
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Dynamic Partition of Collaborative Multiagent Based on Coordination Trees

Min, F.; Groen, F.C.A.; Hao, L.

Published in:
Advances in intelligent systems and computing

DOI:
10.1007/978-3-642-33932-5_46

Link to publication

Citation for published version (APA):
Min, F., Groen, F. C. A., & Hao, L. (2013). Dynamic Partition of Collaborative Multiagent Based on Coordination
Trees. Advances in intelligent systems and computing, 194, 503-510. https://doi.org/10.1007/978-3-642-33932-
5_46

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.

Download date: 28 Jun 2019

https://doi.org/10.1007/978-3-642-33932-5_46
https://dare.uva.nl/personal/pure/en/publications/dynamic-partition-of-collaborative-multiagent-based-on-coordination-trees(d57eb2bf-2374-43ab-82d4-8298bfd6ccd4).html


Dynamic Partition of Collaborative Multiagent based 
on Coordination Trees 

Fang Min1, Frans C.A. Groen2 and Li Hao1 

1Institute of Computer Science 
Xidian University, China 

mfang@mail.xidian.edu.cn 
2Informatics Institute 

University of Amsterdam, The Netherlands 
F.C.A.Groen@uva.nl 

Abstract. In team Markov games research, it is difficult for an individual agent 
to calculate the reward of collaborative agents dynamically. We present a 
coordination tree structure whose nodes are agent subsets or an agent. Two 
kinds of weights of a tree are defined which describe the cost of an agent 
collaborating with an agent subset. We can calculate a collaborative agent 
subset and its minimal cost for collaboration using these coordination trees. 
Some experiments of a Markov game have been done by using this novel 
algorithm. The results of the experiments prove that this method outperforms 
related multi-agent reinforcement-learning methods based on alterable 
collaborative teams.  

Keywords ：  reinforcement learning,  multi-agent, coordination tree,  
Markov games  

1  Introduction 

A Markov game, also known as a stochastic game, is generally considered as the 
combination of a Markov decision process and a matrix game[1]. When multiple 
agents deal with a Markov game, there are a number of relative independent actions 
or action series that can be taken[2][3]. For example in a pursuit game, predators need 
to explore their objects and then to hunt evaders together. In multi-robot team 
coordination, the robots need to form teams and coordinate other actions dynamically. 
So, we need an approach to judge the cooperative relationship among agents.  

The learning of multiple agents is a complex problem. The collaborative 
multi-agent Markov decision process[4][5][6]model is often used in research. 
Hyper-Q learning[7] learns mixed strategies in stochastic games, using observations 
of other agents’ play. The states in Hyper-Q consist of observations or estimates of 
opponents’ strategies. By learning a value function of state-action pairs, the Hyper-Q 
algorithm obtains its mixed strategies. Another solution technique is based on the 
framework of coordination graphs (CGs)[8]. In a CG each node represents an agent 
and connected agents indicate a local coordination dependency. Each dependency 
corresponds to a local payoff function which assigns a value to every possible action 
combination of the involved agents. The Max-Plus algorithm and Variable 

This work was supported by the national natural science funds in China with No.61070143 and the science 
project of Shaanxi with No. 2011K09-28 



Elimination(VE)[8] based on coordination graphs are used to find the optimal joint 
action. These algorithms demand that the structure of the CG used is determined 
beforehand. It is difficult for agents to calculate dynamic neighbors and to select an 
optimal action. If the neighbors of an agent have a tree structure, the Max-Plus 
algorithm based on coordination graphs can optimize the global reward. When the 
neighbors of an agent have a graph structure, Max-Plus algorithm can not cope with 
the complexity of the underlying graph structure[9]. 

In summary, an optimal joint action selection method is needed to copy with the 
complicated relation of agents. Therefore, we present a dynamic distributed selection 
algorithm of a joint action based on coordination trees. Using this method, the 
multi-agent reinforcement algorithm of team Markov games could be applied. 

2  Coordination trees for describing the collaborative relationship 
among agents 

Suppose n agents are present in two fighting sides. The number of cooperative 
agents in one side is Nb , the number of opposite agents is Nr . One of the opposing 
sides need k agents to collaborate ( min( , ))k Nb Nr≤  and take care of an agent of the 
other side. A key problem is how to obtain the cooperative agents of one agent.  

We define a coordination graph which describes a global cooperative relation 
between agents. In a coordination graph, there are two kinds of nodes. The first 
one is a node for the agent iAg , and the second one is a set node jB  which don’t 
include the agent iAg . The tree structure is shown in fig. 1.  

 
Fig. 1. The coordination tree of iAg  

Define: Suppose that we have a coordination tree Tr = (V,E)  with |V|  vertices and 
|E|  edges, where { _ , _ }V B Set Ag Set= , _ { , 1, 2,..., }iAg Set Ag i Nb= = , and 

1
CoN_ { , [1,..., ]}k

jSet B B j C −= ∈ . 
There are not edges between two agents or two set nodes. An agent node can only 

link set nodes, and a set node has only sides with agent nodes. The side between node 



iAg and jB  denotes that the agent iAg  cooperates with the agents in the set jB . 
All coordination trees of agents are defined based on a coordination graph. For an 
agent iAg , a tree with root iAg  is defined, which has three layers of nodes and 
describes the relation of the collaborative agents. The tree structure is shown in fig. 1. 
(1) A root node, iAg , is an agent, which need to select an agent set jB  to 
collaborate with.  
(2) Each child node of the root is an agent subset 1

CoN, [1,..., ]k
jB j C −∈ . jB  is an agent 

subset which may collaborate with iAg . CoN(CoN )Nb≤  is the number of the 
agents in the view of the agent iAg . 1

CoN
kC −  is the number of potential subsets 

collaborating with the agent iAg . For example, there are n  agent sets collaborating 
with jB  in figure 1,in which n  is equal to 1

CoN
kC − . 

{ _ , 1,2,..., 1}j ji ji ji iB Ag | Ag Ag Set and Ag Ag i k= ∈ ≠ = −       (1) 
Where the set _Ag Set  is an agent set. An agent iAg  needs to select k -1  agents 
to collaborate with. A tree with a root iAg  is built and has sub nodes jB , and 

i jAg B∉ . 

(2) A team jB  is formed with iAg  and jB .  

{ }j j iB B Ag= +                                   (2) 
(3) Each node of tree in the third layer is an agent which may collaborate with agents 
in jB .   

An agent jlAg  might collaborate with subset jB ,where 

jl j jl iAg B Ag Ag∉ ≠∩ .  
(4) Two kinds of weights are present.  

The weight ω  on the edge of a tree denotes the minimal collaborative cost of an 
agent with a subset. The weight w  is the minimal collaborative cost of a subset 
collaborating with another agent than iAg . For node jB  in the second layer, the 
weight ,i jω  denotes the collaborative cost of jB  with iAg . The weight ,j iw  is 
the collaborative cost of jB  collaborating with an agent jlAg ( jl iAg Ag≠ ). We 
need now to select an optimal collaborative subset for iAg  based on coordination 
trees.  

                         
Fig. 2a. Communication model of                Fig. 2b. Communication model of 

 the agent iAg                                the agent subset kB  



 
(5) Communication modes between an agent and agent subsets. 
  The communication model of the agent iAg is showed in fig.2a, and the 

communication model of the subset kB  is showed in fig.2b. Each agent iAg  sends 
collaborative cost or a payoff ,i jω  to the subset jB ( i jAg B∉ ) which connect to 

iAg  by a edge .The subset jB  will return a minimal collaborative cost or a maximal 
payoff ,j iw  to iAg  collaborating with one other agent except the agent iAg .  

3  Calculating a collaboration for an agent 

3.1  Dynamic partition of collaborative subsets 

We present an algorithm for an agent based on this coordination tree structure. An 
agent iAg  can select its collaborating agent subset according to the algorithm CSCT 
below. 
Algorithm: CSCT- calculating Collaborative Subset based on Coordination Tree 

(1) The agent iAg  sends a cost ,i jω  to each agent in jB , which denotes the 
collaborative cost with 1k −  agents in subset jB . 

(2) When jB  receives a cost ,i jω , it returns a message ,j iw  to iAg  which is 
the cost of jB collaborating with another agent. For example, the subset jB  on the 
second layer in fig.1 selects a potential collaborative agent jmAg  instead of iAg  at 
the cost: 

, ,min({ })
jm

j i m jAg
w ω=                                 (3) 

Where jmAg is one child node of jB , and the ,m jω  is the weight between the node 

jB  and the node jmAg .  
(3) The agent iAg selects the optimal collaborative subset jB . 
Because each agent learns joint actions rationally, it makes decision for a maximal 

reward of all agents. Each agent can estimate the possible actions of other agents 
based on a coordination tree. The rate , ,/i j j iwω  is a probability measure that denotes 

jB  collaborating with iAg . The jB  with minimal , ,/i j j iwω  value is the 
appropriate subset to collaborate with iAg .  

, ,arg min( / )
j

j i j j iB
B wω=                              (4) 



3.2  Policy of joint actions  

After calculating collaborative subset based on coordination tree, joint action in a 
team jB  should be decided. In multi-agent’s learning procedure, the system’s state 
switching is determined by the actions of the learning agent and other agents together. 
In most cases, the agent’s action in a certain state is a random behavior which obeys 
some probability distribution[10][11][13]. Thus the learning agent can model the 
beliefs of other relevant agents by observing their behavior histories. Other agents’ 
strategies obey certain probability distributions, which can be partially determined by 
prior knowledge and observations, thus their strategies can be estimated. Therefore, 
through observation and statistic analysis in the learning process, one agent can learn 
the strategies of other agents and understand their influence on the environment[12] 
[14]. Through making use of the estimated probabilities of other agents’ actions to 
ensure the selection of optimal joint actions, members in teams take the best response 
actions according to other agent’s actions in the same environment[15]. Every 
cooperative team learns independently, multiple cooperative teams can prevent the 
problem of dimensionality to some extent. Single agent is able to learn in a 
multi-agent framework. The joint action in a team jB  is determined by using the 
behavior probability estimation and joint action statistic. 

4  Experiment setup and simulation  

4.1  Environment and agent setting 

There are n agents for the red side and the blue side fighting each other. Nb  is the 
number of agents in the blue side, and Nr  is the number of agents in red side. Only 
surrounded by k opposite agents simultaneously an agent can be destroyed. We use a 
two-dimensional plane as the experimental environment. Each agent has a view field 

_vision v . Blue side agents perform according to a reinforcement learning method, the 
agents of red side act according to specific policy and they know nothing about the 
action policy of each other. For a blue side agent, the threat distance of a red side 
agent is d ,where _d vision v≤ , which means that the distance between two opposite 
agents is larger than the threat distance d  in the view, there is no threat each other. 

4.2  Parameter setting 

We design two experiments and analyze the performance of the above methods. The 
first experiment has a 15×15 grid, with four red side agents versus four blue ones. The 
second experiment has a 20×20 grid, with four red side agents versus five blue ones. 
When a red side agent was destroyed by the blue side team, a reward r is given. When 
a blue side agent is destroyed by the red side team, a reward -r is given as punishment. 
The exploration rate is denoted as ε . In order to prove the suitability of the 



algorithm presented in this paper, we compare our method to a nearest neighbor 
approach. In that approach teams of collaborative agents are formed with the closest 
other agent.  

In our experiments, the parameters reward, the discount γ , the exploring rate ε  
are set to 1000, 0.9, 0.3 respectively, and the number of collaborative agent is all set 
to 2. The attenuation factor is set to 0.6. The action set is {stop, up, down, left, right}. 
The current state s  is the agent’s location. At the beginning of each simulation, 
agents start from different positions, and the game ends when all opposite agents are 
caught successfully. The h-step back method is used to redistribute the reward. That 
means the reward hrβ  of the final state is regarded as the reward of the h-step back, 
where β  is an attenuation factor. The number of back states should less than the size 
of view, therefore, _vision v h≥ .  

 

0 50 100 150 200 250
0

100

200

300

400

500

Iteration times

A
ve

ra
ge

 c
ap

tu
re

 s
te

ps

vision-v=5

 

 
d=4,h=4
d=3,h=3
d=2,h=2

 
Fig. 3. Comparison of 4 versus 4 agents in a 15×15 grid 

 
In fig.3, the horizontal axis shows the number of learning iterations, the vertical 

axis shows the number of steps needed at each capture. For showing and analyzing 
the experimental result conveniently, we draw the average value per 4 time steps in 
the learning periods. Each experiment is repeated 20 times. From the first 
experimental result in fig.3, the Q-learning of team Markov games based on 
coordination trees could converge to the optimal value finally. It is observed that, the 
closer d and h are to _vision v , the better results we get. When d is close to 

_vision v , blue side agents can easily sense the threat from the red side agent in a 
larger view. The bigger h is, the more previous states the rewards feed back through 
the Q-table, thus accelerating the convergence. 

 



0 50 100 150 200 250
0

200

400

600

800

Iteration times

A
ve

ra
ge

 c
ap

tu
re

 s
te

ps

vision-v=6,d=4,h=4

 

 
Nearest neighbor
Coordination tree

 
Fig. 4. Comparison of different learning algorithms in a 20×20 grid 

 
From the second experiment results in fig. 4, we find that the policy based on 

coordination trees is better than the method of selecting the nearest neighbors. When 
using the coordination tree method, iAg  calculates the probability of collaborating 
with other agents based on communication, the agent subset with a maximum 
probability was selected as its cooperation object. So each agent can select its 
cooperation object freely according to observations on the environment and the 
behavior probability estimation and the nearest agents of iAg  don’t necessarily 
select iAg  as its cooperation object.  

5  Conclusion 

In the study of Markov game, it is difficult to form the team of cooperating agents 
dynamically and to decide on the joint action of agents. On the basis of multi-agent 
reinforcement learning with agent teams in Markov games, we present a cooperation 
tree-structure by using the subset of cooperation agents as the nodes of a tree. Two 
kind of weights are defined which describe the cost of an agent collaborating with or 
without an agent subset respectively. Each agent calculates its collaborative agent 
subset with a minimal cost based on coordination trees. From the results of our 
experiments in a simulation environment, the collaborative team calculating and joint 
action learning of multi-agent based belief model can all improve the algorithm 
performance. 

Acknowledgements.  

Many thanks are given to Prof. Shimon Whiteson in Amsterdam University who 
gives some helpful suggestions for this paper.  



References 

1. Michael Boeling. Multiagent Learning in the Presence of Agents with Limitations. CMU. 
2003, 4. 1-172. 

2. L. E. Parker. Distributed algorithms for multi-robot observation of multiple moving targets. 
Autonomous Robots, 12(3):231–255, 2002. 

3. D. V. Pynadath and M. Tambe. The communicative multiagent team decision problem: 
Analyzing teamwork theories and models. Journal of Artificial Intelligence Research, 
16:389–423, 2002. 

4. C. Guestrin. Planning under uncertainty in complex structured environments. PhD thesis, 
Computer Science Department, Stanford University, August 2003. 

5. Frans C.A. Groen, Matthijs T.J. Spaan, Jelle R. Kok, etc.Real World Multi-agent Systems: 
Information Sharing, Coordination and Planning. LNAI 4363, 2007: 154–165, 

6. J. R. Kok, M. T. J. Spaan, and N. Vlassis. Non-communicative multi-robot coordination in 
dynamic environments. Robotics and Autonomous Systems, 50(2-3):99–114, February 
2005. 

7. G. Tesauro. Extending Q-learning to general adaptive multi-agent systems.Advances in 
neural information processing systems, 16, 2004. 

8. C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored MDPs. In Advances 
in Neural Information Processing Systems (NIPS) 14. The MIT Press, 2002a. 

9. Jelle R. Kok, Nikos Vlassis.Collaborative Multiagent Reinforcement Learning by Payoff 
Propagation. Journal of Machine Learning Research  (2006) 1789–1828 

10. M. Christopher Gifford, Arvin Agah, Sharing in Teams of Heterogeneous,Collaborative 
Learning Agents, International Journal of Intelligent Systems, 2009. vol. 24, no. 2, 
pp.173-200 

11. Zhang, C., Lesser, V.R., and Abdallah, S. Self-organization for coordinating decentralized 
reinforcement learning. In Proceedings of AAMAS. 2010, 739-746. 

12. P. Hoen, E.D. de Jong, Evolutionary multi-agent systems, in Proceedings of the 8th 
International Conference on Parallel Problem Solving from Nature, 2004, pp. 872-881. 

13. S. Kapetanakis, D. Kudenko, Reinforcement learning of coordination in heterogeneous 
cooperative multi-agent systems, in Proceedings of the Third Autonomous Agents and 
Multi-Agent Systems Conference, 2004. 

14. L. Panait, S. Luke, Cooperative Multi-Agent Learning: The State of the Art, Autonomous 
Agents and Multi-Agent Systems, 11(3), 2005,pp. 387-434 

15. Jun Li, Qishu Pan,Bingrong Hong. A new multi-agent reinforcement learning approach. 
Information and Automation (ICIA), 2010 IEEE International Conference on.2010,6, 1667 – 
1671 

 


	Main
	Return

