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Abstract

In this paper we presented The existence and stability of inclusion equations type of stochastic

dynamical system driven by mixed fractional Brownian motion in a real separable Hilbert space with an illustrative
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1. Introduction

The theory of integro-differential equations or inclusions
has become an active area of investigation due to their
applications in the fields such as mechanics, electrical
engineering, medicine biology, ecology and so on, On can
see [1,4,14] and references therein. Several authors have
established the existence results of mild solutions for these
equations (see [3,7,9,11,14] and references therein). In
addition, the nonlinear integro-differential equations with
resolvent operators serve as an abstract formulation of
partial integro-differential equations that arise in many
physical phenomena. One can see [16] and references
therein. The deterministic models often fluctuate due to
noise, which is random or at least appears to be so.
Therefore, we must move from deterministic problems to
stochastic problems. As the generalization of classic
impulsive integro-differential equations or inclusions,
impulsive neutral stochastic functional integro-differential
equations or inclusions have attracted the researchers great
interest. And some works have done on the existence
results of mild solutions for these equations (see [12,17]
and references therein). To the best of our knowledge,
there is no work reported on the existence of mild
solutions for the impulsive neutral stochastic functional
integro-differential inclusions with nonlocal initial
conditions and resolvent operators, and the aim of this
paper is to close the gap. In this paper, motivated by the
previously mentioned papers, we will study this
interesting problem. Sufficient conditions for the existence
are given by means of the fixed point theorem for
multi-valued mapping due to Dhage [6] and the fractional

power of operators. Especially, the known results
appeared in [2,8,10,12,15] and [5,6,11,16] are generalized
to the stochastic settings. An example is provided to
illustrate the theory.

2. Preliminaries

For more details on this section, We refer the reader to
Da prato and Zabczyk [13] throughout the paper
(H,|I-'ly) and (K,|.|lg) denote two real separable
Hilbert spaces. In case without confusion, we just use (.,.)
for the inner product and ||. || for the norm.

Let (Q,F,p; F) (F = {F(t)};>) be complete filtered
probability space satisfying that F, contains all P-null sets
of F. An H-valued random variable is an F-measurable
function x(t):2 - H and the collection of random
variables S = {x(t,w): 2 —» H \ t € J} is called a stochastic
process. Generally, we just write x(t) instead of x(t,w)
and x(t):J - H in the space of S. Let {e;};2; be a
complete orthonormal basis of K. Suppose that {w(t):t >
0} is a cylindrical K —valued wiener process with a finite
trace nuclear covariance operator Q > 0, denote Tr(Q) =

ie1 A = A < oo, which satisfies that Qe; = A;e;. So,
actually, w(t) = X2, /4 w; (t)e;, where {w;}72, are
mutually independent one-dimensional standard wiener
processes. We assume that F, = a{w(s):0 < s < t}is the
o —algebra generated by w and Fy = F. Let ¥ € L(K,H)

, 2

and define |13 = Tr(¥Q¥™) = T4 ||V A, Peu || -
If [|¥][g < oo, then ¥ is called a Q -Hilbert-Schmidt
operator. Let L, (K, H)denote the space of all Q-Hilbert-
Schmidt operators ¥: K — H. The completion L, (K, H) of
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L(K,H) with respect to topology induced by the norm
II.1lp where ||'P||5 = (¥,¥) is a Hilbert space with the
above norm topology. Let A: D(A) — H be infinitesimal
generator of a compact, analytic resolvent operator S(t),
t = 0. Let L,(2, F, ) denote the Hilbert space of all F, —
measurable square integrable random variables with
values in H. Let L ([0, b], H) be the Hilbert space of all
square integrable and F, — measurable processes with
values in H. B([0,b])={x:[0,b] » H,xx € C(Jk,H)} let
LY([, 2,1, H) denote the family of all F, —measurable, g —
valued random variables x(0). We use the notations
pq (H) for the family of all subsets of H and denote

Pt (H)={Y e p(H):Y is closed},

Pev (H)={Y e p(H):Y is convex},
Ppg (H)={Y e p(H):Y is bounded },
Pep (H)={Y € p(H):Y is compact}.

In what follows, we briefly introduce some facts on
multi-valued analysis. For details, one can see [10]. A
multi-valued map I': H — p(H) is convex (closed) valued,
if I'(x) is convex (closed)for all x € H. I'(x) is bounded
on bounded sets if I'(B) =U,¢5 I' (x) is bounded in H, for
any bounded set B of H, that is, sup,czsup{lly|l €
I'(x)} < oco.Tis called upper semi continuous (u.s.c. for
short ) on H, if for any x € H,the set I'(x) is a nonempty,
closed subset of H, and if for each open set B of H
containing I (x), there exists an open neighborhood N of x
such that I'(N) < B. T is said to be completely continuous
if I'(B) is relatively compact, for every bounded
subset B € H. If the multi —valued map T is completely
continuous with nonempty compact values, then T is u.s.c.
if and only if I' has a closed graph, ie, x, = x,y, =
v, ¥, € I'(x,) implyy e '(x). I' has a fixed point if
there is x € H such thatx € I'(x). A multi-valued map
I':] - p, is said to be measurable if for each x € H, the
mean —square distance between x and I" (t) is measurable.
Definition (1) (following in [5])

Let (QQ, F, (F; )0, P) be a filtered probability space.

(i) The filtration (F; ). is said to be complete if

(Q,F,P) is a complete and if F, contains all the
P —null sets.

(ii) The filtration, (F; ). is said to satisfy the usual
hypotheses if it is complete and right continuous,
thatis F, = F,* where F,* = Ny F,.

Lemma (1) (following in [1])

Let I be a compact interval and a Hilbert space. Let F
be an L? —Caratheodory multi-valued map with Ny, # @
and let I' be a linear continuous mapping from
L?(I,H) to C(I,H). Then, the operator I'y Np: C(I, H) —
Pep.cv(H), x = (I'o Np)ry = T'(Ng,), is a closed graph
operator in C(I, H) x C(I, H), where Nr, is known as the
selectors set from F, is given by o € Ng, ={ae
L*(L(K,H)):0(t) € F(t,x) fora.e.t € J}.

Lemma (2), (Ito isometry theorem) (following in [20])

Let V[0,T] be the class of functions such that
f:[0,T] xQ— R, f is measurable, Ft — adapted and

E [fOT(f(t, a)))zdt] < oo, Then for every f € V[0, T]

EUOT f (t,a))dB(t)T - E[jg(f (t,a)))zdt]

where B is a wiener process.
Definition (2) (following in [12])

Let H be a constant belonging to (0, 1). A one
dimensional  fractional Brownian motion BY =
{B{),t = 0} of Hurst index H is a continuous and
centered Gaussian process with covariance function

E(B(‘?)B(Z‘))Z%(tZH +52H —|t—S|2H ),

fort,s = 0.
Remark (1) (following in [12])
Let B¥ = {B{l,,t = 0} be a one dimensional fractional
Brownian motion then
1) E(BY, — BH)" = |t —s[?.
2) R(s,t) is a covariance function of fractional
Brownian motion (B({),o such that

R(s,t):%(tZH +g2H —|t—s|2H ) fort,s>0. (1)

3) If H=l the covariance function becomes

2
R(s,t) = min (s, t).
Remark (2) (following in [19])
Let B¥ = {B(},,t = 0} be a one dimensional fractional
Brownian motion then for every t; <t, <t; <t,

H H H
E(Btl B )(Bts Bt4)

+|t1 —t4|2H

—|t2 —t4|2H

_ 1l -t

—|t1 —t3|2H

1. If H :% Then the increments of B” are non-

correlated, and consequently independent. So B" is
a Wiener Process which denoted further by B.

2. IfH € (%1) then the increments are positively
correlated.
3. If H e(O,%) then the increments are negative

correlated.
Definition (3) (following in [19])

A stochastic process X = {X(,),t > 0} is called b —self
similar if {X(4), t > 0} and {a’ X, t > 0} have the same
law.

Remark (3) (following in [19])

Fractional Brownian motion B of Hurst index H is
H —self similar.

In the following sections, we explain the Integration of
Deterministic Function with Respect to One Dimensional
Fractional Brownian motion
Lemma (3) (following in [12])

The one dimensional fractional Brownian motion
B = {B{},,t = 0} has the integral representation
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t
B(lE') = JO KH (t, S)dB(S) (2)

here, B is a wiener process and the kernel Ky (t, s) defined
as
e @
Ky (t,s)=cHs L(u—s) 2u u 3

1
H-t 3
oK t 2 H-2
—(t,s)=cH| - t—s (4)
ws)=on (L] 29"
2
cH = H(ZH -1 | t>s and B is a beta
2_2H,H-=
ple-zm-)
function.

Definition (4) (following in [19])
Let the general indicator function be given by
1, a<t<b
-1, b<t<a .
0, otherwise

]-[a'b] (t) =

The function f is said to be step function, if there exist a
finite number of points t, €R, 0 < k <n —1, and
ax €R, 1< k< n,suchthat f(t) =Xk—q ai 1, ,1(0).

Now, We denote by g the set of step functions on [0, T].
If @ e g then by defined above we can write it by the form
() =Xr-1ay Leg tr01(®) s where t € [0, T].

The integral of a step function ® e g with respect to one

dimensional fractional Brownian motion is defined
f o(t)dB{' = Yi_ap(Bf,,, — Bf), where a; €R,
2
H(2H -1)
0=t <t <...... <tyy =T.cH = —— |
ﬂ(Z—ZH H —2)

t > s and B is a beta function.
Definition (5) (following in [19])
Let the general indicator function be given by
1, ac<t<b
-1, b<t<a .
0, otherwise

]'[a'b] (t) =

The function f is said to be step function, if there exist a finite
number of pointst, ER,0 < k < n — 1,anda, € R,
1 < k < nsuchthat f(t) = Xk=q ax L, _ye,1(0)-

Now, We denote by ¢ the set of step functions on [0, T].
If @ e g then by defined above we can write it by the form
D(t) = Xg=1 L, t,,,1() , where ¢t € [0, T].

The integral of a step function ® < g with respect to one
dimensional fractional Brownian motion is defined

f @ (t)dB{' = ¥}_ar (B, — B{), where a, € R,
0=t <t <.....<tyy =T.

Let H be the Hilbert space defined as the closure of g
with respect to the scalar product < 1jg.1,1j0,6) >=

RH(t,s) = E(BfB!) [Nualart, 38].

The mapping 10, — {BH(t),t€ [0,T]} can be
extended to an isometry between H and spant’®
(BH(t),t €[0,T]} . e the mapping H - I?
(Q,F,P),® - fOTCD(t)dBt” is isometry [22].

Remark (4) (following in [21])

e If H =% and H = L*([0,T]) then by using (Ito

isometry theorem), we have

EUOTQJ t)dB

e IfH >% from the equation ( 2.30), we have

I
] = [, @(t)%dt (5)

Ry (s.t) = (|t|2H #sf - ft-*) 1520

5';_;4: H(|t|2H—1_|t_S|2H—1) ©

2H-2

ORA =H(2H -D)[t—9[*" ~* dsdt @)

Lemma (4) (following in [11])
For any functions @, ¢ € L?[0,T] n L'[0,T], then

—H (2H —1)]0T .jOTcD t)g(s)[t - s/ Pdsdt
8RH 2H-2
(i) E (BB )= = H(2H ~Dft—s""* dscit )
From this Lemma above, we obtain
EUTqD(t)dBH jz
0 © ©
—H(2H —1)[5 ,IJ@ 5) b (t)[t—s|2H 2dsd.

Remark (5) (following in [11])
The space H contains the set of functions ® € L?[0,T]
N L'[0,T], such that f}. [} &(s)(t) | ¢ — s |2#-2 dsdt < oo,

1
which includes L% ([0, T]).
Now, let A be the Banach space of all measurable
functions on [0, T] such that

2
%y

=H@H D] [ o (s)o (1)l t

Lemma (5) (following in [18])
Let A be the Banach space of all measurable functions
on [0,T] and H be the Hilbert space defined as the closure

(10)
—g]?H2gsdt < 0.

of the set of step functions on [0, T]. If %< H <1 then.

1
L*([0,T]) < L7 ([0,T])) € Hc H.

As for regard to Integration of Deterministic Function
with Respect to Infinite Dimensional Fractional Brownian
motion, Let X and Y be two real separable Hilbert spaces
and Let L(X,Y) be the space of all bounded linear
operators from X to Y.
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Definition (6) (following in [22])
A process X = {X;,t = 0} with values in separable

Hilbert space Y is called Gaussian if, for every
tl,tz,t4,, t € [0 T] and YV1,Y2,Y3) eees Y €Y the
real random variable Yii(y;, X;)y has a normal

distribution.
Definition (7) (following in [22])

The Y —valued process (W/),epor; is said to be an
infinite—dimensional fractional Brownian motion or
(Q —fractional Brownian motion) if W# is a centered
Gaussian process with covariance COV (W, W}H) =
R(t,s)Q, where Q the covariance operator.

Lemma (6) (following in [22])

W is a Q —fractional Brownian motion if and only if
there exists a sequence (BX),s; of real and independent
fractional Brownian motion such that

Wi =Wo) = 2negVnnBaty:

where the series converges in L2(Q;Y) and {e,}>_, the
orthonormal systemin Y.
Rmark (6) (following in [22])

Suppose that there exists a complete orthonormal
system {e,}n—; in Y. Let Q € L(Y,Y) be the operator
defined by Qe, = 1,e,,, whereA, = 0 (n=1,2,....) are
non-negative real numbers with finite trace Tr Q =
Y1 d, <o . The infinite dimensional fractional
Brownian motion on Y can be defined by using
covariance operator Q as W{t’) = WQ” o = Z;‘{;lm en
B} . where BY,, are one dimensional fractional
Brownian motions mutually independent on (€, F, P).

In order to defined stochastic integral with respect to
the Q — fractional Brownian motion. We introduce the
space L3 (Y, X) of all Q —Hilbert-Schmidt operators that is
with the inner product (@, @) g = Y _(Pe,, pe,)is a
separable Hilbert space.

Lemma (7) (following in [18])
Let {O(t)},, [07] be a family of deterministic functions

with values in LY(Y, X) The stochastic integral of ® with
respect to WH is defined by

[o@(s)XWE = X7 [ V2@ (s)endBlly
= 3 o\ (K ()

Lemma (8) (following in [18])

If :[0,b] - LY(¥,X) satisfies [} llo(s)lI%yds < oo
then the above sum in lemma (1.13) is well defined as an
X — valued random variable and we have

(1.14)
dBn(s)

H 2 2H-1
Ejo s)AWE)? < 2Ht jo des. (11)

3. Problem Formulation

In this section, we study the existence and stability of
inclusion equations, type of stochastic dynamical system
driven by mixed fractional Brownian motion in a real
separable Hilbert space H of the following from:

fo o

{ +jf
+ Fl(t, x(hg (t)))dw(t)+ Fa(hg (t))dWH (1)

x(0)+h(x(t)) = xoé< H <1,

X(0)+h'(x(t)) =x

Where A: X — X is a generator of cosine semigroup on a
Hilbert space (X, |I-]), {W (¢):t = 0} and (W (¢):t = 0}
are K —valued Brownian motion and fractional Brownian
motion respectively.

To investigate the existence of the mixed-stochastic
mild solution to the system (12), and for the operators A
we make the following assumption :

1. A is the infinitesimal generator of a compact,
analytic resolve operator S(t),C(t),t =0 in the
Hilbert space H and there exists constant M",N"
and M;, M, such that ||S(O)|I? < N", |IC@®)|?* <
M",tejonl= [0,T]and |[f()|I* < M.

2. There exist constant M, such that g: J X H X
H — H, is a continuous function, satisfies the
following Lipchitz condition, that is, for any
s,t € J,x,y € H such that

tsd@(»wﬂ]

ds} dt 12)

||9 (S, X1 Y1)— g (s, X2, Y2 )"2
My [s=1)+[ el +vs - volf |

Mé\ =SUP¢ey g(t,0).

3. &a DXH-H,D={ts)e]Jx]J:t=s}is a
continuous function and there exists a constant
M3 > Osuchthatforallt € J,x,y € H

a(t,sy,y)]ds

<M sy —saf? + - vIF)
and M3 =sup;; a(t,0,0).

(t)[a(t,sl,x)—

4. h3 €C(,),F, € I*(L(K, H)).

5. For the initial condition there exists a positive
constants Mg, and M; such that supg,;2< h(x1) =
My, supg < h'(x2)= Ms.

X2 (t)”2

X2 ('f)"2

6. The function 0:[0,T] - L(y;x) satisfies For
every t €[0,T]: fotlla(s)ll%zds < oo and there
exists C; > 0 such that Suplla () (®)II7, < C;.

7. The multi-valued map AF;:] x H = Pyg o0 (L(k, H))
is an L? — Caratheodory function satisfies the
following conditions:-

[n(x (1))~ (x (V)] < Mg [ (1) -

[ (x (6) 1 O ()] < My [ (1) -
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i. For each t €], the function AF;(t,.):H X H -
Py c1.e0 (LCk, H)) is u. s. ¢, and for each x € H, the
function AF; (., y) is measurable and for each fixed
x € B, the set Ny,={oe€l*(LkH):
a(t) € AF;(t,x(h3 (1)) ) for t € J} is nonempty.

ii. For each positive number L > 0, there exists
appositive function u(I) independent on I such that
Supg < 1AFL (6 ) < p(D).

il [|AF;(ty, x1) = AFy(t2, x)11* < Ly(Ity — to] +
ll2x; = 22 11).

6M " Ex(0)2 +12N*° HT2HI, |
H12M A MoMZ + MgM

6NN Tr(Q) (L)

12N~ (Ex'(0)2+C)

8. r>maxq= > > =,
1—(6NA T2M; +12M" M2+M3j
2 2
M* & -yn +N* Ty -y,
2 2
(1 M/\ M6+NA M7+M2 )
2 2
+TTr Q)N Ly + LM;N~ T2
Where

1> (M "Mg+N"M; +M, +TTrH(QN Ly + LM;N"T?2)
N2 a2
and1>£6N T2M, +12M M2+M3j.

Lemma(9)

Let {c(t)};>0 be a cosine semigroup and H -valued
function g(s)=C(t—s)x(s) +S(t—s) [ x(s)—
g(s,x(s))] then the system (12) has a mixed-stochastic
mild solution

x(t) =C(t)x(0)

+S () x'(0)-g(0,x(n (0)),0)]
A
+I s) AR (s, x(hg (s))dw(s))
+j03(t—s)AF2(h3(t))de (s)
_J'éc(t—s)g(s,x(m(s)),.[;a(t,r,x(hz (r)))drjds.

Proof:
g(s) =C(t—s)x(s)

+S(t—s)[x’(s)—g(t,x(hl(t)) J a(t,s,x(hy (s )dsﬂ

different both sides for S and use properties in Lemma (9),
we get

906) _ ¢ (¢
ds

(s—7) Af (z,77)x(71)dryd 7

-s)X(s)—AS(t—s)x(s)+S(t-s)

d

E{X,(S)_ g (s, x(hy (s)),J'(t)a(t, s, x(hz(s)))dS}

~C(t-s)(x (s)-g(s,x(hy(s)), j a(t, s, x(hy (s)))ds)
=C(t—s)x(s)—AS(t-s)x(s)

es(t-s)| AG(t)+ ]! | (t—s)x(s)ds))dt)
+F (t,x(hg (1)) dw(t) + F, (g (1)) dw" (t)
—C(t- s)( (s)—g(s,x(hy (s )),I(t)a(t,s,x(hz(s)))ds).

Integrate both sides, we get

t

JtsAf )X

(c)dr
)))

+S(t—s) AR (t,x(hg (s
+S(t S AFz(hg )dW

t

+C(t-s)a(s,x(h (s)),joa(t 5,X(hy (s))ds)

x(t) = C(1)x(0)+S (1) X (0)-g(0.x(1(0)).0)]
H (t—s)Af (z, Tl)X(Tl)drldT

+j s(t—s) AR (s, x(hg (s))dw(s)) (13)
+[8(t=5) AR (e (1) Jaw (5)

—IOC(t—s)g(s,x

Definition (8)
A bounded function x(t):R — H is called mixed
solution of the inclusion system (12) if forany t € |

X(t)=C(t)x(0)+S ()| ¥'(0)-g(0.x(n (0)).0) ]

hl(s)),J‘;a(t,r, x(hy (r)))drjds

+[ 5 (t-3) [ Af (t-5)x(s)dsds

+f, s(t=) AR (s.x(a (s))dw(s))

+f, S (t=3) ARy (g (1)) (s)
foC(t-9)as:x(ty(s)) Jya(t rox(hy (1)) oe .

3.1. Existence of the Fractional Stochastic-
Integro Differential Inclusion Driven by
Mixed Fractional Brownian Motion

In this section, the existence of mixed-stochastic mild
solution in to inclusion problem formulation (12) has been
develop.

Theorem(1):

Suppose that conditions(1-8) are hold.

Then for initial value x(0) + h(x(t)) = %y, x"(0) +
h'(x(t)) = x;, such that the intial value mixed-stochastic
inclusion problem(1) has mixed-stochastic mild solution x € 3.



Proof:
Let the operator @: B — p(B) defined by

B(x)={xeB:x(t)=C(t-s)x(0)
+s(t)[x'(o)_g(o x(m(0)),0)]
j j Af (t—s)x(z)d(s)d(s)
+Ios (t—s) AR (s,x(hg(s)))dw(s)

+I;S(t—s)A Fy (hg(s))dw™ (s)

_.[;C(t—s)g(s,x(m(s)) J (t 7, x hz df)ds)

It is clear that the fixed points of @ are mild solutions of

the system (12). Let
@1 (x)={xeB:x(t)
=C(0)x(0)+3 (] ¥(0)-9(0.x(1(0)).0)
j;s(t s) .f Af (t - s)x(s)dsds

J?)C(t 5) ( (s)),jéa(t,r,x(hz (r)))drds).

Dy (x)={xeB:x(t)
i j(;s(t—s) AFl(s, x(hs (s))dw(s))
+[S(t-)AF (g (1) jow (s)

We prove that the operators @; and @, are satisfy all the
condition of theorem (1), Let B, = {x € 5, E||x||*> < [}

Step(1):- @, is a contraction
Let x; ,x, € B;, from assuming that

@ (x)={C(t)x(0)+S(t)[x’(O)—g(O,x(hl(O)),Oﬂ

,[ J Af (t—s)x(s)dsds
_J‘OC (t-s) g(s,x hy (s)), J' (t 7. x(hy (7 )dfdsj

E|21 (%)) -2 (% )(t)uz
<s[cff £ (0)- O

45| E [ (0)- x5 O

ISOFF Ea (0% (m(0)).0) -0 (0.5 (m (0).0)f

+5J'; st - s)||2 j; If - s)||2 E ||x1 (s)—x; (s)||2dsds

+folet-s)F e
0
2

o sl e )

0

From the assumptions (1-4), we have

g{srxl(hl(s))rja(trff X (hy (T)))dTJ

ds.
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<5M"sup,.s E[% (0)- %, 0|

45N supycy [x1(0) - x5 )]

45N Mg [ () -3 O

48[ [N " MaSUpye E [ (t) - xo 1) dsds
=5l (hu ()~ (1 (5))

otenr(@) [

Ol-a(t,7, %, (hp (1)))dr

By using initial condition (5), and taking supremum

+5j:)|v|“2 Ms

over t € [0, T] for both sides, we get

E 21 (4)(1)- 2 (%) O
<M Mg (x (1)) ~h(xp ()
5N M [h*(x (1) ~h* (o (0)]
+5N" MSupE [ (1) - o (0
52N M,Supy_, E % ()|
+56M " M Supc E 4 (1) - )
MgSupies E [y (1) - o O
We can rewrite last inequality in the following from:
E 21 () (1)~ 21 () )

2
< Supyey (1) - X (1) (5'\/' M;Mg

22 22 ) 2
+5N M5M7+5N M2+5b N Ml

+5bM ™~ M, + |\/|3j5upt€J E % (t)-x, (t)||2
= LoSupies E X (1) - X ('f)"2 :
Where
SMAZ(M4M6+bM2) 0
= > U.

2
+5NA (M5M7 +M2+b2M1)+ M3

Hence, we obtain E||@;(x;)(t) — 0;(x)(®D]? <
Lo Ell x; — x|
Step (2):- @,(x) is convex for each x € B if uy,u, €
@,(x), then there exists oy,0;, € Nry, from condition
(7 — i— ii), we get

% (t) = [(S(t-3)oy (s)w(s)
+[S(t=5) A Fy (na (s))w" (s)

(16)
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X2 (1) = [ S(t-s)oz (s)w(s)
+[ S(t=5) AR (ng (5))aw (s).
Let 1€ [0,1
2(t) = [ (t=5) Aoy (s)aw(s)
+]28(t=5) A Fy (h (5))dw" (5)
(1-2)% (t) = [ S(t=3)(1-2) 2 (s)iw(s)
o a2 (t-5) AR (g () (5)

Since N , is convex (because F; , has convex values),
then, we have

2% (1) +(1- 2) % () € Dy (x).

Step (3):- @, maps bounded sets in to bounded sets in .
To show that there exists a positive constant a such that
for each u € @,(x),x € B;, we have E[|u(t)]|> < a. If
u € @, (x), then there exists o € Ny, for eacht € ], such
that

am

], then

2
EJu)| < 2E HJ; S(s—t) AR (s, % (hg (s)) jaw(s)

+2E“L;s(s—t)A Fy (hs(s))dw" (s) 2

<2|s(s-t)f EH Lo (s)

2
+2|s (s—t)||2 EH j; AFy (hg(s))dw™ (s))

2
dw(s)

By using Lemma (1.8),
assumption (1), we obtain

Lemma (1.14) and by

ds

2
(s)
[ AR (g (s))

From assumptions (6) and (7-ii) ,we get

Efu)f? <an"E|[ o

A2
2N (ZHtZH_l

s |.

< 2NA2Tr(Q)Ty(J) +anN™ Ht?H e, =A. (19

Step(4):- @, maps bounded sets in to equicontinuous set
of f, Let 7 € (0,b] such that 0 < t; <71, <b, then
for eah x € By, and u € @, (x), then,there exists o eNg 1 ,
such that for each t € J, we have

@5 (x) =[S (t-5) A Fy (s,x(ha 5)) aw(s)
(s))aw" (s).
2)=22 (x)(n)|”

L?‘f(” ) }Aﬁ(s.x(ha(s)))dw(g

-S(z1-s)

I t SAF2 h3

E|@, (x)(=
2
<6E

2

+6

e[” Eér(; Z)}AFl(s,x(hg(s)))dw(s)

+6E J':lzs(rz—s ARy (s,x(hg (s)))dw(s)

2

+6E | [ IS (72 —3) = S (71— 3)IAR, (g (5) Jaw" (s)

+6E|[™ [S(,—5)-S(r1—5)]AF, (Mg (s )dw

1€

2

+6E j:lzs(fz —3) AR, (hg(s))dw"

2

'[(:1_8[8 (r5—8)—S(7 —s)lds

<6Tr(Q)u(1)E

2
T [S(z,-3)-S(r—5)lds

-¢

+6Tr (Q)u(1)E

2
+6HT 2H1c,

E Uofl‘g[s(rz —5)=5 (2 —5)[ds

‘2

2H-1 1 Q) _
+6Ht ClE‘ e $)-S(r )]

+6E

:12[3(12 ~5) AF, (hg(s)) dw" ] 2

When 7, — 7, the above inequality tends to zero, since S(t)
in the uniform operator topology thus the set {¢,(x): x €
B, } is equicontinuous.

Step(5):- Now to prove (@,B,; )(t) is relatively compact
in H for each te], wehre (@,B;)(t) ={u(t):u €
@,B; },t € ], the set (@,B;)(t) is relatively compact in
Hforeacht =0. Let0 <t < band 0 <e<t,forx € B,
and u € @, (x), there exists o € Ny y such that

“<t>=LZ*ES“-s>AF1(s,x<h3<s>))dw<s>
+]; S (s=1) AR (X (5)) i
+]y "5 (s-t) AR, (ng(s ))dw“(s)
+}_S(s—t) ARy (hs ()" ().

Now, we define

e ()- ;‘E[S“‘e)jAa(s,xm(s

—(s-¢)

(19)

))Jaw(s)

(20)
oy (S(t-) (5= 9) AR (g ())w™ (5).

for each 0 <e< t, thus,

Efu(t)-u (t)||2

<ag[} s s.x(ha (5))Jow(s)

+j S(t-s AFl( (s)))dw(s)

+I S(t—s)AF,(h ( ))dw (s)
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+]._S(t=5) ARy (g (s))dw™ (5)
+ Lt)—e(s (t-€)—(s-€)) AR (5, x(hg (5)) jaw(s)
_J‘é—es((t—g)—(s—f))AFz(h3(s))dWH ) 2

Since sine simegroup operators are a continuous, we
have

E||u t -u (t)||2

<4EHJ S (t—s) AR (s,x( )dw

+ J't_e S(t—s) AR, (hy(s))dw" (s)

Then, there exist a € Nyp, x, We get
2

< 4EHLt_€S (t-s)o(s)dw(s)

I s(t-5) AR (b (o)

By using Lemmas (2), (8), and assumptions (1), (6),
(7-ii), we obtain

< 4Tr(Q),u(I)e+8N’\2 Ht2" ) e

The relative compact sets arbitrarily close to the set
{u(t):u € ©,B,;} then its relative compact in g thus @, is
a compact multi-valued closed graph .

Step (6):- Now to show that @, has a closed graph .

Let x, » x,,x,€B,,u, € 0, (x,) and wu, -
u,, we aim to show that u, € @, (x,) indeed, u, € @,
(x,,) means that there exists

O'anAFl,x (S’ X(hS(S)))

Un ()= [ S (t=5) AR, (s x(ha(s))Jow (2D
j (t—s)op, (s)w'™.

There exists 0, , € Ny, , thus

up (t) = j (t-s)orn (s dw+j t—s)on (s)dw" . (22)

We must prove that there exists o1 € Ny, such that

Ux (t) = j;s(t—s)al

Suppose the liner continuous operator T;: L2(J,H) —
C (J,H).
From lemma (1) it follows that I'; Ny, . (s,x(h3 (s))) dw

dw+j (t—s)ow(s)w".(23)

is closed graph operator and we have |

IGEDICNG!
Un ()= [, (t=5) o ()™ < FyN g (5,%(ng (5))) dw.

Since u,, = u,, it follows from Lemma (1) that,

u, (8) —u,(t) +

— a*(s))de” — 0 asn — oo, thus

That is, there exists a o7 € N, such that

e ()= [ S (t=5) o (s)w = [1S(t-5) oy (s)aw

Since T be a linear continuous mapping from

L?>(I, H)to C(I, H), in Lemma (1). Therefore @, is a closed
graph and @, u.s.c.
Step (7):-The operator inclusion x € @, (x) + x € @,(x)
has a solution in B[0, ]. Define an open ball B(0, r) in 8,
where r satisfies the inequality given in (20),we need to
show that the system (12) has least one mild solution, for
Au € @yx + @,x . for some A > 1 with E||x||?> = r, then,
we have

x(t)=27H(C(1)x(0))+ A7 (S ()] x'(0) -9 (s x(0)) ]
+z—1(j j (t—s)Af (t— s)x(s)dsds)

+/1_1(J' S(t-s) AR (s, )dw(s))

+/r1(jos (t-s) AR, (hs (t))de (s))

7 ([re(t=)-os.x(m (5)). [yatt mox(my (2))or s .
€ x| <6E[c (t)x(0)f

420 | [¢(0)-o(0.x(n(0).0] |

2

+6EH( j;s (t-s)[> Af - s)x(s)dsds]

2

+6EH(L§S (t-5) AR (s,x(hg (s)))dw(s)j

)dw (s))‘
5)g (s, x(hl(s)).[; a(t,z, x(h, (r))dr)ds) i .

By using assumptions (1-3)and (7-i) ,we get

+6EHU; t—s) AR (g (

+12E H(j; c(t-

<6M*“Ex(0)" +12N"" (Ex'(0)? +C]
I etomeo)]
fiamucof o
It{g(s w(u(9). [yt x(hg (£)) )i ]

-g(s,0,0)+g(s,0,0)

2
2
+6N""b2MEx(t)? +6N"

2
+6N” [ZHtZHl

2

+12M "
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+

t t t 2
(joa(t,r,x(hz (T)))—joa(t,r,0)+joa(t,r,0))ds

From the assumptions(1),(2)and(3),(6) and using
Lemmas (2) and (8), we obtain

<6 E[x(0)f +12n7 (Ex (0)f +¢)

2
+6NA2b2M1E||x(t)||2+6N’\2EHU;0(S))‘ ds

2
+6N” {2Ht2H_1

j(t) AF, (g (t))H2 dsj
+12M AzMZ(E"x(t)"Z +M2A)+ M3(E||x(t)||2 +|v|§).
From assumption (6), we get
<M E[x(0)ff +12n7" (] () +c]
+6N""b2M,E [x(®)|f +6N AT @u) o0
2N HEHIC, +12M AZMZ(E”x(t)"z + MZA)
#M(Efx( + M3 )
E e
oM~ E[x(0)|f 12N HiZH-Ig;
A2MA MM + MgM3

S6NAPTH(Q) (1) +12N7 (E||x'(o)||2 +c)

/\2 2 /\2
1—[6N t*M; +12M M2+M3J
Thus
I /\2 2 /\2 2H-1
6M " [Ex(0)|” +12N" Ht2 ey

2
+12M " M,M4 +MgM$

2 2
+6NATr(Q) u(1)+12N7 (E||x'(0)||2+C)
== 2 2 -
1—[6NA b?M; +12M " M2+M3j

Example (1)
Consider the following fractional differential equations

ﬁ[éu(t,rl)—jéb(tifl)u(Sintvfl)d71:| €

ot| ot

o —aft-s)
—z[u(t,r)+jﬁe Au(s,¢)ds]
or 0

+F (tu(t, T))dWH +k [t,%u (sint, r)jdw(t)

u(t,0)=u(t,7)=0

u(0,7)=xo(z)+p(u(s,7))ds

0= w0 () +alu(s.e))ds

for (t,7) € [0,a] x [0, 7], —a < B < a,where, where a, 8
are a constants.

(1) X = L?[0,7], xo, Y0 € X

(2QA:DA)c X > XbyAu=1u",

D(A)={ueX,u(0)=u(z)=0}

(3) A is generator of strongly cosine family {c(t)} teir
on x.
(4) The eigenvalues of A is —m?, n € IN, and the
1

eigenvectors Zn(r):(g)gsin(nr) the set of function
v

{Zn:n € N} is oryhonormal basis of x.
(5) For Zex,c(t)Z =Y;_1cos(nt) <Z,Zn > Zn,

o Sin(nt

S(t):zn:1 r(] )<z, el =
IS(®)|l = 1, for all t € R. In addition, A Z = — ¥%_, n? <
Z,Zn > Zn, for Z € D(A). We assume x, € L?([0,]) is
F, —measurable satisfies E||x,]|> < oo

(6) The function b(.) is of classes €% on I x] and
b(ty,m) = b(74,0) =0, for each 7; € I.

(7) The function F:Ix[0,7] = IR is continuous and
there is L >0 such that |F(t,7y)—F(t, 1)l <
Lplty — 12|, t €, Ti ER

(8) The function p;q: R — R are continuous and there
are appositive constants Lp, Lq such that

Zn>Zn, also

|p(21) - P(u2)| < Lp|en —pro|, i€ R
|Q(ﬂ1)—Q(ﬂ2)| <Lg|m |, mieR.

(9) k: [0, ]x [0,r] — IR is a continuous function.

3.2. Stability for the Mild Solution of
Inclusion Formulation Problem (12)

The following theorem investigate the stability of the
inclution equation (12) by using Gron will Bellman
inequality via cosine dynamical system.

We need to investigate the definition (8) on the
inclusion problem (12).

Definition (9)

The solution x(t, 0, @, ) of the system (12) in said to
be stable , if for any €> 0, there exists a number § =
6(€) > 0, such that for any other solution y(t,0,vy) of
the system (12) satisfying [|@; — 11l = 61, 182 — |l =
8, then ||x(t,0,0) — y(t,0,0)]| <€,x(¢t,0,0) is said to
be asymptotically stable if it stable and if there is a
constant 81,8, > 0 such that [0, — |l < 6,110, —
P, |l < §,, then

limg_,., x(t,0,)-y(t,0,) <r,r>0.

Theorem (2)
Assume the hypotheses (1-9) are hold, and has an
asymptotically mild solution
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Proof:
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Let x(t) = x(t,0,81,8,) and y(t) = y(t,0,31,,) be
a two solutions of equation (12) such that

K(t)=C(1)(2y -h(x(1)
#3®[ (22 -1 (x(1)) -9 (0.x(m(0)).0)

+I(§St

JoS
_[;C(t

t—

+

and

S—

t—

y(
Jo
Iy
fy
Jo

Thus,

[x(t)=y®| < [lcOl(|@L vl + | (x(1)) -
s l(j22 -wal +n (x(1)) -

+|a(0.x(n:(0)),0)-g (0. y(ny (0))
Hafes st (ma)x(a)-

+[ s (t-s)][[ AR (5. x(hs (5))) - AR (5. y (s (s

)y

(
[0S (t-s) AR (s, x( (s)))dW(S)]
(

)
)

s) AF
)

sg(sx

—s) x(t)dsds

hs(s) )dw

’.[0 trx

t)=C(t)(v1-h(x(1)))
®[w2-h'(x(t)- (0, y(r(0)).0)]

r)jS Af (t—s)y(s)dsds

0

)
S(
S(t-s) AR (s, x(hg( )))dw(s)
S(

)
s) AF
)

(s))dw™ (

<M (|21 -] + Mo [x(t) -y (1))

N (|22 —wall+ M7 |x(t)- y(1)])
+Max(hy (0))-

+_[;TN A2M1||x(t)—

0)|

y(td=

TN [x(hs (5)) =y (ha (5)]

Then,

1-—

M~ M6+N M7+M2

+TTr(Q)NA +L,M;N" 212

<M 2 —ua N

+[ D2~y

v)l)
o)

y(ry)|drydz

(7)) dz)ds

C(t-s)g(s, y( (s )),Ioa(t,r,y(hz(r))dr)ds.

v)))

)-y@)|

(25)

(26)

e

@

[x(t)-

2 2
O 7 L 2 B

2 2
M~ M6+N/\ M7+M2

1-—
2 2
+TTr QN Ly + LLM{N~ T2

Where 1> (M" Mg + N M, + My + TTr(Q)N"“L; +
LM, N"T?).
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