
ISSN 1749-3889 (print), 1749-3897 (online)
International Journal of Nonlinear Science

Vol.9(2010) No.4,pp.414-421

Analytical Solution of BVPs for Fourth-order Integro-differential Equations
by Using Homotopy Analysis Method

M.Saeidy1, M.Matinfar2, J.Vahidi3 ∗
1,2,3Department of Mathematics, Mazandaran University, Babolsar, Iran

(Received 8 October 2009, accepted 19 January 2010)

Abstract:An analytic technique, the homotopy analysis method (HAM), is applied to obtain the approximate
analytical solutions of fourth-order integro-differential equations. The homotopy analysis method (HAM) is
one of the most effective method to obtain the exact and approximate solution and provides us with a new way
to obtain series solutions of such problems. HAM contains the auxiliary parameter ℏ, which provides us with
a simple way to adjust and control the convergence region of series solution. It is shown that the solutions
obtained by the Adomian decomposition method (ADM) and the homotopy-perturbation method (HPM) are
only special cases of the HAM solutions. we have shown that fourth-order boundary value problems can be
transformed into a system of differential equations and integro-differential equation, which can be solved by
using homotopy analysis method. Several examples are given to illustrate the efficiency and implementation
of the method.

Keywords:decomposition method; integro-differential equations; homotopy analysis method; homotopy per-
turbation method

1 Introduction

Mathematical modeling of real-life, physics and engineering problems usually results in functional equations, e.g. partial
differential equations, integral and integro-differential equations, stochastic equations and others. Many mathematical for-
mulation of physical phenomena contain integro-differential equations, these equations arise in fluid dynamics, biological
models and chemical kinetics. Integro-differential equations are usually difficult to solve analytically so it is required to
obtain an efficient approximate solution. Therefore, they have been of great interest by several authors. The boundary
value problems for higher-order integro-differential equations have been investigated by Morchalo[6, 7] and Agarwal[11]
among others. Agarwal[11] discussed the existence and uniqueness of the solutions for these problems. In [11], no
numerical method was presented.

The present work is motivated by the desire to obtain analytical and numerical solutions to boundary value problems
for higher-order integro-differential equations. In 1992, Liao[12] employed the basic ideas of the homotopy in topology
to propose a general analytic method for nonlinear problems, namely the Homotopy analysis method (HAM),[3, 4, 12–
14]. In recent years, homotopy analysis method has been used in obtaining approximate solutions of a wide class of
differential, integral and integro-differential equations. The method provides the solution in a rapidly convergent series
with components that are elegantly computed. The main advantage of the method is that it can be used directly without
using assumptions or transformations. In this work, we aim to implement this reliable technique to integro-differential
equations with two point boundary conditions. The boundary conditions will be imposed on various approximants of the
obtained series solution to complete the determination of the remaining constants.

The general higher-order integro-differential equation as

𝑦(𝑚)(𝑥) = 𝑓(𝑥) +

∫ 𝑥

0

𝐾(𝑥, 𝑡)𝐹 (𝑦(𝑡))𝑑𝑡, (1)
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with the boundary conditions

𝑦(𝑗)(0) = 𝐴𝑗 , 𝑗 = 0, 1, 2, 3, ⋅ ⋅ ⋅ , (𝑟 − 1),

𝑦(𝑗)(𝑏) = 𝐶𝑗 , 𝑗 = 𝑟, (𝑟 + 1), (𝑟 + 2), ⋅ ⋅ ⋅ , (𝑚− 1).

where 𝑦𝑚(𝑥) indicates the 𝑚th derivative of 𝑦(𝑥) and 𝐹 (𝑦(𝑥)) is a nonlinear function. In addition the kernel 𝑘(𝑥, 𝑡) and
𝑓(𝑥) are assumed real, differential for 𝑥 ∈ [0, 𝑏] and 𝐴𝑗 , 0 ≤ 𝑗 ≤ (𝑟 − 1),𝐶𝑗 , 𝑟 ≤ 𝑗 ≤ (𝑚− 1),are real finite constants.

2 The Body of the Article

2.1 Basic idea of HAM
We consider the following differential equation

𝒩 [𝑢(𝜏)] = 0, (2)

where 𝒩 is a nonlinear operator, 𝜏 denotes independent variable, 𝑢(𝜏) is an unknown function, respectively. For simplic-
ity, we ignore all boundary or initial conditions, which can be treated in the similar way. By means of generalizing the
traditional homotopy method, Liao [14] construct the so-called zero-order deformation equation

(1− 𝑝)ℒ[𝜙(𝜏 ; 𝑝)− 𝑢0(𝜏)] = 𝑝 ℏℋ(𝜏)𝒩 [𝜙(𝜏 ; 𝑝)], (3)

where 𝑝 ∈ [0, 1] is the embedding parameter, ℎ ∕= 0 is a non-zero auxiliary parameter, ℋ(𝜏) ∕= 0 is an auxiliary function,
ℒ is an auxiliary linear operator, 𝑢0(𝜏) is an initial guess of 𝑢(𝜏) and 𝜙(𝜏 ; 𝑝) is an unknown function, respectively. It is
important, that one has great freedom to choose auxiliary things in HAM. Obviously, when 𝑝 = 0 and 𝑝 = 1, it holds

𝜙(𝜏 ; 0) = 𝑢0(𝜏), 𝜙(𝜏 ; 1) = 𝑢(𝜏), (4)

respectively. Thus, as 𝑝 increases from 0 to 1, the solution 𝜙(𝜏 ; 𝑝) varies from the initial guess 𝑢0(𝜏) to the solution 𝑢(𝜏).
Expanding 𝜙(𝜏 ; 𝑝) in Taylor series with respect to 𝑝, we have

𝜙(𝜏 ; 𝑝) = 𝑢0(𝜏) +

+∞∑
𝑚=1

𝑢𝑚(𝜏)𝑝𝑚, (5)

where

𝑢𝑚(𝜏) =

[
1

𝑚!

∂𝑚𝜙(𝜏 ; 𝑝)

∂𝑝𝑚

]
𝑝=0

. (6)

If the auxiliary linear operator, the initial guess, the auxiliary parameter ℏ, and the auxiliary function are so properly
chosen, the series (4) converges at 𝑝 = 1, then we have

𝑢(𝜏) = 𝑢0(𝜏) +
+∞∑
𝑚=1

𝑢𝑚(𝜏), (7)

which must be one of solutions of original nonlinear equation, as proved by[14]. As ℏ = −1 and ℋ(𝜏) = 1, Eq. (2)
becomes

(1− 𝑝)ℒ[𝜙(𝜏 ; 𝑝)− 𝑢0(𝜏)] + 𝑝 𝒩 [𝜙(𝜏 ; 𝑝)] = 0, (8)

which is used mostly in the homotopy perturbation method[5], where as the solution obtained directly, without using
Taylor series [8]. According to the definition (5), the governing equation can be deduced from the zero-order deformation
equation (2). Define the vector −→𝑢 𝑛 = {𝑢0(𝜏), 𝑢1(𝜏), ⋅ ⋅ ⋅ , 𝑢𝑛(𝜏)} .

Differentiating equation (2) 𝑚 times with respect to the embedding parameter 𝑝 and then setting 𝑝 = 0 and finally
dividing them by 𝑚!, we have the so-called 𝑚th-order deformation equation

ℒ[𝑢𝑚(𝜏)− 𝜒𝑚𝑢𝑚−1(𝜏)] = ℏℋ(𝜏)ℛ𝑚(−→𝑢 𝑚−1), (9)
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where

ℛ𝑚(−→𝑢 𝑚−1) =

[
1

(𝑚− 1)!

∂𝑚−1𝒩 [𝜙(𝜏 ; 𝑝)]

∂𝑝𝑚−1

]
𝑝=0

. (10)

and

𝜒𝑚 =

{
0, 𝑚 ≤ 1,
1, 𝑚 > 1. (11)

It should be emphasized that 𝑢𝑚(𝜏) for 𝑚 ≥ 1 is governed by the linear equation (8) under the linear boundary
conditions that come from original problem, which can be easily solved by symbolic computation software such as Matlab.
For the convergence of the above method we refer the reader to Liao’s work [14]. If Eq. (1) admits unique solution, then
this method will produce the unique solution. If equation (1) does not possess unique solution, the HAM will give a
solution among many other (possible) solutions.

2.2 Applications
In order to assess the advantages and the accuracy of homotopy analysis method for solving Hight-Order Integro-Differential
Equations, we will consider the following two example.
Example 1. Consider the linear boundary value problem for the fourth-order integro differential equation

𝑦(𝑖𝜈)(𝑥) = 𝑥(1 + 𝑒𝑥) + 3𝑒𝑥 + 𝑦(𝑥)−
∫ 𝑥

0

𝑦(𝑡)𝑑𝑡, 0 < 𝑥 < 1

with the boundary conditions

𝑦(0) = 1, 𝑦′(0) = 1, 𝑦(1) = 1 + 𝑒, 𝑦′(1) = 2𝑒.

The above boundary value problem can be transformed as⎧⎨⎩
𝑑𝑦
𝑑𝑥 = 𝑞(𝑥), 𝑑𝑞

𝑑𝑥 = 𝑓(𝑥),

𝑑𝑓
𝑑𝑥 = 𝑧(𝑥), 𝑑𝑧

𝑑𝑥 = 𝑥(1 + 𝑒𝑥) + 3𝑒𝑥 + 𝑦(𝑥)− ∫ 𝑥

0
𝑦(𝑡)𝑑𝑡.

(12)

with the boundary conditions

𝑦(0) = 1, 𝑞(0) = 1, 𝑓(0) = 𝐴, 𝑧(0) = 𝐵. (13)

The exact solution of the above boundary value problem is 𝑦(𝑥) = 1 + 𝑥𝑒𝑥[1].
To solve the Eqs. (12) and (13) by means of homotopy analysis method, we choose the linear oprators

ℒ𝑖[𝜙𝑖(𝑥; 𝑝)] =
∂𝜙𝑖(𝑥; 𝑝)

∂𝑥
, 𝑖 = 1, 2, 3, 4. (14)

The inverse operator ℒ−1
𝑖 is given by

ℒ−1
𝑖 (⋅) =

∫ 𝑥

0

(⋅)𝑑𝑠, 𝑖 = 1, 2, 3, 4. (15)

We now define a nonlinear operators as

𝒩1[𝜙1, 𝜙2] =
∂𝜙1(𝑥; 𝑝)

∂𝑥
− 𝜙2(𝑥; 𝑝), 𝒩2[𝜙2, 𝜙3] =

∂𝜙2(𝑥; 𝑝)

∂𝑥
− 𝜙3(𝑥; 𝑝),

𝒩3[𝜙3, 𝜙4] =
∂𝜙3(𝑥; 𝑝)

∂𝑥
− 𝜙4(𝑥; 𝑝),

𝒩4[𝜙4, 𝜙1] =
∂𝜙4(𝑥; 𝑝)

∂𝑥
− 𝑥(1 + 𝑒𝑥)− 3𝑒𝑥 − 𝜙1(𝑥; 𝑝) +

∫ 𝑥

0

𝜙1(𝑡; 𝑝)𝑑𝑡. (16)

Using above definition, we construct the zeroth-order deformation equations

(1− 𝑝)ℒ1[𝜙1(𝑥; 𝑝)− 𝑦0(𝑥)] = 𝑝 ℏ1ℋ1(𝑥)𝒩1[𝜙1, 𝜙2],

(1− 𝑝)ℒ2[𝜙2(𝑥; 𝑝)− 𝑞0(𝑥)] = 𝑝 ℏ2ℋ2(𝑥)𝒩2[𝜙2, 𝜙3],

(1− 𝑝)ℒ3[𝜙3(𝑥; 𝑝)− 𝑓0(𝑥)] = 𝑝 ℏ3ℋ3(𝑥)𝒩3[𝜙3, 𝜙4],

(1− 𝑝)ℒ4[𝜙4(𝑥; 𝑝)− 𝑧0(𝑥)] = 𝑝 ℏ4ℋ4(𝑥)𝒩4[𝜙4, 𝜙1]. (17)
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Thus, we obtain the 𝑚th-order (𝑚 ≥ 1)deformation equations

ℒ1[𝑦𝑚(𝑥)− 𝜒𝑚𝑦𝑚−1(𝑥)] = ℏ1ℋ1(𝑥)ℛ1,𝑚(𝑦⃗𝑚−1),

ℒ2[𝑞𝑚(𝑥)− 𝜒𝑚𝑞𝑚−1(𝑥)] = ℏ2ℋ2(𝑥)ℛ2,𝑚(𝑞⃗𝑚−1)

ℒ3[𝑓𝑚(𝑥)− 𝜒𝑚𝑓𝑚−1(𝑥)] = ℏ3ℋ3(𝑥)ℛ3,𝑚(𝑓𝑚−1),

ℒ4[𝑧𝑚(𝑥)− 𝜒𝑚𝑧𝑚−1(𝑥)] = ℏ4ℋ4(𝑥)ℛ4,𝑚(𝑧⃗𝑚−1), (18)

where

ℛ1,𝑚(𝑦⃗𝑚−1) =
∂𝑦𝑚−1

∂𝑥
− 𝑞𝑚−1,

ℛ2,𝑚(𝑞⃗𝑚−1) =
∂𝑞𝑚−1

∂𝑥
− 𝑓𝑚−1,

ℛ3,𝑚(𝑓𝑚−1) =
∂𝑓𝑚−1

∂𝑥
− 𝑧𝑚−1,

ℛ4,𝑚(𝑧⃗𝑚−1) =
∂𝑧𝑚−1

∂𝑥
− (1− 𝜒𝑚)(𝑥(1 + 𝑒𝑥) + 3𝑒𝑥) +

∫ 𝑥

0

𝑦𝑚−1𝑑𝑡

Now the solution of the 𝑚th-order(𝑚 ≥ 1) deformation equations(18)

𝑦𝑚(𝑥) = 𝜒𝑚𝑦𝑚−1(𝑥) + ℏ1
∫ 𝑥

0

[ℋ1(𝑡)ℛ1,𝑚(𝑦⃗𝑚−1)]𝑑𝑡,

𝑞𝑚(𝑥) = 𝜒𝑚𝑞𝑚−1(𝑥) + ℏ2
∫ 𝑥

0

[ℋ2(𝑡)ℛ2,𝑚(𝑞⃗𝑚−1)]𝑑𝑡,

𝑓𝑚(𝑥) = 𝜒𝑚𝑓𝑚−1(𝑥) + ℏ3
∫ 𝑥

0

[ℋ3(𝑡)ℛ3,𝑚(𝑓𝑚−1)]𝑑𝑡,

𝑧𝑚(𝑥) = 𝜒𝑚𝑧𝑚−1(𝑥) + ℏ4
∫ 𝑥

0

[ℋ4(𝑡)ℛ4,𝑚(𝑧⃗𝑚−1)]𝑑𝑡.

By start with an initial approximation 𝑦0(𝑥) = 1, 𝑞0(𝑥) = 1,𝑓0(𝑥) = 𝐴, 𝑧0(𝑥) = 𝐵 and by choose ℎ𝑖 = −1 and
ℋ𝑖 = 1, (𝑖 = 1, 2, 3, 4) we can obtain directly the other components as⎧⎨⎩

𝑦1(𝑥) = 𝑥,

𝑞1(𝑥) = 𝐴𝑥,

𝑓1(𝑥) = 𝐵𝑥,

𝑧1(𝑥) = 𝑥+ 2𝑒𝑥 + 𝑥𝑒𝑥 − 2.⎧⎨⎩

𝑦2(𝑥) =
1
2𝐴𝑥2,

𝑞2(𝑥) =
1
2𝐵𝑥2,

𝑓2(𝑥) =
1
2𝑥

2 + 𝑥𝑒𝑥 − 𝑒𝑥 − 2𝑥− 1,

𝑧2(𝑥) =
1
2𝑥

2 − 1
6𝑥

3.⎧⎨⎩

𝑦3(𝑥) =
1
6𝐵𝑥3,

𝑞3(𝑥) =
1
6𝑥(𝑥

2 + 6𝑒𝑥 − 6𝑥− 6),

𝑓3(𝑥) =
1
6𝑥

3 − 1
24𝑥

4,

𝑧3(𝑥) = − 1
24𝐴𝑥

4 + 1
6𝐴𝑥3.

IJNS homepage: http://www.nonlinearscience.org.uk/



418 International Journal of NonlinearScience,Vol.9(2010),No.4,pp. 414-421

...

In view of the above components, the series solution as

𝑦(𝑥) = 1 + 𝑥+
1

2
𝐴𝑥2 +

1

6
𝐵𝑥3 +

1

24
𝑥4 + 𝑥𝑒𝑥 − 𝑒𝑥 − 1

6
𝑥3 − 1

2
𝑥2 + 1 + ⋅ ⋅ ⋅ (19)

The approximants must satisfy the boundary conditions. Thus by imposing the boundary conditions at 𝑥 = 1 and
solving the obtained systems gives the following sequences

𝑆𝐴 = {1.9565, 1.9815, 1.9949, 1.9990, ⋅ ⋅ ⋅ }
𝑆𝐵 = {3.1903, 3.0736, 3.0190, 3.0037, ⋅ ⋅ ⋅ }

for approximations of 𝐴 and 𝐵, respectively. It is easily seen that the increasing sequence 𝑆𝐴 leads to

lim
𝑛→∞𝐴 = 2. (20)

While the decreasing sequence 𝑆𝐵 leads to
lim

𝑛→∞𝐵 = 3. (21)

which is exactly the same as obtained in[1] by modified Adomians decomposition method.
Substituting (20) and (21) into (19) and by taking the truncated Taylor expansions for the exponential term in (19): e.g.
𝑒𝑥 ≈ 1+𝑥+ 1

2!𝑥
2+ 1

3!𝑥
3+ 1

4!𝑥
4, 𝑒𝑥 ≈ 1+𝑥+ 1

2!𝑥
2+ 1

3!𝑥
3+ 1

4!𝑥
4+ 1

5!𝑥
5 and 𝑒𝑥 ≈ 1+𝑥+ 1

2!𝑥
2+ 1

3!𝑥
3+ 1

4!𝑥
4+ 1

5!𝑥
5+ 1

6!𝑥
6

yields the series solution for different value of 𝑚 as follows

𝑦(𝑥) =

5∑
𝑘=0

𝑦𝑘(𝑥) = 1 + 𝑥

(
1 + 𝑥+

1

2!
𝑥2 +

1

3!
𝑥3 +

1

4!
𝑥4 +

1

180
𝑥5 +

1

840
𝑥6 − 1

5760
𝑥7 + ⋅ ⋅ ⋅

)
.

𝑦(𝑥) =

6∑
𝑘=0

𝑦𝑘(𝑥) = 1 + 𝑥

(
1 + 𝑥+

1

2!
𝑥2 +

1

3!
𝑥3 +

1

4!
𝑥4 +

1

5!
𝑥5 +

1

1260
𝑥6 +

1

5760
𝑥7 + ⋅ ⋅ ⋅

)
.

𝑦(𝑥) =
7∑

𝑘=0

𝑦𝑘(𝑥) = 1 + 𝑥

(
1 + 𝑥+

1

2!
𝑥2 +

1

3!
𝑥3 +

1

4!
𝑥4 +

1

5!
𝑥5 +

1

6!
𝑥6 +

1

10080
𝑥7 + ⋅ ⋅ ⋅

)
.

According the above equations, one can conclude that when 𝑚 → +∞
𝑦(𝑥) = 1 + 𝑥𝑒𝑥 (22)

Example 2. Consider the nonlinear boundary value problem for the fourth-order integro differential equation

𝑦(𝑖𝜈)(𝑥) = 1 +

∫ 𝑥

0

𝑒−𝑡𝑦2(𝑡)𝑑𝑡, 0 < 𝑥 < 1

with the boundary conditions

𝑦(0) = 1, 𝑦′(0) = 1, 𝑦(1) = 𝑒, 𝑦′(1) = 𝑒.

The above boundary value problem can be transformed as⎧⎨⎩
𝑑𝑦
𝑑𝑥 = 𝑞(𝑥), 𝑑𝑞

𝑑𝑥 = 𝑓(𝑥),

𝑑𝑓
𝑑𝑥 = 𝑧(𝑥), 𝑑𝑧

𝑑𝑥 = 1 +
∫ 𝑥

0
𝑒−𝑡𝑦2(𝑡)𝑑𝑡.

(23)

with the boundary conditions

𝑦(0) = 1, 𝑞(0) = 1, 𝑓(0) = 𝐴, 𝑧(0) = 𝐵. (24)

The exact solution of the above boundary value problem is 𝑦(𝑥) = 𝑒𝑥[2].
To solve the Eqs. (23) and (24) by means of homotopy analysis method, we choose the linear oprators

ℒ𝑖[𝜙𝑖(𝑥; 𝑝)] =
∂𝜙𝑖(𝑥; 𝑝)

∂𝑥
, 𝑖 = 1, 2, 3, 4. (25)
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The inverse operator ℒ−1
𝑖 is given by

ℒ−1
𝑖 (⋅) =

∫ 𝑥

0

(⋅)𝑑𝑠, 𝑖 = 1, 2, 3, 4. (26)

We now define a nonlinear operators as

𝒩1[𝜙1, 𝜙2] =
∂𝜙1(𝑥; 𝑝)

∂𝑥
− 𝜙2(𝑥; 𝑝), 𝒩2[𝜙2, 𝜙3] =

∂𝜙2(𝑥; 𝑝)

∂𝑥
− 𝜙3(𝑥; 𝑝),

𝒩3[𝜙3, 𝜙4] =
∂𝜙3(𝑥; 𝑝)

∂𝑥
− 𝜙4(𝑥; 𝑝),

𝒩4[𝜙4, 𝜙1] =
∂𝜙4(𝑥; 𝑝)

∂𝑥
− 1−

∫ 𝑥

0

𝑒−𝑡𝜙2
1(𝑡; 𝑝)𝑑𝑡. (27)

Using above definition, we construct the zeroth-order deformation equations

(1− 𝑝)ℒ1[𝜙1(𝑥; 𝑝)− 𝑦0(𝑥)] = 𝑝 ℏ1ℋ1(𝑥)𝒩1[𝜙1, 𝜙2],

(1− 𝑝)ℒ2[𝜙2(𝑥; 𝑝)− 𝑞0(𝑥)] = 𝑝 ℏ2ℋ2(𝑥)𝒩2[𝜙2, 𝜙3],

(1− 𝑝)ℒ3[𝜙3(𝑥; 𝑝)− 𝑓0(𝑥)] = 𝑝 ℏ3ℋ3(𝑥)𝒩3[𝜙3, 𝜙4],

(1− 𝑝)ℒ4[𝜙4(𝑥; 𝑝)− 𝑧0(𝑥)] = 𝑝 ℏ4ℋ4(𝑥)𝒩4[𝜙4, 𝜙1]. (28)

Thus, we obtain the 𝑚th-order (𝑚 ≥ 1)deformation equations

ℒ1[𝑦𝑚(𝑥)− 𝜒𝑚𝑦𝑚−1(𝑥)] = ℏ1ℋ1(𝑥)ℛ1,𝑚(𝑦⃗𝑚−1),

ℒ2[𝑞𝑚(𝑥)− 𝜒𝑚𝑞𝑚−1(𝑥)] = ℏ2ℋ2(𝑥)ℛ2,𝑚(𝑞⃗𝑚−1)

ℒ3[𝑓𝑚(𝑥)− 𝜒𝑚𝑓𝑚−1(𝑥)] = ℏ3ℋ3(𝑥)ℛ3,𝑚(𝑓𝑚−1),

ℒ4[𝑧𝑚(𝑥)− 𝜒𝑚𝑧𝑚−1(𝑥)] = ℏ4ℋ4(𝑥)ℛ4,𝑚(𝑧⃗𝑚−1), (29)

where

ℛ1,𝑚(𝑦⃗𝑚−1) =
∂𝑦𝑚−1

∂𝑥
− 𝑞𝑚−1,

ℛ2,𝑚(𝑞⃗𝑚−1) =
∂𝑞𝑚−1

∂𝑥
− 𝑓𝑚−1,

ℛ3,𝑚(𝑓𝑚−1) =
∂𝑓𝑚−1

∂𝑥
− 𝑧𝑚−1,

ℛ4,𝑚(𝑧⃗𝑚−1) =
∂𝑧𝑚−1

∂𝑥
− (1− 𝜒𝑚)(1)−

∫ 𝑥

0

𝑒−𝑡

(
𝑚−1∑
𝑖=0

𝑦𝑖𝑦𝑚−1−𝑖

)
𝑑𝑡

Now the solution of the 𝑚th-order(𝑚 ≥ 1) deformation equations(29)

𝑦𝑚(𝑥) = 𝜒𝑚𝑦𝑚−1(𝑥) + ℏ1
∫ 𝑥

0

[ℋ1(𝑡)ℛ1,𝑚(𝑦⃗𝑚−1)]𝑑𝑡,

𝑞𝑚(𝑥) = 𝜒𝑚𝑞𝑚−1(𝑥) + ℏ2
∫ 𝑥

0

[ℋ2(𝑡)ℛ2,𝑚(𝑞⃗𝑚−1)]𝑑𝑡,

𝑓𝑚(𝑥) = 𝜒𝑚𝑓𝑚−1(𝑥) + ℏ3
∫ 𝑥

0

[ℋ3(𝑡)ℛ3,𝑚(𝑓𝑚−1)]𝑑𝑡,

𝑧𝑚(𝑥) = 𝜒𝑚𝑧𝑚−1(𝑥) + ℏ4
∫ 𝑥

0

[ℋ4(𝑡)ℛ4,𝑚(𝑧⃗𝑚−1)]𝑑𝑡.

By start with an initial approximation 𝑦0(𝑥) = 1, 𝑞0(𝑥) = 1,𝑓0(𝑥) = 𝐴, 𝑧0(𝑥) = 𝐵 and by choose ℎ𝑖 = −1 and
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ℋ𝑖 = 1, (𝑖 = 1, 2, 3, 4) we can obtain directly the other components as⎧⎨⎩

𝑦1(𝑥) = 𝑥,

𝑓1(𝑥) = 𝐵𝑥,

𝑞1(𝑥) = 𝐴𝑥,

𝑧1(𝑥) = 2𝑥+ 𝑒−𝑥 − 1.⎧⎨⎩

𝑦2(𝑥) =
1
2𝐴𝑥

2,

𝑓2(𝑥) = 𝑥2 − 𝑒−𝑥 − 𝑥+ 1,

𝑞2(𝑥) =
1
2𝐵𝑥2,

𝑧2(𝑥) = 𝑥2 − 6𝑒−𝑥 − 4𝑥+ 6− 2𝑥𝑒−𝑥.⎧⎨⎩

𝑦3(𝑥) =
1
6𝐵𝑥3,

𝑞3(𝑥) =
1
3𝑥

3 + 𝑒−𝑥 − 1
2𝑥

2 + 𝑥− 1

𝑓3(𝑥) = 𝑥2 − 6𝑒−𝑥 − 4𝑥+ 6− 2𝑥𝑒−𝑥,

𝑧3(𝑥) = 2𝑥+ 6𝑒−𝑥 − 6 + 4𝑥𝑒−𝑥 +𝐴𝑥2𝑒−𝑥 + 4𝐴𝑥𝑒−𝑥 + 6𝐴𝑒−𝑥 + 𝑥2𝑒−𝑥 + 2𝐴𝑥− 6𝐴

...

In view of the above components, the series solution as

𝑦(𝑥) = 1 + 𝑥+
1

2
𝐴𝑥2 +

1

6
𝐵𝑥3 +

1

12
𝑥4 − 𝑒−𝑥 − 1

6
𝑥3 +

1

2
𝑥2 − 𝑥+ 1 + ⋅ ⋅ ⋅ (30)

The approximants must satisfy the boundary conditions. Thus by imposing the boundary conditions at 𝑥 = 1 and
solving the obtained systems gives the following sequences

𝑆𝐴 = {0.9828, 0.9944, 0.9984, 0.9996, ⋅ ⋅ ⋅ }
𝑆𝐵 = {1.0685, 1.0211, 1.0057, 1.0013, ⋅ ⋅ ⋅ }

for approximations of 𝐴 and 𝐵, respectively. It is easily seen that the increasing sequence 𝑆𝐴 leads to

lim
𝑛→∞𝐴 = 1. (31)

While the decreasing sequence 𝑆𝐵 leads to
lim

𝑛→∞𝐵 = 1. (32)

which is exactly the same as obtained in[2] by using homotopy perturbationmethod.
Substituting (31) and (32) into (30) and by taking the truncated Taylor expansions for the exponential term in (30): e.g.
𝑒−𝑥 ≈ 1 − 𝑥 + 1

2!𝑥
2 − 1

3!𝑥
3 + 1

4!𝑥
4, 𝑒−𝑥 ≈ 1 − 𝑥 + 1

2!𝑥
2 − 1

3!𝑥
3 + 1

4!𝑥
4 − 1

5!𝑥
5 and 𝑒−𝑥 ≈ 1 − 𝑥 + 1

2!𝑥
2 − 1

3!𝑥
3 +

1
4!𝑥

4 − 1
5!𝑥

5 + 1
6!𝑥

6 yields the series solution for different value of 𝑚 as follows

𝑦(𝑥) =

5∑
𝑘=0

𝑦𝑘(𝑥) = 1 + 𝑥+
1

2!
𝑥2 +

1

3!
𝑥3 +

1

4!
𝑥4 +

1

5!
𝑥5 +

1

6!
𝑥6 − 1

1680
𝑥7 +

1

2520
𝑥8 + ⋅ ⋅ ⋅ .

𝑦(𝑥) =
6∑

𝑘=0

𝑦𝑘(𝑥) = 1 + 𝑥+
1

2!
𝑥2 +

1

3!
𝑥3 +

1

4!
𝑥4 +

1

5!
𝑥5 +

1

6!
𝑥6 +

1

7!
𝑥7 +

1

630
𝑥8 +

1

2520
𝑥9 ⋅ ⋅ ⋅ .

𝑦(𝑥) =
7∑

𝑘=0

𝑦𝑘(𝑥) = 1 + 𝑥+
1

2!
𝑥2 +

1

3!
𝑥3 +

1

4!
𝑥4 +

1

5!
𝑥5 +

1

6!
𝑥6 +

1

7!
𝑥7 +

1

8!
𝑥8 − 61

60480
𝑥9

− 17

60480
𝑥10 − 1

30240
𝑥11 ⋅ ⋅ ⋅ .
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According the above equations, one can conclude that when 𝑚 → +∞

𝑦(𝑥) = 𝑒𝑥 (33)

3 Conclusion
In this paper, we have used the homotopy analysis method for finding the analytic solution of linear and nonlinear hight-
order integro-differential equations. The algorithm produced results which are of reasonable accuracy. The method needs
much less computational work compared with traditional methods. It is shown that HAM is a very fast convergent, precise
and cost efficient tool for solving integro-differential equations in the bounded domains.
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