Australian Journal of Basic and Applied Sciences, 5(5): 82-87, 2011 ISSN 1991-8178

Hypoxic-Ischemig Encephalopathy in Term Neonates: Early Biochemical Indicators

¹Ali M. Soliman, ²Reyadh A. Al-Gendy and ³Hanaa Abdel-Moety

^{1,3}Neurology and Clinical Pathology Departments, Faculty of Medicine, Zagazig University ²Pediatric Department, Faculty of Medicine, Al-Azhar University, Egypt.

Abstract: Hypoxic-ischemic encephalopathy (HIE) after perinatal asphyxia is a condition in which serum concentrations of brain-specific biochemical markers may be elevated. Neuro-protective interventions in asphyxiated newborns require early indicators of brain damage to initiate therapy. Our aim is to investigate serum concentration of brain-specific biochemical markers, as early biochemical indicators of neonatal asphyxia. The study was carried out at the Neurology, Pediatric and Clinical Pathology Department, Zagazig and Al-Azhar Universities Hospitals. It was conducted on 30 infants with perinatal asphyxia. We examined brain-specific creatinekinase (CK-BB), protein S-100 and neurospecific enolase (NSE) in cord blood and at 2,6,12 and 24 h afterbirth. At 2 h afterbirth, median (quartiles) serum CK-BB concentration was 16.0 U/L in infants with mild HIE and 36 U/L in infants with moderate HIE and 46.5 U/L in infants with "severe HIE. Serum protein S-100 2 h afterbirth was 2.9 ug/L in asphyxiated infants with mild HIE, 3.9 ug/L in infants with moderate HIE and 17.9 ug/L in infants with severe HIE while no significant difference was detectable in serum neuro-specific enolase between infants with mild, moderate and severe HIE 2 h and 6 h afterbirth. A combination of serum protein S-100 (cutoff value, 8.5 ug/L) and CK-BB (cutoff value, 18.8 U/L) 2 hr after birth had the highest predictive value (83%) and specificity (95%) of predicting moderate and severe HIE. Cord blood pH (cutoff value, < 6.9) and cord blood base deficit (cutoff value, > 17mM/L) increase the predictive values of protein S-100 and CK-BB. We conclude that elevated serum concentrations of CK-BB and protein S-100 reliably indicate moderate and severe HIE as early as 2 h afterbirth.

Key words: Neonatal-Hypoxic-ischemic encephalopathy-CK-BB-Protein S-100-NSE Creatinekinase.

INTRODUCTION

Perinatal asphyxia is a common cause of neonatal morbidity and mortality and neurologic disabilities among survivors. HIE develops in one third of asphyxiated newborns (Good- win *et al.*, 1992). Neuro-protective interventions are increasingly in the forefront of interest and have been shown to be effective. For clinical intervention, it is important to identify infants at a high risk for brain damage soon after birth and within the therapeutic windows (Vannucci and Perlman, 1997). Several indicators of brain damage have been investigated in the last decade (4-10). Early recognition of HIE is important in guiding the management of these neonates and justifying administration of certain drugs, proposed as Neuro-protectors.

The objective of this work is to investigate the postnatal time course of these markers (brain-specific creatinekinase (CK-BB), protein S-100, and neuron-specific enolase) in serum and to determine whether hypoxic-ischemic brain damage alters these markers and whether moderate or severe HIE can be predicted by elevated serum concentrations soon after birth.

Patients and Methods:

A written informed consent was given by the parents (Thirty infants with perinatal asphyxia). The protocol included 30 full-term newborn infants (gestational age, 39-42 wks) who fulfilled the following criteria were included in the study: arterial blood cord pH < 7.0, or arterial blood cord pH value between 7.01 and 7.1 and also an Apgar score after 5 min of < 7. The asphyxia group was subdivided according to the clinical examination: mild HIE with a good prognosis, moderate and severe HIE with a greater risk of neural handicap (18).

Corresponding Author: Reyadh Al-Gendy, Assistant Prof General pediatrics and Neonatology, Pediatric Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt. E-mail: drahmed.elgendy@yahoo.com

82

Study Design:

Blood samples were collected from cord blood and 2, 6, 12 and 24 h afterbirth. Standardized neurologic examinations were performed at 6, 12, 24, 48, and 72 h of age. Mild HIE was assumed according to Sarnat (19) mild if hyperexcitability or hypotonia persisted without seizures for 72 h after birth; moderate if the newborn was lethargic, had hypotonia, weak primitive reflexes, and seizures; and severe if the infant had apnea, flaccid weakness, frequent seizures, or coma.

Analysis of CK-BB, protein S-100 and NSE Creatinekinase was determined at 25 Co according to the optimized German standard memo! on Dax 72 (Bayer, Munich, Germany) or Modular PP (Roche, Mannheim, Germany) random assessment clinical analyzers. To quantify ' CK-BB, creatinekinase isoenzymes (Delivoria *et al.*, 1998) were fractionated electrophoretically on agarose gels, visualized by in-gel substrate reaction for fluorometric scanning using Helena (Greiner, Flacht, Germany) gel kits and rapid electrophoresis system. The area under the CK-BB curve was used to calculate its concentration.

Protein S-100 was measured manually with a sandwich type immuno-Iuminometric assay kit (Byk Sangtec, Dietzenbach, Germany) that used MAb and an LB952 luminometer (Berthold, Wildbad, Germany). The assay uses three MAbs to detect the B chains in the BB(S-I00B) and B(S-I00AL) dimers. We have used the term protein S-100 for simplicity, which refers to both of these dimers.

NSE was measured on a Cobas Core II immunoanalyzer with the NSE ELISA II kit (Roche), a one-step sandwich type enzyme immunoassay that used two specific mouse MAbs. Free Hb, as an indicator of hemolysis, was quantified by bichromatic photometric measurement on Hitachi 911 or Modular PP analyzers (Roche). The manufacturer claims low detection limits of 0.1 ug/L for MSB and 0.02 ug/L for protein S-100. In 30 cases of low sample volumes, we reduced the amount of serum for protein S-100 assay from 100 uL to 25 uL. and 0.08 ug/L as the lower detection limit. Least square regression analysis for 18 samples were performed with both the original and the diluted protocol, and gave y (25 uL) - $1.019 \times (100 \text{ uL}) - 0.04$ with a regression coefficient of 0.98. Time required for the measurement of CK-BB, protein S-100, and NSE was 0.5, 3.5 and 0.75 h, respectively.

Data Analysis:

All values were presented as medians and interquartile ranges. Group comparisons were performed with the Mann-Whitney U test. Positive predictive value, negative predictive value, sensitivity, and specificity I; for development of moderate or severe asphyxia were obtained using optimal cutoff levels and were calculated on the material used in our study. Receiver operating characteristic curves were assessed using the areas under the curves. Correlations were calculated by the Spearman rank method. Probability values <0.05 were considered to be significant.

Results:

Clinical characteristics	Stage I HIE (No. 12)	Stage II HIE (No. 9)	Stage III HIE (No. 11)
Sex (M/F)	9/3	7/2	8/3
Gestational age (wks)*	41.7 ± 1.6	40.9 ± 0.9	39.6 ± 1.7
Birth weight (gms)*	3350 ± 516	3409 ± 707	3695 ± 406
Apgar score**			
-I st min.	2 (1-3)	5 (4-6)	1 (1-2)
-5 th min.	5 (1-6)	1 (0-3)	2 (0-5)
No. of infants needing Ambu bagging \ge 3 min.	10	8	8
No. of infants needing external cardiac	0	2	6
compression and medications			
No. of infants needing long-term mechanical	0	2	6
ventilation $\geq 24h$.			

*Values are given as mean ± SD; **Apgar scores are recorded as median (minimum-maximum).

m	 A CIT DD	 1 1 100	

Table 2: Serum concentr	/1				
Biochemical markers	Stage 1 HIE	Stage 11 HIE	Stage III HIE	P value*	P value
(median/interquartiles)					
		CK-BB (U/L) :			
Cord blood	24.5 (7.5-48.5)	26.5 (17.5-58.5)	15.0 (14.0-40.0)	0.005	NS
2h	16.0 (13.0-23.5)	36.0 (19.5-26.7)	46.5 (21.4-83.5)	0.000	0.003
6h	10.4 (6.0-16.0)	20.8 (8.0-26.0)	27.4 (18.0-56.0)	I 0.002	0.002
12 h	6.5 (4.0-14.0)	21.5 (7.0-19.6)	33.5 (17.1-52.6)	< 0.0001	0.012
24 h	12.5 (6.0-15.6)	9.6 (6.0-17.0)	9.6 (7.0-17.5)	0:028	NS

Aust. J. Basi	c & Appl.	Sci., 5(5):	82-87, 2011
---------------	-----------	-------------	-------------

		Protein S-l 00 (ug/L	<i>.</i>):		
Cord blood	1.5 (1.1-1.9)	2.6 (2.1-6.9)	2.6 (2.1-6.9)	0.0001	NS
2h	2.9 (1*8-4.7)	3.9 (3.5-5.4)	17.9 (3.2-35.1)	< 0.0001	0.008
6h	2.5 (1.6-3.8)	4. 5 (2.4-5.9)	27.6 (2.6-52.3)	0.001	0.015
12 h	1.8 (1.5-2.3)	2.3 (2.5-5.9)	3.1 (1.5-23.1)	0.00	NS
24 h	1.6 (1.0-2.6)	1.9 (1.8-3.7)	3.9 (1.2-9.7)	1 0.04	NS
		NSE (ug/L):			
Cord blood	48.9 (20.1-74.7)	51.8 (29.3-82.6)	106.8 (60.5-108.1)	NS	NS
2h	32.5 (20.8-60.7)	42.5 (28.8-65.1)	60.8 (49.3-89.1)	NS	NS
6h	35.6 (30.1-70.3)	39.5 (35.2-72.4)	52.7 (48.7-79.3)	NS	NS
12h	34.0 (24.6-48.7)	36.0 (25.3-50.9)	54.3 (46.8-78.8)	NS	0.028
24 h	33.1 (23.5-52.1)	31.2 (26.5-57.4)	51.9 (24.5-67.9)	NS	NS

P* values are for comparison between control infants (No=20) and infants with asphyxia (No=30) Pf values are for comparison between infants with mild HIE, moderate and severe HFE.

Table 3: Values for predicting moderate or severe HIE.

Variable	Cut off value	PPV (%)	NPV (%)	Sens (%)	Spec (%)	AUC
			CK-BB:			
2h	18.8 U/L	46	100	100	65	0.879
6h	17.0U/L	55	94	86	77	0.877
			Protein s-100:			
2h	8.5 ug/L	71	90	71	90	0.832
6h	4.6 ug/L	63	90	71	86	0.805
			NSE:			
2h	44ug/L	46	93	83	68	0.768
6h	46ug/L	42	93	83	65	0.763
Arterial cord blood PH	<6.9	46	89	71	73	0.838
Cord blood base deficit	>17mM/L	50	94	83	77	0.905
Apgar score (Imin)	<3	50	94	73	86	0.825

Abbreviation: PPV, positive predictive value; NPV, negative predictive value; Sens., sensitivity, Spec, specificity; AUC, area under the curve.

Table 4:	Combination	of	factors	for	predicting	moderate	or	severe HIE.

Variable	PPV (%)	NPV (%)	Sens (%)	Spec (%)
CKBB and Protein S-100	83	91	71	95
CK-BB and cord blood pH	71	91	71	91
CK-BB and cord blood base deficit	67	91	67	91
CK-BB and Apgar score- (Imin)	83	96	83	95
Protein S-100 and cord blood pH	100	88	57	100
Protein S-100 and cord blood base deficit	100	92	67	100
Protein S-100 and Apgar score (1 min)	80	88	57	96

Abbreviations: PPV, positive predictive value; NPV, negative predictive value; Sens.; sensitivity; spec and specificity. Values of serum factors are at 2 h after birth.

Discussion:

Neonatal asphyxia and hypoxic-ischemic encephalopathy frequently result in neurologic injury and Neurodevelopmental delay e.g., cerebral palsy, learning disabilities, epilepsy or even mental retardation (Volpe, 1995). A complex and interrelated alterations are postulated for understanding the pathogenesis of hypoxic-ischeinic encephalopathy (HIE), although the disturbed metabolism seems to have a key role in neuronal damage (Distefano and Pratic, 2010). Early recognition of the hypoxic- ischemic injury is important in guiding the management of these neonates and justifying administration of certain drugs, proposed as "Neuroprotectors" (Delivoria et al., 1998). However, in adults, neuronal necrosis and apoptosis after global ischemia are slow, and last for several hours to several days (Ramaswamy et al., 2009). Studies in perinatal animals suggest a quicker cellular destruction. It is not known how long the window of opportunity remains open for intervention, but any intervention will be more successful early after the insult (Levene et al., 1999). Energy substances in the neonatal brain continue to run down for 12 to48 h after hypoxia (Lorek et al., 1994). Therefore an intervention might be effective 2 to 6 h after birth asphyxia. As Neuro-protective interventions may be harmful. Levene et al. (1990) it is important to find early and reliable indicators of brain damage or of poor long-term prognosis to initiate or end Neuro-protective treatment: Cranial tomography, somatosensory evoked potentials, and magnetic resonance tomography are useful for prognosis, but not in the first 24 h after birth (Fitzhardinge et al., 1998) and (De Vries et al., 1991). Magnetic resonance spectroscopy reveals brain energy compromise, but is not practicable in most clinical situations. EEG is a useful diagnostic tool for assessing encephalopathy.

Aust. J. Basic & Appl. Sci., 5(5): 82-87, 2011

Previous reports Hellstrom-Westas et al. (1995) and Al -Naqeeb (1999) established a high predictive value of- postnatal EEG for neurologic outcome. Several studies measured biochemical factors in serum and cerebrospinal fluid glial fibrillary acidic protein after 12-48 h (Blennow et al., 1995), excitatory amino acids after 18-66 h (Hagberg et al., 1993) and InterLeukin-6(IL-6) 12 h after the hypoxic-ischemic event (Martin-Ancel et al., 1997). Urinary lactate: creatine ratio predicts HIE within 6 h with H nuclear magnetic resonance spectroscopy (Huang et al., 1999), but a useful indicator for HIE should be specific even earlier, and requires a rapid and readily available laboratory technique. Besides this, infants with asphyxia often have oliguria, and urine sampling may not be possible (Perlman and Teck, 1988). Our results do not confirm serum NSE as an early predictor of HIE. As late as 12 h after birth, serum concentrations of NSE increased significantly in the infants with moderate and severe" HIE when compared with infants with no or mild HIE. Results of other studies (Garcia-Alix, 1994) and (Thornberg, 1995) with serum NSE in asphyxiated newborns are in concordance with our data, whereas NSE in cerebrospinal fluid seems to be more favorable. Concerning CK-BB, these results are in accordance with studies where the increase was within the first 4-15 h of life (Cuestas, 1980 and Fernandez et al., 1987). Our serum CK-BB activities were lower than in the studies of Walsh et al. (1982) and Fernandez et al. (1987), which was probably related to the measurement of total creatinekinase activity at different temperatures. CK-BB levels in the neonate is negligible. 2S Cuestas (1980) found that the blood CK-BB levels were not increased in neonates with renal or gastrointestinal tract disorders. Therefore, we assume that increased levels originate mainly from the brain of the asphyxiated infants.

Protein S-100 is also known to be present in the striated muscle, heart kidneys, adipocytes, and thymus of newborns (Kojima et al., 1997). Until now, no study has examined the serum values of protein S-100 in asphyxiated and age-related control infants. In adults, protein S-100 is not detectable in serum under normal conditions (Fassbender, 1997) however, in cerebral diseases it ranged from zero (Buttaer, 1999) to highly predictive values (Martens et al., 1998). Additionally, clinical studies in adults evaluated different time patterns for the increase of (Marjaana et al., 2003) serum protein S-100, such as transient increase after cardiac operations (Westab et al., 1996) peak level within 24 h after cerebral hemorrhage (Kim et al., 1996) or global cerebral ischemia (Martens et al., 1998) and a peak level at d 3 after an acute ischemic stroke (Kim et al., 1996) and (Missler et al., 1997). In the serum of infants, protein V S-100 has been determined after cardiac operations and extracorporeal circulation, demonstrating age-related concentrations that were highest in neonates and infants with Down's syndrome with a pattern of transient increase similar to adult patients (Lindberg et al., 1998). In asphyxia, serum protein S-100 release follows a pattern similar to the transient increase observed after cardiac operations. Leakage of protein S-100 into the extra-cellular fluid after hypoxic damage of bloodbrain barrier seems to influence its level in serum, which explains why serum protein S-100 concentration is lower in adults than in infants (Lindberg et al., 1998). Recent studies detected transient serum elevations of protein S-100 without any relationship to permanent neuronal damage, and the question has arisen as to whether protein S-100 arises from non-cerebral sources (Westaby et al., 2000 and Wirds et al., 2003).

We could not exclude the possibility that protein S-100 and CK-BB release comes only from the brain. In regard to this, it might be a simple epiphenomenon of general ischemia related to asphyxia. Asphyxia may involve the whole body, and the release of proteins into the blood might be a general sign of change in cell membrane integrity and vascular permeability caused by the whole body ischemic-reperfusion injury. In our opinion, no single diagnostic marker should form the basis for decisions on Neuro-protective therapy. But the decision as to which infants could be candidates for post-asphyxial treatment should probably be based on several findings, which include EEC, Cord blood pH, Cord blood base deficit, Apgar score, serum protein S-100 and CK-BB. These biochemical markers may be helpful in deciding whether an early initiated Neuro-protective therapy should be continued or stopped. However, the obtained data from a small number of infants, refer to HIE and not permanent brain damage.

Conclusion:

It could be concluded that elevated serum concentrations of CK- BB and protein S-100 reliably indicate moderate and severe HIE as early as 2 h after birth (Good- win *et al.*, 1992).

Recommendation:

Neuro- development follow-up studies in HIE infants in the next few years will show whether elevated serum protein S-100 and CK-BB will also predict developmental delay.

Aust. J. Basic & Appl. Sci., 5(5): 82-87, 2011

REFERENCES

Al-Naqeeb, N., A.D. Edwards, F.M. Cowan and D. Azzopardi, 1999. Assessment of neonatal encephalopathy by amplitude-integrated electroencephalography. Pediatrics., 103: 1263-1271.

Blennow, M., H. Hagberg and L. Rosengren, 1995. Glial fibrillary acidic protein in the cerebrospinal fluid: a possible indicator of prognosis in full-term asphyxiated newborn infants? Pediatrics Res., 37: 260-264.

Buttaer, T., B. Lack, M. Jager, W. Wunsche, W. Kuhn, T. Muller, H. Przuntek and T. Postert, 1999. Serum levels of Neuron-specific enolase and protein S-100 after single tonic-clonic seizures. J. Neurol., 246: 459-461.

Cuestas, R.A., 1980. Creatine kinase isoenzyms in high risk infants. Pediatrics, Res., 14: 935-938. De Vries, L.S., V. Picrrat and P. Eken, *et al.* 1991. Prognostic value of early somatosensory evoked

potentials for adverse outcome in full-term infants with birth asphyxia. Brain Dev., 13:320-325.

Delivoria, M., M.D. Papadopoulos and O.P. Mishra, 1998. Mechanisms of cerebral injury in perinatal asphyxia and strategies for prevention. J. Pediatrics, 132: S30-S34.

Distefano, G. and A.D. Pratic, 2010. Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy. Ital. J. Pediatric, 36(1): 63.

Fasssbender, K., R. Schmidt, A. Schreiner, M. Fatar, F. Muhlhauser, M. Daffertshofer and M. Henneric, 1997. Leakage of brain- originated proteins in peripheral blood: temporal profile and diagnostic value in early ischemic stroke. J. Neurol. Sci., 148: 101-105.

Fernandez, F., A. Verdu., J. Quero. and A. Perez-Higueras, 1987. Serum CKP-BB isoenzyme in the assessment of brain damage in asphyxiated term infants. Acta Pediatrics Scand., 76: 914-918.

Fitzhardinge, P.M., O. Flodmark, C.R. Fitz and S. Ashby, 1981. The prognostic value of computed tomography as an adjunct to assessment of the term infants with postasphyxial encephalopathy. J. Pediatrics., 99: 777-781.

Garcia-Alix, A., F. Cabanas, A. Pellicer, A. Hernanz, T.A. Stiris and J. Quero, 1994. Neuron-specific enolase and myelin basic protein:relationship of cerebrospinal fluid concentrations to the neurologic condition of asphyxiated full-term infants. Pediatrics, 93: 234-240.

Good-win, T.M., I. Belai, P. Hernandez, M. Durand and R.H. Paul, 1992. Asphyxlal complications in the term newborn with severe umbilical acidemia. Am. J. Obstet. Gynecol., 167: 1506-1512.

Hagberg, H., E. Thornberg., M. Blennow, I. Kjellmer, H. Lagercrantz, K. Thiringer, A. Hamberger and M. Sandberg, 1993. Excitatory amino acids in the cerebrospinal fluid of asphyxiated infants: relationship to hypoxic-ischemic encephalopathy. Acta Pediatrics., 82: 925-929.

Hellstrom-Westas, L., I. Roson and N.W. Svenningsen, 1995. Predictive value of early continuous amplitude integrated EEC recordings on outcome after severe birth asphyxia in full term infants. Arch Dis. Child., 72: F34-F38.

Huang, C.C., S.T. Wang, Y.C. Chang, K.P. Lin and P.L. Wu, 1999. Measurement of the urinary lactate: creatinine ratio for the early identification of newborn infants at risk for hypoxic-ischemic encephalopathy. N Engl. J. Med., 341: 328-335.

Kim, J.S., S.S. Yoon, Y.H. Kim and J.S. Ryu, 1996. Serial measurement of interleukin-6, transforming growth factor- β , and S-100 protein in patients with acute stroke. Stroke, 27: 1553-1557.

Kojima, K., H. Wekerle, H. Lassmann, T. Berger and C. Linington, 1997. Induction of experimental autoimmune encephalitis by CD 4+ T cell specific for an astrocyte protein. S-100 beta. J. Neural. Transm. Suppl., 49: 43-51.

Levene, M., N. Gibion, A. Fenton, E. Papathoma and D. Barnett, 1990. The use of a calcium-channel blocker, nicardipine, for severely asphyxiated newborn infants. Dev Med Child Neurol., 32: 567-574.

Levene, M.I., D.J. Evans, S. Mason and J. Brown, 1999. An international network for evaluating neuroprotective therapy after severe birth asphyxia. Semin Perinatal., 23: 226-233.

Lindberg, L., A.K. Olsson, K. Anderson and P. Jogi, 1998. Serum S-100 protein levels after pediatric cardiac operation a possible new marker for postperfusion cerebral injury. J. Thorac Cardiovasc Surg., 116: 281-285.

Lorek, A., Y. Takei and E.B. Cady, *et al.* 1994. Delayed (secondary) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic esonance spectroscopy. Pediatric Res., 36: 699-706.

Marjaana, T., O.R. Risto, P. Ville and T. Olli, 2003. Serum Neuron-Specific Enolase and S-100B proten in cardiac arrest patients treated with hypothermia. Strake, 34: 2881.

Martens, P., A. Raabe and P. Johnsson, 1998. Serum S-100 and Neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia. Stroke, 29: 2363-2366.

Martin-Ancel, A., A. Garcia-Alix, D. Pascual-Salcedo, F. Cabanas, M. Valcare and J. Quero, 1997. Interleukin-6 in the cerebrospinal fluid after perinatal asphysia is related to early and late neurological manifestations. Pediatrics, 100: 789-794.

Missler, U., M. Wiesmann, C. Friedrich and M. Kaps, 1997. S-100 protein and Neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke, 28: 1956-1960.

Perlman, J.M. and E.D. Teck, 1988. Renal injury in asphyxiated newborns infant: relation to neurologic outcome. J. Pediatric, 113: 875-879.

Ramaswamy, V., J. Horton. B. Vandermeer, N. Buscemi, S. Miller and J. Yager, 2009. Systematic review of biomarkers of brain injury in term neonatal encephalopathy. Pediatr. Neurol., 40(3): 215-126.

Suzuki, F. and K. Kato, 1986. Induction of adipose S-100 protein release by free fatty acids in adipocytes. Biochim. Biophys. Acta, 889: 84-90.

Thornberg, E., K. Thiringer, H. Hagberg and I. Kjellmer, 1995. Neuron specific enolase in asphyxiated newborns: association with encephalopathy and cerebral function monitor trace. Arch Dis. Child. Fetal Neonatal Ed., 72: F39-F42.

Vannucci, R.C. and J.M. Perlman, 1997. Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics, 100: 1004- 1014.

Volpe, J.J., 1995. Neurology of the newborn. 3 rd ed. Philadelphia: WB Saunders & Co., 211-369.

Walsh, P., R. Jedeikin, G. Ellis, R. Primhak and S.K. Maleka, 1982. Assessment of neurologic outcome in asphyxiated term infants by use of serial Ck-BB isoenzyme measurement. J. Pediatrics, 101: 988-992.

Westab, S., P. Johnsson, A.J. Parry, S. Blomquist, J.O. Solem, C. Alling, R. Pilling, D.P. Taggert, C. Grebenik and E. Stahl, 1996. Serum S100 protein: a potential marker for cerebral events during cardiopulmonary bypass. Ann. Thorac. Surg., 61: 88-92.

Westaby, S., K. Saatvedt, S. White, T. Katsumata, W. Oeveren, N.K. Bhatnagar, S. Brown and P.W.

Wirds, J.W., A.E.J. Duyn, S.D. Geraerts, E. Preijer, Van J.A.A.M. Diemen-Steenvoorde, J.H. Schagen van Leeuwen, F.J.L.M. Haas, W.B.M. de Gerritsen, A. Boer and J.A. Leusink,2003. S100 protein content of umbilical cord blood in healthy newborns in relation to mode of delivery. Arch dis. Child. Fetal. Neonatal Ed., 88: F67-F69.