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ABSTRACT 
Computer analysis and simulation based design optimization 
requires more computationally efficient global optimization 
tools.  In this work, a new global optimization algorithm based 
on design experiments, region elimination and response 
surface model, namely Approximated Unimodal Region 
Elimination Method (AUREM), is introduced.  The approach 
divides the field of interest into several unimodal regions 
using design experiment data; identify and rank the regions 
that most likely contain the global minimum; form a response 
surface model with additional design experiment data over the 
most promising region; identify its minimum, remove this 
processed region, and move to the next most promising region. 
By avoiding redundant searches, the approach identifies the 
global optimum with reduced number of objective function 
evaluations and computation effort.  The new algorithm was 
tested using a variety of benchmark global optimization 
problems and compared with several widely used global 
optimization algorithms. The experiments results present 
comparable search accuracy and superior computation 
efficiency, making the new algorithm an ideal tool for 
computer analysis and simulation black-box based global 
design optimization. 

1 INTRUDUCTION 

1.1 Background 

With the rapid advances in Computer Aided Design, 
Engineering and Manufacturing (CAD/CAE/CAM), virtual 
prototyping of a new design using computer modeling, 
1
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analysis and simulation tools has become more common.  The 
computational function modules in CAD/CAE/CAM, 
including finite element analysis (FEA), computational fluid 
dynamics (CFD), kinematics/dynamics analysis, motion 
animation and CNC tool path simulation, automatically 
evaluate and accurately predict the performance of a 
mechanical design.  It is quite natural to further extend the 
practice to allow design optimizations be carried out using 
these virtual-prototyping black-boxes as the objective and 
constraint functions.  These optimizations are used to identify 
the best combination of design parameters in the complex; 
black-box based multidisciplinary design problems.  However, 
this type of optimizations often has non-unimodal objective 
function and non-convex feasible regions, requiring special 
global optimization search tools. Conventional optimization 
methods, such as conjugate gradient, quasi-Newton, and 
sequential quadratic programming algorithms, which perform 
brilliantly on a typical local optimization problem, are often 
trapped into a local minimum and unable to identify the global 
minimum of the design problem. On the other hand, the 
computation intensive nature of engineering analysis and 
simulation software makes the use of many mature stochastic 
global optimization methods very difficult due to the need of 
extensive and costly evaluations of the objective and 
constraint functions (Wang et al., 2001).  An effective method 
for identifying the global optimum with a reduced number of 
objective function evaluations is needed to make this new 
paradigm for design automation and optimization viable. 
Copyright © 2007 by ASME
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1.2 Related Work 

Efficient global optimization algorithms have found a wide 
range of applications in sciences and engineering.  Much 
research has already been carried out in their continuous 
development and improvements. Widely known global 
optimization techniques include stochastic based algorithms, 
including Simulated Annealing (SA), Genetic Algorithms 
(GAs), Particle Swarm Optimization (PSO), and Ant Colony 
(AC) optimization method, as well as metamodel and 
approximation based global optimizations.  

Simulated annealing was introduced by Kirkpatrick et al. 
(1983), as an intriguing technique for optimizing highly 
nonlinear functions of many variables and multiple local 
minima. As a probabilistic combinatorial optimization 
technique, it is based on analogy to the statistical mechanics of 
disordered systems. The method searches for the global 
optimum through a process that simulates the physical 
annealing process of a solid.  Since then simulated annealing 
has been used in various combinatorial optimization problems, 
and has been particularly successful in solving various global 
optimization problems in circuit design, truss design, robotic 
path planning, and automated generation of sculptured surface 
models. 

Genetic Algorithms were introduced by Holland (1975), 
and further developed by him and many others. Genetic 
Algorithms are a class of search procedures based on the 
mechanics of natural genetics and natural selection (Goldberg,  
1989).  In the genetic processes of biological organisms, 
natural populations evolve according to the principles of 
natural selection and survival of the fittest over many 
generations.  By mimicking this process, genetic algorithms 
are able to "evolve" solutions to real world problems, if these 
problems are suitably encoded (Holland, 1975). Genetic 
algorithms strongly differ in conception from other search 
methods, including traditional optimization methods. The 
basic difference is that while other methods always process 
single points in the search space, genetic algorithms maintain 
a population of potential solutions (Renner et al., 2003).  
Genetic Algorithms have been used widely in solving 
engineering optimization problems.  

Particle Swarm Optimization is a recently introduced 
global optimization technique that has been used with great 
success in the Computational Intelligent area.  The method is a 
population based stochastic optimization technique, developed 
by Kennedy and Eberhart (1995) and inspired by social 
behavior of bird flocking or fish schooling.  PSO shares many 
similarities with evolutionary computation techniques such as 
GAs.  The system is initialized with a population of random 
solutions and searches for optima by updating generations.  
However, unlike GA, PSO has no evolution operators such as 
crossover and mutation.  In PSO, the potential solutions, 
called particles, fly through the problem space by following 
the current optimum particles.  
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 Colony optimization algorithms are multi-agent 
s in which the behavior of each ant is inspired by the 
g of the real ants to solve optimization problems 
ri, 2006).  The idea of imitating the behavior of ants for 
 good solutions to combinatorial optimization was 
d by Dorigo (1992).  The principle of these methods is 
n the way ants search for food and find their way back 
nest.  During trips of ants a chemical trial called 
one is left on the ground.  The role of pheromone is to 

he other ants towards the target point.  

ang et al. (2004) proposed a new global optimization 
 for expensive black-box functions, assuming the 
space cannot be confidently reduced. The method is 
ed based on novel mode-pursuing sampling (MPS) 
 which systematically generates more sample points in 

ighborhood of the function mode while statistically 
the entire space. The method is applicable to both 
ous and discontinuous functions and applies to both 
ined and unconstrained optimization problems.   

re also exist many global optimization methods that 
tly take into account the high computation cost 
d with the evaluation of the objective and constraint 
ns.  These techniques can be roughly divided into two 
, sequential and non-sequential methods. Non-
tial method are aimed at modeling the whole design 

ith help of dedicated Design of Experiments (DOE) 
ues, using a response surface models (Pary et al., 
 This approximation-based optimization method has 
d many attentions in recent years. The approach 
imates computation-intensive functions with a simple 
cal model, or metamodel.  Metamodeling evolves from 
l DOE theory, in which polynomial functions are used 

onse surfaces or metamodels to considerably reduce the 
r of objective and constraint function evaluations.  A 
ve approach is often used to improve the accuracy of 
deling and the search.  Today, solving complex design 
ign optimization problems using computation intensive 

ter models that are constructed using advanced 
AE/CAM systems is becoming increasingly common.  
er, when the dimension of the search increases and/or 
e feasible region of the search presents irregular shape, 

tion of this method becomes increasingly difficult.  A 
tial method, on the other hand, divides the entire design 
nto a number of smaller and more manageable regions 
entifies the optimum in each region based on their 
od of containing the global optimum. This 

imated unimodal region elimination scheme is more 
 for multidimensional design spaces containing many 
le areas.  Both metamodeling and region elimination 
mising computationally efficient global optimization 
s that focus on the accurate identification the global 
m with as few objective function evaluations as 
e.  
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Response surface method (RSM) is used for solving a 
complex optimization problem through approximation, in 
which a regression model is used to fit a series of planned 
design of experiments data points to estimate the complex 
relationship between the design variables and the objective 
functions (Montgomery, 2001).  RSM was initially developed 
to represent the relationship between the input and the output 
of a physical experiment by a simple mathematical expression.  
Later the use of RSM has been extended to engineering 
analyses that involve the execution of complex computer 
analysis codes, where RSM found many applications to 
alleviate the computational burden of such analyses (Kaymaz 
et al., 2005).  Having been used effectively as metamodels 
(Barton, 1998), RSM considers the correlation between the 
parameters of a process and the obtained results as surfaces in 
the dimensional space of the variables (Tiernan et al., 2005). 
The simulation community has used metamodels to study the 
behavior of computer simulations for over twenty-five years. 
The most popular techniques have been based on parametric 
polynomial response surface approximations (Barton, 1998).  
RSM bears a number of appealing features for analysis and 
simulation based global optimization, including robustness, 
supporting distributed computation, providing variable 
sensitivities, and allowing both continuous and discrete 
variables (Kuehl, 2000). An improved RSM algorithm, 
Adaptive Response Surface Method (ARSM) was introduced 
in the group’s earlier research (Wang et al., 2001), to improve 
the accuracy and efficiency of global optimal design.  Tests on 
benchmark optimization problems and on industrial fuel cell 
component and system design optimizations (Wang et al., 
2001) showed considerable improvements. However, the 
robustness and capability of the method to handle more 
complex design problems need to be improved.  

In this work, a new sequential, global optimization 
algorithm based on design experiments, region elimination 
and response surface model, namely Approximated Unimodal 
Region Elimination Method (AUREM), is introduced.  The 
method divides the design space into many sub-areas to ensure 
that the optimization in the sub-area becomes a unimodal 
function so that a second order polynomial response surface 
model can be used to replace the black box objective function 
of numerical analysis and simulation, and conventional 
optimization algorithms can be used to locate its minimum.  
The search starts from the most promising sub-area, and 
identify the global optimum of the design problem by 
comparing the optima of all sub-areas processed.  In this 
paper, the new algorithm and its implementation are first 
explained.  Tests on the robustness and efficiency of the new 
algorithm are carried out using a number of benchmark 
problems, in comparison of several other global optimization 
methods.   

To illustrate the advantages of this newly introduced 
algorithm, a number of benchmark global optimization 
problems were solved using the newly proposed global 
optimization algorithm and other reviewed global optimization 

algorithms.  
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AUREM obtained better results in most cases, 
ntly out performed the stochastic global 
echniques, making it an ideal tool for identifying 
esign using complex, black-box based computer 
 simulation in multidisciplinary design 

  

LIMINATION IN GLOBAL OPTIMIZATION  

Global Optimization Problem  
isciplinary design optimization, the objective 

he optimization is evaluated through complex; 
sed computer analysis and simulation. These 
ad to a group of experiment data 

{ }( , ( )) :i i iS f Ax x x ∈  

1 2, , , )i i inx x x , and n  is the dimension of the 

m under study; ix  ( 1, , )i m=  is the ith value 

 variables in the n-dimensional space with n 
nents; ( )i iy f x=  is the value of the objective 

oint ix ; and A  is the field of interest or the 

n of the design optimization problem.  If n=2, 
terest and several points of the design variable 
 be illustrated as shown in Fig. 1.   

Xi

 
eld of Interest and Points of Design Variable 

orms our design space, and several design points 
e design space randomly.  In addition, the 
ction, ( )if x  is normally in an implicit form, 
, and expensive to calculate since complex 
lysis and simulation are needed to obtain its 
bjective of this work is to identify the global 

( )if x  with a small or considerably reduced 
se black box numerical function evaluations. 
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2.2 Major Steps of the Proposed Algorithm 

The proposed search algorithm consists of the following major 
steps: 

1) Generate a set of DOE data 
points, ( )if x ( 1, , )i m= over the field of interest; 

2) Divide the field of interest S  into many unimodal 
regions; 

3) Identify the region that most likely contains the 
global minimum, and rank the others; 

4) Refine the most promising region by adding more 
experiment points in the region, and introduce an 
RSM approximation model over the region; 

5) Carry out design optimization in the most promising 
unimodal region to obtain the design optimum of the 
region and to remove the processed region from the 
field of interest; 

6) Repeat the previous steps until the local optima of the 
most promising unimodal regions are all located, and 
the global optimum is identified from these local 
optima. 

3 METAMODELING FOR THE DIVIDED REGION 

Properly designed experiments are essential for effective data 
sampling. In engineering, traditionally a single parameter is 
varied (perturbed) and the effects are observed. Alternatively, 
combinations of factor settings are assigned either 
systematically (e.g. grid search) or randomly to provide an 
alternative for comparison. Experimental design techniques 
which were developed for physical experiments are being 
applied to the design of computer experiments to increase the 
efficiency of these analyses (Simpson et al., 2001). 

 
In this work, due to the implicit form of the black box 

computer analysis and animation tools, a systematic collection 
and evaluation on the values of objective function in the 
global design optimization are carried out using DOE method.  
RSM is used for solving a complex optimization problem 
through approximation, in which the regression model is used 
to fit a series of planned experiments to estimate the complex 
relationship between design variables and objective functions.  

  
Suppose that we are concerned with a system involving 

response y  which depends on the given input variables 

1 2, ,..., nx x x and their relations can be formulated as 

1 2( , ,...., )ny f x x x=  

where the form of 1 2( , ,...., )nf x x x is unknown and perhaps 
very complicated. The response surface method assumed that 
f  can be approximated by a polynomial function of low 
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er. For quadratic approximation, the second order response 
face model has the form: 

2
0

1 1 1
y=

n n n n

i i ii i ij i j
i i i j i

x x x xβ β β β ε
= = =

+ + + +∑ ∑ ∑∑
≺

    (1) 

ere ε is the disturbance or model error, and the estimators 

0 , ,i iiβ β and ijβ is determined using least squares regression 
alysis by fitting of the response surface approximation to 
ult data. 

The main aim in the formation of the RSM is to fit a 
ponse surface as closely as possible.  The coefficients of the 
ponse surface using least square method are 

         ( ) 1/ /b X X X y
−

=                              (2) 

ere X denotes the design matrix comprising the 
perimental points, and y represents the response vector 
tained from the performance function corresponding to the 
perimental points (Myers, 1971). The use of RSM has many 
vantages. The method works very well for unimodal 
ctions, reduce the number of function evaluations, and 

nsiderably increase the computation efficiency. 

EGION ELIMINATION ALGORITHM 

p 1: introduce finite grids in the space of interest, and 
tain a set of design experiment data, ( )if x ( 1, , )i m=  
ng DOE method on the selected grid points; set unimodal 
ion counter 1l = . 

p 2:  for unimodal region, l carry out the following 

p 2.1: find the minimum function value and its coordinates 

{ }( ) min ( ) : ( , ( ))l
i i iy f f Sx x x ∈  

d denote, 
( ) ( ) ( )

1 2( , , , ) : ( )l l l l l l
nx x x f yx x= =  

there are several x ’s corresponding to ( )ly , just choose 

e. Put ( ) ( )( , ( ))l lfx x into lC , and ( )lx into x
lC . Carry 

t the following partition: 

1 ll
S C

=
= ∪ ; 

f is continuous and the number of elements in x
lC  is 

ater than 2, then the corresponding area of x
lC  exists at 

st one minimum.  At each round, these partitions can be 
ked based on their possibility to contain the global 
nimum from high to low as 1 2 ,  , , ,x x x

lC C C  
Copyright © 2007 by ASME
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Step 2.2: Use the coordinates of the minimum function 
value l

kx  ( 1:k n= ) as the center point to start the search; and 

assign the function value at this center point as ( )lq y=  

Step 2.3: Identify the turning points (when ( )f qx ≺ , go 
back in the opposite direction) of the unimodal region through 
a search for the next point x  in S  by moving along the 
positive and the negative directions of the coordinates (e.g. 
moving right, left, up, and down if n = 2), comparing the 
function value at each point with the previous function value.    

If ( )f qx ≥ , put ( ( )), fx x  into lC  and x  into x
lC , and 

let ( )q f x= ; go to Step 2.3 for next design space 
coordinate. 

Step 2.4: Subtract the identified unimodal region lC  from the 

design space S  until all of the points in the design space S are 
visited. Specifically, Let   

\ lS S C=  

 If S ≠ ∅ , let 1l l= + , and go to Step 2, 

Step 3: After visiting the entire space of interest S , and 
obtaining divided regions x

lC  by dividing   S  into x
lC , 

generate a field lA  which covers the area 

of  ( 1,2, )x
lC l = . 

Consider the first several x
lC , which are most likely to contain 

the global minimum      

i 1 i n

i 1 i n

=min{x :(x , ,x , x ) } 

=max{x :(x , ,x , x ) } 

l l l l x
i l

l l l l x
i l

l C

r C

∈

∈

 

where il and ir  are the minimum and the maximum values of 

the points in x
lC , which can be determined using the relations 

given previously. 

1 1[ , ] [ , ]l n nA l r l r= × ×  

Let lA A A= ∩ . 

Carry out new design experiments in A , and denote the set of 
experiment data contained in A  as S , repeat Step 2.   

Terminate the process when the sub region lA  can no longer 
be changed. 

Step 4: For x
lC , denote; 
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{ }min | |,| |, 1, ,l l
i i i ix x x x i nα − += − − = , 

where; 

{ }min :  are the  coordinate of the , xx x x ith x x Ci i i l
− = ∈ and; 

{ }max :  are the  coordinate of the , xx x x ith x x C
i i i l
+= ∈  

Let 
( ) ( )

2
l

i jijx x e eα
= ± ±  

where ( 1, , )i i ne = = is a unit vector of the ith coordinate 
direction in R 

If ( )( ) ( )lf fijx x≥ , next 

else 
end 
Let 0.5α α= , repeat the previous step until 1α = . 

For a two dimensional problem, n = 2, the process is 
illustrated in Fig. 2.  The example shows how a convex and 
unimodal region is obtained by from a large feasible area.  
Since we have the center point, xl, which represents roughly 
the minimum point in that sub-region.  By obtaining ix−  and 

ix+  we can find the initial value of α, using 

{ }min | |,| |, 1, ,l l
i i i ix x x x i nα − += − − = . By drawing a 

circle (since n = 2) with radius α, one can obtain the four 
extreme coordinate points, two in each dimension, as the circle 
intersects with the axes of the coordinates, represented as 

1 2 3, ,X X X and 4X .  It is desirable to have more data points 
inside the circle so that the approximated fitted model will be 
more accurate.  More points can be obtained using the 
equation for calculating 

ijx  as previously mentioned.  These 

are the middle points on the straight lines that connects 

1 2 3, ,X X X and 4X , as shown in Fig. 2.  By evaluating the 
function values at all of these points and compare them with 
the function value at the center point, a decision can be made 
weather further reduction of α and a repeat of the same 
procedure are needed, or the current value of α can be 
accepted.   For a problem with dimension n > 2, α is the radius 
of an n-D spherical region.  

Step 5:  Create spheres with radius α  that hold the unimodal 
region inside and use RSM to construct the response surface 
and find its local minimum using local optimization methods. 
Specifically, denote ( ):x

l
lSp x x x α⎧ ⎫= ≤⎨ ⎬

⎩ ⎭
− ; find the local 

minimum in each x
lSp  by using the second order response 

surface model. 
Copyright © 2007 by ASME
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Step 6: Find the absolute minimum ( )* *f x among the local 

minimum ( )* *
lcf x  and identify it as the global minimum of the 

optimization problem. 

X4

X2

X3

X1

X

X(l)

 
Figure 2: Reduction of Identified Unimodal Area 

 

5 TESTING USING BENCHMARK PROPLEMS 

To access the performance of the newly introduced AURE 
algorithm, in terms of its ability to provide correct search 
results, robustness, and computation efficiency, the method 
has been tested using a variety of commonly used benchmark 
optimization problems. Furthermore, its performance is 
compared with other well-known global optimization search 
methods, including SA, GA, PSO, and MPS.  The results are 
presented in this section. 

5.1 Benchmark Test 1 - Alpine Function 

First the Alpine function is used as the objective function of 
the optimization in the tests due to its many local minima and 
one distinct global minimum. The function is given in Eq. 3, 
and illustrated in Fig. 4. The results are presented in Table 1.  

 

[ ]
( ) ( ){ 1 1

1 max

sin ... sin ...
1 ( ,..., ) 0,
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f x x × ×

∈
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Figure 3: Flow diagram of the proposed method (AUREM)  
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spheres with radius α  
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Perform local optimization 
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Y 
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N 

Compare ( )* *
lcf x  and 

find the absolute 
minimum ( )* *f x  
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1C  
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N 
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Figure 4: The objective function of benchmark test 1 

 
 

Table 1: Test Results on Alpine function 

Calculated Optimum, X* and 
f(X*) 

Algorithm 
Used 

1x  2x  1 2( , )f x x  

CPU 
time  
(sec) 

PSO 7.9180 4.8046 -6.1291 19.738 

GA 7.9171 4.8151 -6.1295 13.649 

MPS 7.9040 4.8356 -6.1277 20.139 

SA 7.9171 4.8158 -6.1295 12.097 

SQP 0.0000 10.000 0.0000 2.5100 

AURE 7.9082 4.8244 -6.1290 7.9180 

5.2 Benchmark Test 2 - Banana Function 

Rosenbrock’s valley or Banana function is a classic test 
problem for optimization algorithms due to its challenge on 
the convergence and robustness of the algorithm. The global 
minimum is inside a long, narrow, parabolic shaped flat 
valley, and converges to the solution at point (1, 1) is well 
known to be difficult. The Banana function is given in Eq. 4, 
and illustrated in Fig. 5.  The results are presented in Table 2. 

( ) ( )2 22
1 2 2 1 1( , ) 100 1f x x x x x= − + −         (4) 

5.3 Benchmark Test 3 - Beak Function 

The Beak function is used as a benchmark problem due to it’s 
the challenge to find its global minimum. The Beak function is 
given in Eq. 5, and illustrated in Fig. 6.  The results are 
presented in Table 3. 
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Figure 5: The Objective function of benchmark test 2 

 
 

Table 2: Test Results on Banana Function 

Calculated Optimum, X* and 
f(X*) 

Algorithm 
Used 

1x  2x  1 2( , )f x x  

CPU 
time  
(sec) 

PSO 1.0005 1.0111 0.0011 40.819 

GA 1.0796 1.1656 0.0063 10.325 

MPS 1.0244 1.0448 0.0027 58.141 

SA 0.9531 0.9085 0.0022 31.950 

SQP - - - - 

AURE 1.0476 1.1000 0.0029 10.232 
 

2 2
1 2

2 2 2 2
1 1 1 2

( ( 1) )2
1 2 1

( ) (1( 1) )3 51
1 1

( , ) 3(1 )
110( )

5 3

x x

x x x x

f x x x e
x x x e e

− − +

− − + −

= −

− − − −
   (5) 
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Figure 6: The Objective function of benchmark test 3 
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Table 3: Test Results on the Beak Function 

Calculated Optimum, X* and 
f(X*) 

Algorithm 
Used 

1x  2x  1 2( , )f x x  

CPU 
time  
(sec) 

PSO 0.2283 -1.6255 -6.5511 38.145 

GA 0.2303 -1.6261 -6.5511 23.924 

MPS 0.2398 -1.6140 -6.5486 16.626 

SA 0.2283 -1.6255 -6.5511 19.378 

SQP -0.0000 -3.0000 -0.2500 0.1200 

AURE 0.2467 -1.7863 -6.1928 9.5730 

5.4 Benchmark Test 4 - Goldstein and Price Function 
(GP) 

Goldstein and Price function is often used as a benchmark 
function due to the difficulty to find its global minimum; the 
function is given in Eq. 6, and illustrated in Fig. 7.  The results 
are presented in Table 4. 

2 2( , ) 1 ( 1) (19 14 3 141 2 1 2 1 1 2
2 26 3 )(30 2 3 ) (18 321 2 2 1 2 1

2 212 48 36 27 )1 2 1 2 2

f x x x x x x x

x x x x x x

x x x x x

= + + + − + − +

+ + − − +

+ − +

   (6)  

 
Figure 7: The Objective function of benchmark test 4 

 
Figure 8: The Objective function of benchmark test 5 
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Table 4: Test Results on Goldstein and Price Function  

Calculated Optimum, X* and 
f(X*) 

Algorithm 
Used 

1x  2x  1 2( , )f x x  

CPU 
time  
(sec) 

PSO -0.0003 -0.9999 3.0005 19.829 

GA 0.0005  -0.9999 3.0001 11.837 

MPS 0.0022 -0.9940 3.0010 43.500 

SA -0.0000 -1.0000 3.0000 19.630 

SQP - - - - 

AURE -0.0007 -0.9997 3.0002 8.1560 

5.5 Benchmark Test 5 - Branin function (BR) 

Branin function is also used as a benchmark function due to 
the difficulty to find its global minimum; the function is given 
in Eq. 7, and illustrated in Fig. 8.  The results are presented in 
Table 5. 

           
( )( )

( )( )

22 2
2 1 1

1

( ) - (5.1 4 ) 5 - 6

10 1 1 8 cos 10

f x x x x

x

π π

π

= + +

− +
       (7) 

 
 

Table 5: Test Results on Branin Function  
 

Calculated Optimum, X* and 
f(X*) 

Algorithm 
Used 

1x  2x  1 2( , )f x x  

CPU 
time  
(sec) 

PSO -3.1403 12.2790 0.3979 28.781 

GA -3.1418 12.2767 0.3979 15.112 

MPS -3.1444 12.0996 0.4311 14.669 

SA -3.1416 12.2750 0.3979 20.189 

SQP -3.1416 12.2750 0.3979 0.6600 

AURE -3.1040 12.2119 0.4053 14.300 

5.6 Benchmark problem 6- Schaffer's Function (F6) 

Schaffer's, or what is known as F6, function has been 
considered due to the challenge to converge to its global 
minimum. The function is given in Eq. 8, and illustrated in 
Fig. 9.  The results are presented in Table 6. 

 
 

( )

( )( )

22 2
1 2

1 2 22 2
1 2

sin
( , ) 0.5

1 0.01

x x
f x x

x x

⎛ ⎞+⎜ ⎟
⎝ ⎠= +

+ +
            (8) 
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Figure 9: The Objective function of benchmark test 6 

 
 

Table 6: Test Results on Schaffer's Function  
 

Calculated Optimum, X* and 
f(X*) 

Algorithm 
Used 

1x  2x  1 2( , )f x x  

CPU 
time  
(sec) 

PSO -2.0000 -0.8296 -0.4122 20.149 

GA 1.64062 1.41405 -0.4122 8.4920 

MPS 0.0022 -0.0027 0.0000 9.9420 

SA -1.9024 -1.0364 -0.4122 16.704 

SQP 0.0000 0.0000 0.0000 4.0600 

AURE 2.1497 -0.2681 -0.4122 5.0220 

5.7 Benchmark problem 7- Griewank function (GN) 
Griewank function is another benchmark problem that we 
have tested in this work. Griewank function is given in Eq. 9, 
and illustrated in Fig. 10.  The results are presented in Table 7. 

       

( )
( )

2 2
1 2

1 2
2

1

( , )
200-cosx cos 1

2

x x
f x x

x

+
=

⎛ ⎞⎛ ⎞ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

        (9) 
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Figure 10: The Objective function of benchmark test 7 

 
 

Table 7: Test Results on Griewank Function  
 

Calculated Optimum, X* and 
f(X*) 

Algorithm 
Used 

1x  2x  1 2( , )f x x  

CPU 
time  
(sec) 

PSO -0.0006 0.0014 0.0000 41.910 

GA 0.0015 -0.0015 0.0000 21.451 

MPS -0.0146 0.0705 0.0014 30.766 

SA -0.0000 -0.0000 0.0000 26.668 

SQP --- --- --- --- 

AURE -0.0009 0.0007 0.0000 12.562 

5.8 Benchmark problem 8- Generalized polynomial 
function (GF) 

Generalized polynomial function is used in the test also due to 
the challenge of convergence to the global minimum.  The 
Generalized polynomial function is given in Eq. 10, and 
illustrated in Fig. 11.  The results are presented in Table 8. 

 

( )( ) ( )( )
( )( )

22 2
1 2 1 2 1 2

23
1 2

( , ) 1.5 1 2.25 1

2.625 1

f x x x x x x

x x

= − − + − − ×

− −
       (10) 
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Figure 11: The Objective function of benchmark test 8 

 
Table 8: Test Results on Generalized Polynomial Function  

 
Calculated Optimum, X* and 

f(X*) 
Algorithm 

Used 

1x  2x  1 2( , )f x x  

CPU 
time  
(sec) 

PSO 2.0000 0.1703 0.5233 13.990 

GA 2.0000 0.1701 0.5233  18.967 

MPS 2.0000  0.1702 0.5233 272.991 

SA 2.0000 0.1701 0.5233 16.694 

SQP 2.0000 0.1700 0.5300 3.1500 

AURE 2.0000 0.1500 0.5126 9.3440 
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5.9 Summary of Test Results 

The results from the performance tests carried out in this work 
have demonstrated that the newly introduced AURE method 
has many advantages.  The algorithm is capable of solving the 
challenging benchmark problems in global optimization; 
locating the optimum with comparable accuracy; and 
obtaining the results with much reduced computation time.   

The use of DOE and RSF, and the avoidance of redundant 
examination of searched areas all contributed to the improved 
performance.  Historically, the benchmark problems 
commonly used, and adopted here, are all limited to two 
design variables for the ease of illustration.  It is expected that 
the computation efficiency advantage of the AURE approach 
can be more significant with the increased number of design 
variables and/or more computation demanding objective 
functions.  Specifically, the comparison studies showed that;  
 Performance or convergence accuracy  

The new AURE method can locate the global minimum 
more accurately or reach comparable accuracy in most of 
the test cases (7 out of 8) and obtain slightly less accurate 
result in one of the 8 cases.   

 Robustness  
The new AURE method is able to handle all challenge 
local/global optimization problems. 

 Computational efficiency 
The CPU time needed by the new AURE method is only 
50.44% of GA, 49.05% of SA, 35.90% of PSO, and 
15.46% of MPS in average. 

In Table 9, the relative strength of each competing algorithm 
is illustrated.  The minimum objective function value reached 
by all algorithms in the global minimization and the 
computation (or CPU) times needed by the SA algorithm to 
solve the 8 benchmark problems are used as the references.   
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
           
 
 
 
 

Method  GA PSO MPS SA SQP AURE 
Obj. Fun. Value -6.1295 -6.1291 -6.1277 -6.1295 0.0000 -6.1290 Alpine 

Function Rel. Comp. Time 1.13 1.63 1.66 1.00 0.21 0.65 
Obj. Fun. Value 0.0063 0.0011 0.0027 0.0022 --- 0.0029 Banana 

Function Rel. Comp. Time 0.32 1.28 1.82 1.00 --- 0.32 
Obj. Fun. Value -6.5511 -6.5511 -6.5486 -6.5511 -0.25 -6.1928 Beak 

Function Rel. Comp. Time 1.23 1.97 0.86 1.00 0.01 0.49 
Obj. Fun. Value 3.0001 3.0005 3.001 3.0000 --- 3.0002 GP 

Function Rel. Comp. Time 0.60 1.01 2.22 1.00 --- 0.42 
Obj. Fun. Value 0.3979 0.3979 0.4311 0.3979 0.3979 0.4053 BR 

Function Rel. Comp. Time 0.75 1.43 0.73 1.00 0.03 0.71 
Obj. Fun. Value -0.4122 -0.4122 0.0000 -0.4122 0.0000 -0.4122 F6 

Function Rel. Comp. Time 0.51 1.21 0.56 1.00 0.24 0.30 
Obj. Fun. Value 0.0000 0.0000 0.0014 0.0000 --- 0.0000 GN 

Function Rel. Comp. Time 0.80 1.57 1.15 1.00 --- 0.47 
Obj. Fun. Value 0.5233 0.5233 0.5233 0.5233 0.5300 0.5126 GF 

Function Rel. Comp. Time 1.14 0.84 16.35 1.00 0.19 0.56 
       

Table 9: Algorithm Performance Comparison

Note: Obj. Fun. Value: Objective Function Value;    Rel. Comp. Time: Real Computation Time. 
Copyright © 2007 by ASME
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6 CONCLUSIONS 

In this work, a new global optimization algorithm based on 
design experiments, region elimination and response surface 
model, namely Approximated Unimodal Region Elimination 
Method (AUREM), is introduced.  The approach divides the 
field of interest into several unimodal regions using design 
experiment data; identify and rank the regions that most likely 
contain the global minimum; form a response surface model 
with additional design experiment data over the most 
promising region; identify its minimum, remove this 
processed region, and move to the next most promising region. 
By avoiding redundant searches, the approach identifies the 
global optimum with reduced number of objective function 
evaluations and computation effort.  The new algorithm was 
tested using a variety of benchmark global optimization 
problems and compared with several widely used global 
optimization algorithms. The experiments results present 
robust performance, comparable search accuracy and superior 
computation efficiency, making the new algorithm an ideal 
tool for computer analysis and simulation black-box based 
global design optimization 
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