 
methods returning the default key/element make the most specific class of the 
key/element apparent, and prevent additions of components of the wrong type. Just as 
notifications are now also used by non user-interface objects, we can expect these 
additional methods to have more general uses in the future. 

Consider now programming effort. Mostly, our model does not require 
programmers to expose any information that is not also required by models of Swing. 
One exception is the information about editability of table data and components. 
While the Swing table model requires this information, the tree model does not. As 
this information not only increases the user-interface functionality but, in the long 
term, can be expected to prevent mistakes, we can say it does not significantly 
increase the programming cost. On the other hand, Swing requires tree nodes to keep 
track of their parent, and indicate if they are leaf nodes. If programmers are not 
careful, a forward (child) link can easily become inconsistent with a back (parent) 
link, leading to significant debugging effort. Such links are kept by our 
implementation but not the models. In addition, our approach uses keys as default 
labels of elements, which works in several user-interfaces such as the ones shown 
here. Thus, in some respects, our approach reduces the programming effort required 
to create models of even existing model-aware widgets. In summary, our approach 
meets the programming effort requirement. 

This is not to say that our design has created the best user-interface tool today. 
There is limited abstraction flexibility in that all models of a widget must implement 
the same toolkit-defined interface. In addition, programmers must manually determine 



the widget to be bound to a model, and set label and other user-interface attributes of 
these widgets. These are also limitations of existing toolkits.  However, certain user-
interface management systems (UIMS) such as [10-13] provide higher abstraction and 
automation. For these tools, our approach provides a method for increasing portability 
and reducing programming cost. We described above a simple approach for 
converting between the universal tables and existing models. If such code is added for 
each toolkit, then by layering on top of the universal table, a UIMS becomes portable 
and does not have to worry about implementing the new model-aware user-interface 
components supported by the universal table. We are planning to use this approach in 
a UIMS we are implementing as part of the ObjectEditor software[10]. For example, 
the properties of an object defined through getters and setters will be mapped to 
record fields, and then, using the scheme described above, to keys and elements of a 
universal table, which acts a proxy between the object and the widget. The interface 
of such an object would be programmer-defined and, hence, not constrained to a 
universal table. Thus, this approach assumes that a structured widget is linked in a 
chain to two models: a toolkit-defined proxy-model and a client-defined real-model.  
A UIMS can automatically translate between the events and operations of the two 
models, making the programmer oblivious of the toolkit-defined model.  It is also 
possible to use this proxy-based approach in a manually-created user-interface – but 
the programmer would have to be responsible for translating between the two models. 
By reducing the number of toolkit-defined models, our approach reduces the number 
of translators that have to be written in the proxy-based approach.  
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JTreeJTree JTableJTable

Toolkit-Defined

Actual ModelActual Model

U
IM

S

Programmer-Defined

 

Figure 11 Interfacing with a UIMS to Support Programmer-Defined Types 

To conclude, at the most abstract level, our message is that a toolkit should support 
both model and editor substitutability. At the next-level are the requirements of 
reduced model set, same or increased model-aware widget set, same or decreased 
programming effort, and model purity. The universal table interface and methods for 
mapping it to sequences, sets, records and nested tables and binding it to tables, trees, 
forms, tabbed panes, and browsers provide one approach to meeting these 
requirements. More work is required to extend and refine the requirements and 
approach, use and evaluate the approach, and incorporate it in higher-level tools. 
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Questions 

 

Yves Vandriessche 
Question: How do you finally handle the atomic objects? 
Answer: We don't, there are a lot of ways to handle this and they keep being 

reinvented every day. 
 
 
Remi Bastide 
Question: Most modern dynamic languages, e.g. Javascript, use the dictionary as 

the basic data structure and programmers tend to have their API towards using 
dictionaries. This conflicts your arguments. 

Answer: Most of these string-based languages actually come from SNOBOL.  
 
Morten Harning: 
 
Question: Would it not be obvious to handle interface to user defined Java classes 

by treating objects not implementing Universal Table interface as Universal Tables 
by interpreting setters and getters as keys in a Universal Table.  

 
Answer: Absolutely. This is actually what we started doing, by only relying on 

Java naming conventions ended up being too messy.   
 


