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ABSTRACT
Given its pervasive use in smart mobile platforms, there
is a compelling need to optimize the performance of slug-
gish SQLite databases. Popular mobile applications such as
messenger, email and social network services rely on SQLite
for their data management need. Those mobile applications
tend to execute relatively short transactions in the autocom-
mit mode for transactional consistency in databases. This of-
ten has adverse effect on the flash memory storage in mobile
devices because the small random updates cause high write
amplification and high write latency. In order to address
this problem, we propose a new optimization strategy, called
per-page logging (PPL), for mobile data management, and
have implemented the key functions in SQLite/PPL. The
hardware component of SQLite/PPL includes phase change
memory (PCM) with a byte-addressable, persistent memory
abstraction. By capturing an update in a physiological log
record and adding it to the PCM log sector, SQLite/PPL
can replace a multitude of successive page writes made to
the same logical page with much smaller log writes done to
PCM much more efficiently. We have observed that SQL-
ite/PPL would potentially improve the performance of mo-
bile applications by an order of magnitude while supporting
transactional atomicity and durability.

1. INTRODUCTION
With smart mobile devices becoming increasingly ubiq-

uitous, mobile computing and data management are grow-
ing in importance and spectrum of their applications. Gart-
ner identified computing everywhere as one of the top ten
strategic technology trends for 2015 [12]. As more smart ob-
jects are created and become part of the Internet of Things,
smartphones and tablets will carry out increasingly impor-
tant and diverse functions such as analyzing information,
interfacing with smart appliances that can tweet or post,
paying for subscription services, and ordering products.

Even in the present time, mobile phones are used for more
data than voice communication. The amount of data in text,
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e-mail messages, streaming video, music and other services
on mobile devices surpassed the amount of voice data be-
fore the turn of the century. Worldwide mobile data traf-
fic exceeded 200 petabytes per month at the end of 2010.
Since then, all things data have continued to make dramatic
surges with no sign of turning back. Mobile messaging was
a USD 230 billion dollar business in 2013, and it is the most
profitable segment of the mobile industry today. Worldwide
mobile data traffic is expected to grow higher than 5,000
petabytes per month by the end of next year [28].

Given that the two dominant mobile platforms, Android
and iOS, adopt SQLite as the standard database manager [2],
it is not surprising that most popular mobile messengers as
well as recent versions of Skype rely on SQLite to store text
messages and history items in special database files. This
clearly motivates the need of understanding the database
workloads created by mobile messengers and other popu-
lar applications, and optimizing the performance of sluggish
SQLite databases for the workloads [15, 16, 17, 20].

Another factor to consider is that most contemporary mo-
bile devices use flash memory (e.g., eMMC cards) as storage
media to store data persistently. Flash memory does not al-
low any data to be updated in place, and all updates are
carried out by writing the new content into a clean page
at another location [3, 24]. Besides, as a block device, flash
memory storage devices perform all I/O operations at the
granularity of pages, whose size has been steadily increased
by NAND flash vendors for higher sequential throughput. A
page of 8KB size is now more common for NAND flash mem-
ory chips manufactured lately. With a larger page size, write
amplification will become greater for small random writes,
write latency will be elongated, and the life span of flash
memory will be shortened. Consequently, the upward trend
in flash page sizes may have significant and negative impact
on the underlying databases and hence mobile applications
relying on them for data management.

Another important observation can be made, coupled with
the upward trend in flash page sizes, that motivates our work
presented in this paper. Mobile applications including the
popular messengers tend to update SQLite databases in the
autocommit mode. This is partly because SQLite turns au-
tocommit mode on by default. Autocommit ensures that in-
dividual statements will conform to the ACID properties of
transactions, and consequently incurs per-statement trans-
action overhead, having negative impact on performance or
resource utilization.

The negative effect of large pages and auto or frequent
commits becomes more detrimental especially when mobile
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applications produce a burst of small pieces of data. They
will then be inserted into an SQLite database as a sequence
of small records, each of which will in turn be causing SQLite
to request one or two page write operations (depending on
the journaling mode). There will be very high likelihood that
the target of those page write operations is the same logi-
cal page, and the difference between two consecutive writes
requested for the same logical page is very small.

Motivated by these observations, we propose a new opti-
mization strategy for mobile data management, which would
potentially improve the performance of mobile applications
by an order of magnitude. The optimization strategy we
propose in this paper has both hardware and software com-
ponents. The hardware component includes phase change
memory (PCM), which is among leading candidates for the
next generation byte-addressable non-volatile memory. The
hardware prototype called unified memory system (UMS) is
equipped with a DIMM interface and enables random ac-
cesses to individual bytes like DRAM does. The software
component takes advantage of the byte-addressability and
minimizes redundant page writes while supporting transac-
tional atomicity and durability for a flurry of small inser-
tions created by mobile applications. The software compo-
nent is implemented into the SQLite database manager so
that small insertions or updates can be captured by SQLite
as physiological log records. The physiological log records are
written persistently to log sectors in PCM, each of which is
associated with a database page in flash memory chips. We
call this per-page logging (PPL) as opposed to the system-
wide sequential logging carried out by conventional database
servers for recovery purpose.

The per-page logging scheme is a reminiscence of in-page
logging (IPL) we proposed for all-flash database systems [22].
Although the results from the preliminary evaluation were
promising and demonstrated the potential benefit of IPL,
it has never been implemented for any real database server
due to the lack of fine grained logging capability of flash
memory. The PPL method presented in this paper takes ad-
vantage of the byte-addressability and low read latency of
PCM and overcomes the limitations of IPL.

We have implemented the PPL design into SQLite on the
UMS platform. The main contributions of this work are sum-
marized as follows.

• We have designed and implemented a new mobile data-
base manager called SQLite/PPL on the UMS plat-
form. To the best of our knowledge, this is the first
transactional database manager that utilizes the dif-
ferential write performance of PCM – fast for small
writes but slow for large writes – to optimize trans-
action performance. SQLite/PPL does not use PCM
as a caching or tiering device but as a logging device
associated with individual data pages.

• SQLite/PPL optimizes data management for mobile
applications by replacing redundant page writes with
fine-grained log writes, which can be performed effi-
ciently with byte-addressable PCM without the over-
head of standard I/O stack. It also minimizes write
amplification in flash memory devices.

• SQLite/PPL can avoid the costly database journaling
of the vanilla SQLite without giving up the atomicity
and durability of transactions. In addition, SQLite/-
PPL simplifies the commit and abort procedures since

SQLite/PPL prevents any uncommitted changes from
being propagated to data pages in flash memory.

• SQLite/PPL has been evaluated empirically with real
traces obtained from popular mobile applications such
as messengers and email. We have observed that SQL-
ite/PPL can improve the performance of mobile appli-
cations by an order of magnitude.

The rest of the paper is organized as follows. Section 2 de-
scribes the hardware characteristics of UMS and the database
workloads of mobile applications. In Section 3, we present
the design and added features of SQLite/PPL and they are
used for database operations. In Section 4, we evaluate the
performance impact of SQLite/PPL for mobile applications
with real-world traces and a publicly available mobile bench-
mark. Section 5 reviews the recent work on PCM from the
standpoint of SQLite/PPL and compares the per-page log-
ging with its precursor, in-page logging. Lastly, Section 6
summarizes the contributions of this paper.

2. BACKGROUND
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Figure 1: Unified Memory System (UMS)

2.1 PCM Unified with DRAM
Non-charge-based non-volatile memory technologies have

been under active development and commercialization by
leading industry manufacturers for quite some time [5, 14,
26]. Among those memory technologies, phase-change mem-
ory (PCM) is considered one of the promising candidates for
the next generation byte-addressable non-volatile memory.
It is a few years ago when a major semiconductor manu-
facturer started volume production of PCM and offered it
for mobile devices in 1Gb packages [9]. Unlike DRAM and
flash memory, PCM provides memory states without electric
charges [14]. PCM devices use phase change material for a
cell to remember a bit. The phase change material can ex-
ist in two different states, amorphous and crystalline, which
can be used to represent zero and one. Switching between
the two states can be done by application of heat at different
temperature ranges for different durations [14].

PCM can be programmed in place without having to erase
the previous state. Although PCM has a limited number of
programming cycles due to repeated heat stress applied to
the phase change material, it is considered to be more scal-
able and has greater write endurance than flash memory
by a few orders of magnitude [14, 21]. Furthermore, in con-
trast to NAND type flash memory, PCM need not operate in
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page mode and allows random accesses to individual bytes
like DRAM does.

It is reported in the literature that the read and write
latency of PCM are only an order of magnitude greater
than those of DRAM [21]. As is shown in Table 1, however,
contemporary PCM products do not deliver the promised
performance as yet particularly for write operations. While
PCM takes only about 408ns to read 4 bytes, it takes as
long as 7.5 us to write 4 bytes [5, 25]. A similar disparity
in read and write speeds has been observed in other PCM
products as well [26]. A recent study confirms that some of
the reported performance measurements are misleading es-
pecially for write latency [18]. The study also reports that
while PCM read latency is about 16 times shorter than that
of flash memory, PCM write latency is actually 3.5 times
longer than that of flash memory.

Access time
Media Read Write Erase

NAND Flash† 156 µs 505 µs 1.5 ms
(4KB) (4KB) (512KB)

PCM‡ 408 ns 7.5 µs
N/A

(4B) (4B)

†Samsung K9F8G08U0M 16Gbits SLC NAND [29];
‡Samsung 58nm 1Gb PCM [5, 25]

Table 1: Access Speed: NAND Flash vs. PCM

The implication that can be derived from the current char-
acteristics of PCM and flash memory is quite obvious. PCM
is inferior to flash memory for page writes, while the op-
posite is true for fine-grained writes as well as page reads.
Therefore, we argue that PCM should be used as a byte-
addressable memory rather than a block device. We also ar-
gue that caching or tiering is not the best use of PCM, be-
cause either strategy would utilize PCM much like a block
device between DRAM and flash memory SSDs or disk drives.

Figure 1 depicts a prototype development board that al-
lows PCM to be accessed via DIMM interface alongside
DRAM. With this board, an application can write a small
amount of data (e.g., a log record), much smaller than a
page, persistently to PCM through the DIMM interface [25].
Since the write time of PCM is approximately proportional
to the amount of data to transfer, force-writing a small
record can be done very efficiently. Furthermore, it can avoid
I/O stack overhead by writing data into PCM through the
DIMM interface. The overheads in the IO stack can exceed
the hardware access time for solid-state technologies, be-
cause it takes about 20,000 instructions to issue and com-
plete a 4KB IO request under standard Linux [4].

In this paper, we call the prototype a unified memory
system (UMS), as both DRAM and PCM are accessed in the
same way through the DIMM interface. We are interested
in the potential of PCM that would make updates durable
in the database while avoiding the overhead of I/O stack as
much as possible. This approach will be effective particularly
when the amount of difference between successive changes
is small.

2.2 Database Workloads for Mobile Apps
As is mentioned in Section 1, numerous mobile applica-

tions including popular messengers, Gmail, Facebook and

Twitter rely on SQLite for data management. Those ap-
plications maintain database tables to store text and email
messages sent to and from mobile devices over the Internet.
Most of the messages are very small (rarely more than a
hundred bytes). Once they are stored in the devices, they
are seldom deleted or updated. Thus, the database workload
from the mobile applications are mostly small insertions.

Individual tables in the database are associated with a
surrogate key field, whose values are created automatically
by SQLite. The surrogate key field identifies rows in the ta-
ble uniquely and serves as the primary key. SQLite stores
table records of key-value pairs (with surrogate keys being
the keys) in the leaf nodes of a B+-tree. One or more sec-
ondary indexes are commonly created for a table, which are
also structured as a B+-tree. Each entry of a secondary in-
dex consists of a key and a pointer, and the size of an entry
is very small and mostly no larger than 30 bytes.

Write Amplification
Since many mobile applications utilize SQLite running in
the autocommit mode, each record inserted into a table re-
quires force-writing multiple pages including the one in the
table and several pages in the secondary indexes. SQLite
provides users with six different options for database jour-
naling [2]. Among those, Delete and WAL journaling are most
commonly used. If SQLite runs in the Delete (by default)
or WAL journaling mode, each update incurs two physical
page writes, one for database update and another for jour-
naling [16].1 That is, if a record is inserted into a table with
k secondary indexes, a total of 2 × (k + 1) pages will be
written physically to storage.

The amount of write amplification caused by an individ-
ual insertion would be quite significant, particularly when
the inserted record is very small. In our own traces, we have
observed that a single message sent or received often in-
curs more than ten physical page writes. More importantly,
the difference in content between two consecutive writes re-
quested against the same logical page is very small, rarely
more than 100 bytes. (See Figure 2 for the distribution of
page differences of the traces from mobile applications.) The
write amplification of the traces (measured by the amount
of data written physically divided by the aggregate sum of
messages in bytes) was more than 100. The negative impact
will be aggravated as the page size increases in eMMC and
SD cards commonly used for mobile devices. The same trend
was also observed in the mobile benchmark.

Locality of Insertions
When a new record is inserted into a database table, a surro-
gate key automatically created by SQLite is stored together
as part of the record. Since the surrogate keys are increasing
monotonically, new records are inserted into the rightmost
leaf node of the table (organized as a B+-tree) in the append-
only fashion. Therefore, spatial locality is very strong when
successive insertions are made to a database table, because
the records are always appended to the same leaf node of
the table until the node becomes full.

1 The WAL journaling of SQLite is different from the ARIES
style write-ahead logging in that the former is a page level
journaling while the latter is a physiological undo-redo up-
date logging.
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Figure 2: Differences between page writes

In the case of a secondary index, spatial locality may or
may not exist depending on the attribute which the sec-
ondary index is created for. For example, if a messenger user
exchanges messages for a while with someone or a group of
friends on a certain topic, then the secondary indexes cre-
ated for the person and topic fields will receive a sequence
of index entries to insert with the same index keys. Thus,
spatial locality will be strongly present in the secondary in-
dexes while the user exchanges messages. But, of course, it
may not be the case for other secondary indexes.

We analyzed one of our traces to demonstrate the locality
of insertions visually in the address-time space. Figure 3
shows only a small segment of the trace for the clarity of
presentation. It clearly shows that the same logical pages
were overwritten many times consecutively, and the trend
was prevalent in both tables and indexes.
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3. DESIGN OF SQLite/PPL
We have designed and implemented a new mobile database

manager called SQLite/PPL on the UMS platform. SQL-
ite/PPL is a variant of SQLite augmented with several new
features for the realization of the per-page logging strategy.
This section presents the overall architecture of SQLite/-
PPL, shown in Figure 4, and provide the detailed descrip-
tion of modules and data structures (in gray color) added to
the vanilla SQLite.

3.1 Design Overview

SQLite is a software library that implements a server-
less, transactional SQL database engine [2]. Mobile applica-
tions are linked to the SQLite library to utilize its database
management functions. SQLite stores databases as separate
files in flash memory. Concurrent transactions can access
the same database but only one transaction can update the
database at any moment in time, because the entire database
file is locked by the writer transaction until it finishes. The
pager module is in charge of managing the DRAM buffer
pool and the B+-tree module processes select and update
statements. These components of SQLite remain unchanged
in the SQLite/PPL.

SQLite/PPL differs from the vanilla SQLite in the way
transactional atomicity and durability are supported. SQLite
relies on the costly journaling, usually in either Delete or
WAL mode, to ensure that both the before and after images
of an updated page are saved until the updating transaction
commits or aborts. Journaling is also commonly used for a
multi-page write, which is not guaranteed to be atomic on
most storage media, disk or flash memory. This is the major
cause of sluggish performance of SQLite, since every page
update requires two physical page writes [16].

On the other hand, SQLite/PPL relies on per-page logging
instead of journaling as well as the non-volatility of PCM for
the transactional support. Instead of writing a page twice –
in the database and its journal – for each update, SQLite/-
PPL captures the change in a physiological log record and
adds it to the PCM sector of the page being updated. The
page itself remains unchanged in the flash memory until its
log records are merged to it later. Therefore, SQLite/PPL
can replace a multitude of successive page writes against
the same logical page by writing potentially much smaller
log records into the PCM sector much more quickly. Fur-
thermore, SQLite/PPL can avoid redundant page writes by
turning off journaling without giving up the atomicity and
durability of transactions.

However, leaving log records in the PCM sector of each
page alone is not sufficient for transactional atomicity and
durability. The log records in the PCM sector represent
changes made by a transaction whose state changes over
time from active to either committed or aborted. When
a transaction commits, all of its log records become perma-
nent and can be merged (or applied) to the data page in flash
memory immediately or lazily. When a transaction aborts,
all the log records become invalidated and can be discarded
immediately or simply ignored. While a transaction is still
active, all of its log records must be kept in the PCM sec-
tor at least until the transaction commits or aborts. That
way it will be feasible to determine the visibility of the log
records (or their changes) to other concurrent transactions
depending on their end mark.2

In order to keep track of transaction states, SQLite/PPL
maintains a single transaction log, which is shared by all
transactions accessing the same database. The transaction
log stores only three types of records: transaction begin,
commit, or abort. Since the transaction log stores no update

2 The end mark is the location of the last valid commit
record in the WAL journal. It is set on the first read operation
of a transaction and does not change for the duration of the
transaction. Thus, it ensures that a read transaction only
sees the database content (i.e., a snapshot) as it existed at
a single point in time [2].

1457



Merger 

  

Merger

                                    

SQL Interface

Block Interface 

SQL Interface                                    

Log Area (Per SQLite File) 

Log 

Applier 

Mobile Application 

 SQLite 
 (Library) 

 File System 

 UMS 

 DRAM 
 PRAM 

Buffer Cache 

 Flash Storage 

 (SD Card) 

Log 

Writer 
Log 

Capturer 

page page 

page page 

page 

page 

per-page 

update

tx_id 

Manager 

tx: begin, commit, abort

per-page  
log entry

tx_begin/ 

Commit/abort

update

page read

page_log 

(if any)

no flash write 

at commit

page write

Recovery  

Manager 

Figure 4: SQLite/PPL on UMS: Architecture

log records, it is expected to be kept small and subject to
very light I/O activities.

The key data structures we have added to SQLite/PPL,
namely, per-page log and transaction log are stored in the
PCM area of UMS, while data pages are stored in flash
memory. Thus, data pages are accessed via the standard
I/O stack, but the per-page log and transaction log are ac-
cessed by mmap system calls through the DIMM interface,
hence avoiding the overhead of I/O stack.

3.2 Added Functions
SQLite/PPL is augmented with six functional modules

(tid manager, log capturer, log writer, log merger, log
roller and recovery manager) to manage the data struc-
tures and provide transaction support. The overall architec-
ture and the functional modules are illustrated in Figure 4.
The functional modules be described below in more detail.

Tid manager The vanilla SQLite does not generate
transaction identifiers. It relies on database journaling for
transactional atomicity and durability without using trans-
action ids. This is possible because at most one writer trans-
action is allowed to access the same database at any moment
in time, and a reader transaction can always avoid uncom-
mitted changes (e.g., by checking the end mark to determine
its snapshot of database in the case of WAL journaling).

SQLite/PPL also allows at most one writer transaction
to access the same database. However, SQLite/PPL scat-
ters update log records across multiple log sectors in PCM.
Moreover, a log sector may store update log records created
by different (not concurrent) transactions simultaneously,
because committed updates (or their log records) may not
be merged to their corresponding data pages immediately.
This warrants the use of transaction ids in order to distin-
guish committed log records from uncommitted ones. The
tid manager generates a new tid for each writer transaction.
A reader transaction is not assigned a tid, but instead uses
the tid of the most recently committed writer transaction

to determine its snapshot of database. All transactions are
considered a reader until they make the first write request.

Log capturer The vanilla SQLite does not generate up-
date log records. This is because, again, it relies on database
journaling for transaction support, which is carried out by
making dual page writes for each logical page update.

SQLite/PPL has the log capturer inside the B+-tree
module of SQLite. The B+-tree module processes an up-
date SQL statement by realizing the change in a database
table (stored as a B+-tree) as well as zero or more secondary
B+-tree indexes. All those page-level changes are captured
in physiological log records (e.g., a new entry inserted to a
leaf node) and passed to the log writer. Since the B+-tree
nodes of the table and secondary indexes adopt the slotted
page organization, the log records are created based on the
slot number of an entry and the before and after images
of the entry. The transaction id of the writer transaction is
included in all the update log records of the transaction.

TxIDTxID
Log

Type

Log

Type
LengthLength OffsetOffset CRCCRC

After�

Image

After�

Image

Figure 5: Log Format in SQLite/PPL

The format of a log record is shown in Figure 5. TxID
stores the id of a writer transaction. LogType stores the
type of an operation, that is, one of insert, delete or
update in a per-page log record, or one of begin transaction,
commit and abort in a transaction log record. Offset and
length point to the location in the page where a change
is made. Note that the page id is not necessary because an
update log record always belongs to a certain per-page log
sector, which is associated with a data page. After-image
stores a new value and is used for redoing a change. The
log records of SQLite/PPL do not contain Before-image.
This is because SQLite/PPL never propagates uncommitted
changes to database and hence no undo recovery is neces-
sary. Note also that the LSN (log sequence number) field is
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not necessary, because SQLite/PPL disallows two or more
concurrent writer transactions to access the same database.

We add the CRC field to the log format to ensure the
atomicity of writing a long log record. The current prototype
of UMS guarantees the atomicity of a PCM write no larger
than 32 bytes. The four byte CRC field is used to check the
validity of a log record longer than 32 bytes.

Log writer This module is responsible for writing per-
page log records persistently in PCM. Per-page log sectors
(4KB each by default in the current implementation) are
created on an on-demand basis. A log sector is assigned
to a data page, when the data page gets updated for the
first time. Then, the current and all subsequent log records
belonging to the data page are written sequentially to the
log sector until it becomes full. When it does, overflow log
records are written to a common pool of log sectors instead
of adding another per-page log sector. We have made this de-
sign choice to better utilize the PCM storage. Note that the
data page remains unchanged until the update log records
are merged to it.

The log writer is also responsible for writing transaction
log records persistently. Since a transaction log is shared by
all transactions accessing the same database, a single chunk
of PCM is allocated separately for each database.

Log merger A log merge event is triggered when a trans-
action commits. However, update log records are applied to
the corresponding data pages only if the log sector the log
records belong to is full. After all the update log records in
a full log sector are applied, the log sector is emptied and re-
leased back to the pool of free log sectors. The log records in
a non-full log sector are not merged but kept in the log sec-
tor until they are merged by a subsequent merge event. This
is why update log records created by different writer trans-
actions may exist in the same log sector simultaneously.

An alternative approach is to apply all committed updates
eagerly at once. This approach, however, may increase the
volume of page writes to flash memory and lower transac-
tion throughput. The current implementation of SQLite/-
PPL adopts a lazy merge policy to maximize the utilization
of PCM and minimize the aggregate volume of page writes
made to flash memory.

It is rare for mobile applications executing relatively short
transactions but a log merge event can also be triggered
when SQLite/PPL runs out of free per-page log sectors in
the PCM storage. In such a rare event, a victim log sector
will be chosen and released back to the pool of free sectors
after merging all the log records. The current implementa-
tion of SQLite/PPL selects as a victim a log sector that
stored a new update log record least recently.

This merge procedure guarantees that only committed
changes are merged to data pages because SQLite/PPL al-
lows only one writer transaction at any moment in time.
Consequently, uncommitted changes can always be rolled
back because they are not merged until committed. Note
that a log merge event has no effect on the data page frames
in the DRAM buffer pool, as they are always up to date.

Log roller A data page is fetched from flash memory on
a page fault. There is nothing further to be done if the log
sector of the data page is empty or there is no committed log
record. If it is not empty, all the committed changes must
be applied or rolled forward to compute an up-to-date copy
of the data page. The log roller determines whether an

update log record is committed or not by referencing the
transaction log. Fetching update log records from PCM to
roll them forward can be done efficiently, as the read latency
of PCM is at least an order of magnitude lower than that of
flash memory.

Recovery manager SQLite/PPL can detect an abnor-
mal termination by checking the transaction log. If the last
log record is begin transaction, SQLite/PPL must have
crashed before restart. When it restarts, the recovery mana-

ger extracts the transaction id from the begin transaction

record and removes all the uncommitted update log record
created by the transaction. This will be sufficient to roll back
all uncommitted changes, because SQLite/PPL executes at
most one writer transaction at any time and it never merges
uncommitted changes to the data pages in flash memory.

3.3 Database Operations in SQLite/PPL
With the added functions described in Section 3.2, SQL-

ite/PPL performs basic database operations such as read,
write, commit and abort differently from the vanilla SQLite.
This section describes how those operations are performed
by SQLite/PPL using the added modules.

3.3.1 Write
The B+-tree module of SQLite processes an update SQL

statement by inserting a new entry to or, deleting or up-
dating an existing one from the leaf nodes of a table and
its secondary indexes. While the vanilla SQLite relies on
the steal and force buffer management policies to propa-
gate the changes to database, SQLite/PPL never lets dirty
pages flushed to database before commit time. Instead, SQL-
ite/PPL lets the log capturer produce physiological log
records of the changes and passes them to the log writer so
that they can be written to the per-page log sectors in PCM
immediately and persistently. This ensures that update log
records are written to per-page log sectors in the temporal
order of their events.

In effect, SQLite/PPL abolishes the database journaling
and the steal/force buffer management of the vanilla SQLite,
and adopts write-ahead logging per-page with the no-steal-
/no-force buffer management policy. Note that this buffer
management policy of SQLite/PPL imposes no additional
constraint on the buffer pool management, because dirty
pages can still be evicted from the buffer pool and simply
discarded when they are evicted. Even commit procedure
does not have to flush dirty pages in the buffer pool, because
those changes must have been written persistently in the
per-page log sectors already.

3.3.2 Read
On a page hit, a read operation can just return the page

frame found in the buffer pool, because the page in the buffer
pool is always up to date. On a page fault, a read operation
needs to fetch a data page from flash memory, which may or
may not have a per-page log sector associated with it. If not,
the page fetched from flash memory will be returned with
no further action. If there is a log sector associated with the
data page, then the log roller applies all the committed
changes in the log sector to the data page before it is re-
turned. The log roller can determine which log record is
committed by referencing the transaction log, which stores
the transaction begin, commit, and abort log records of
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transactions. This guarantees that all transactions in SQL-
ite/PPL run in the same level of serializable isolation as the
transactions running in the vanilla SQLite [2].

3.3.3 Commit
Unlike the vanilla SQLite with the force policy, SQLite/-

PPL adopts a very simple procedure for a commit operation.
At commit time, the vanilla SQLite flushes all dirty pages
from the buffer pool to either the database and rollback jour-
nal files (in the Delete journal mode) or the WAL journal file
(in the WAL journal mode). The commit time overhead is sig-
nificant, because each dirty page is written twice physically
(including the write operations incurred by checkpointing in
the WAL journal mode) and a write barrier operation (by a
fsync call) is executed at least once.

In contrast, SQLite/PPL does just one thing, adding a
commit record to the transaction log persistently and atom-
ically, which is guaranteed by the PCM of UMS. This simple
procedure is sufficient, because all the updates made by the
committing transaction have been written to the per-page
log sectors already and they do not need to be redone.

3.3.4 Abort
When a transaction aborts, SQLite drops the dirty pages

updated by the transaction from the buffer pool. The same
is done by SQLite/PPL too. Since SQLite adopts the steal
buffer management policy, some of the changes made by the
aborting transaction may have been written to database or
journal files. Those changes are rolled back by copying the
before images from the Delete journal to database or by
dropping the after images stored in the WAL journal.

SQLite/PPL keeps all uncommitted changes as log records
in the PCM area, and thus rolling back the changes can
be done much more efficiently. All that is necessary is to
drop the uncommitted log records from the per-page log
sectors, and this can be done either eagerly or lazily. The
uncommitted log records can be removed eagerly from the
log sectors at abort time. Alternatively, they can be left in
the log sectors until they are removed lazily by a subsequent
log merge event. The current implementation of SQLite/-
PPL adopt the eager method for better utilization of PCM
storage. Just one more thing to do is adding an abort record
to the transaction log.

3.4 Recovery
The vanilla SQLite has its own ways to detect a fail-

ure when it restarts. When it runs in the Delete journal
mode, the existence of a hot journal indicates that SQLite
crashed previously before restart. A hot journal is the one
that needs to be rolled back in order to restore the consis-
tency of its database. When vanilla SQLite runs in the WAL

journal mode, the absence of a commit record in the WAL

journal indicates a crash.
SQLite/PPL detects a failure much the similar way to

the vanilla SQLite running in the WAL journal mode. If the
last log record in the transaction log is not either commit

or abort, then SQLite/PPL must have crashed previously
before restart. Since at most one writer transaction runs
against the same database at any time, recovering from a
crash is not different from aborting a transaction at all. All
the uncommitted update log records are removed from the
per-page log sectors and an abort log record is added to the
transaction log.

4. EVALUATION
In this section, we present the results of empirical eval-

uation of SQLite/PPL and analyze the impact on the per-
formance of mobile applications. For the evaluation, we col-
lected real traces from five popular mobile applications, all
of which uses SQLite for data management, in addition to
a publicly available mobile benchmark program. We tested
the workloads with the SQLite/PPL running on the UMS
board. For comparison, we also tested the same workloads
with the vanilla SQLite on the UMS board in the Delete

and WAL journal modes.

4.1 Experimental setup
All the experiments were conducted with the UMS de-

velopment board described in Figure 1. The UMS board
is based on Xilinx Zynq-7030 equipped with a dual ARM
Cortex-A9 1GHz processor, 1GB DDR3 533Mhz DRAM,
512MB LPDDR2-N PCM and a flash SD card slot. The
host OS is a Linux system with 3.9.0 Xilinx kernel, and we
used ext4 file system in the ordered journaling mode.

The version of vanilla SQLite used in this work is 3.8.4.1,
and the size of database page is set to 4KB to match the
page size of the underlying file system. The current imple-
mentation of SQLite/PPL is based on the same version of
SQLite. To evaluate the effect of flash storage performance,
we used two different types of flash SD cards denoted by SD

Card1 and SD Card2. Table 2 compares the random and se-
quential performance of the SD cards. Table 2 also includes
the performance measurements of our PCM for comparison.

Storage Random IOPS Sequential IO
(4KB Page) (MB/sec)

Media Read Write Read Write

SD Card1† 2158.3 516.3 45.5 5.1
SD Card2‡ 2528.3 410.3 23.4 12.0

PCM 6250.1 1219.6 25.0 4.9

†SDSDB-008G, ‡MB-MSBGA

Table 2: IO Performance of Flash SD Cards

4.2 Workloads from Mobile Applications
We used real traces from five representative mobile ap-

plications: KakaoTalk messenger, Gmail, Facebook, Twitter
and Web Browser. These traces were obtained by running
the applications on a Nexus7 tablet with Android 4.1.2 Jelly
Bean. We modified the source code of SQLite to capture all
the transactions and their SQL statements. We also added
a publicly available benchmark called AndroBench, which
aims at measuring the storage performance of Android de-
vices. To provide better insight into the observations, the
characteristics of the traces and benchmark are described
below from the database processing standpoint.

KakaoTalk is the dominant mobile messenger application
in Korea. It is functionally similar to other messen-
gers such as Whatsapp, Viber and iMessenger. SQLite
stores text messages in kakaotalk.db. For pictures,
SQLite stores the compressed thumbnails of pictures
as a blob and the file paths of pictures. The pictures
themselves are stored in a separate folder. SQLite runs
in the autocommit mode when the mobile device is
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Trace
Total #
of TXs

Total #
of batch

TXs

SQLs /
batch
TX

% of join
queries

% of
update
queries

page
writes /

TX

Size of a
log

(bytes)

# of logs
per TX

DB size
(MB)

KakaoTalk 4,342 432 10.55 0.1 75.6 1.80 383.66 2.68 0.45
Twitter 2,022 17 26.35 1.2 76.3 1.53 424.41 1.25 6.08
Browser 1,522 1,493 2.99 17.0 58.4 3.44 159.86 5.00 2.51

Facebook 1,281 262 7.87 0.6 65.1 2.90 274.89 4.44 1.95
Gmail 984 806 12.93 8.9 68.3 6.14 171.26 30.03 0.74

AndroBench 3,081 2 1.5 0 100 1.38 470.66 0.98 0.19

Table 3: Analysis of Mobile Application Traces

connected to the network. When the device is discon-
nected from the network, messages are stored in the
server and sent to the device later in a batch (enclosed
by begin transaction and commit/abort) when it is
reconnected to the network.

Gmail includes common operations such as saving new mes-
sages in the inbox, reading from and searching for
keywords in the inbox. The Gmail application relies
on SQLite to capture and store everything related to
messages such as senders, receivers, label names and
mail bodies in the mailstore database file. Therefore,
this trace includes a large number of insert statements.
The read-write ratio was about 3 to 7 with more writes
than reads. In the Gmail trace, most of the SQLite
transactions are processed in the batch mode.

Twitter As a social networking service, Twitter enable users
to send and receive a short text message called tweet
that is no longer than 140 bytes. Twitter manages text
messages in 21 tables and 9 indexes, and most of the
SQLite transactions process text messages in the au-
tocommit mode except when the mobile device is dis-
connected from the network.

Facebook was obtained from a Facebook application that
reads news feed, sends messages and uploads photo
files. A total of 11 files were created by the Facebook
application, but fb.db was accessed most frequently by
many SQL statements. Similarly to Gmail, this trace
includes a large number of insert statements, because
Facebook uses SQLite to store most of the information
on the screen in a database. One thing that distin-
guishes it from the Gmail trace is that Facebook stores
many small thumbnail images in a SQLite database as
blobs and the number of updates per transaction tends
to be high. The read-write ratio was, like in the case
of the Gmail trace, about 3 to 7.

Browser was obtained while the Android web browser read
online newspapers, surfed several portal sites and on-
line shopping sites, and SNS sites. The web browser
uses SQLite to manage the browsing history, book-
marks, the titles and thumbnails of fetched web pages.
Since the URLs of all visited web pages are stored,
the history table receives many update statements.
In addition, cookie data are frequently inserted and
deleted when web pages are accessed. Thus, the cookie
table also received a large number of update state-
ments. Among the six database files the browser cre-
ates, browser2.db was the dominant target of most

SQL statements as the main database file. Another
interesting thing about this trace is that it includes
quite a large number of join queries. The read-write
ratio was about 4 to 6.

AndroBench is a write-intensive workload that consists of
3 different types of SQL statements performed on a
single table with 17 attributes. The workload includes
1,024 insertions, 1,024 updates, and 1,024 deletes [1].

Table 3 summarizes the characteristics of the traces. The
second, third and fourth columns of the table show the
distribution of transactions and SQL statements executed
in the batch mode (enclosed by begin transaction and
commit/abort) and autocommit mode. The fifth and sixth
columns show the query distribution by type. The seventh
column shows the average number of logical page writes re-
quested by a committing transaction. The eighth and ninth
columns show the average length of a log record and the
average number of log records per transaction, respectively.
Lastly, the tenth column shows the size of a database created
by each trace. It is noteworthy that the Gmail trace contains
more batch transactions, a considerably higher number of
SQL statements per transaction, and twice more pages writ-
ten per transaction than the other traces. This is because
multiple email messages are downloaded together when the
application is started, and each downloaded message re-
quires updating more than one tables and several secondary
indexes for labels.

4.3 Performance Analysis
We measured the performance of SQLite/PPL running

on the UMS by replaying the traces and by running the
benchmark program. To analyze it comparatively with the
vanilla SQLite, we also measured the performance of vanilla
SQLite running on the UMS in the Delete and WAL modes.

4.3.1 Baseline Performance
Figure 6 shows the elapsed times taken by vanilla SQLite

and SQLite/PPL to process each workload completely. As
is shown clearly in the figure, SQLite/PPL processed trans-
actions much faster than the vanilla SQLite running in WAL

and Delete journal modes, by up to 8.25 and 16.54 times,
respectively, for the five traces. The speed gap was wider for
the mobile benchmark, namely, 9.47 times and 24.27 times
faster than the vanilla SQLite running in WAL and Delete

journal modes, respectively.
The considerable gain in performance was direct reflection

of reductions in the number of write operations summarized
in Table 4. SQLite/PPL performs a page write only when
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Figure 6: SQLite Performance: Delete vs. WAL vs. SQLite/PPL

Mode
KakaoTalk Twitter Browser Facebook Gmail AndroBench

SQLite OS SQLite OS SQLite OS SQLite OS SQLite OS SQLite OS

Delete 15,411 44,995 6,120 40,381 9,171 28,178 6,941 23,719 11,528 13,287 20,776 32,088
WAL 9,644 10,119 3,424 12,447 6,824 9,973 4,569 9,812 8,249 3,447 4,846 12,020

SQLite/PPL 1,300 2,242 494 230 989 4,123 1,261 2,095 1,832 1,033 295 271

Table 4: I/O Count (# of Physical Pages Written in Flash Storage)

the update log records are merged to it. Since a multitude of
updates can be collected in the PCM log sector and merged
to the data page at once, the number of page writes can
be reduced considerably. On the other hand, the number
of writes performed by the vanilla SQLite was much higher
than that done by SQLite/PPL, because, with the force pol-
icy, the vanilla SQLite force-writes all the updated pages
when a transaction commits.

The least performance gain was observed in the Gmail
trace. This is because, as is shown in Table 3, the Gmail
trace generated the most intensive logging activities in all
aspects including the total volume of log records and the
average volume of log records per transaction. This led to
the increased level of PCM log write activities, frequent log
merge events, and hence the highest number of page writes
to flash memory per transaction, which becomes dominant
in processing time.

The force-write operations by the vanilla SQLite at com-
mit time increase the number of page writes not only in the
database files but also in the journal files. This increases the
frequency of file metadata updates and hence the number of
page writes carried out by the file system.

The disparity in performance of the vanilla SQLite run-
ning in the two journal modes has been reported in the liter-
ature [16]. The vanilla SQLite was slower when it ran in the
Delete mode, because it had to create and delete a rollback
journal file for each transaction, update the file metadata
more frequently, perform write barriers more frequently, and
write pages more randomly.

We evaluated the effect of flash storage performance by
running the same traces on two different types of flash SD
cards, SD Card1 (shown in Figure 6(a)) and SD Card2 (shown
in Figure 6(b)). As is shown in Table 2, the two types of
SD cards exhibit somewhat different random-to-sequential
performance ratios. This affected the performance measure-
ments for both the vanilla SQLite and SQLite/PPL, but the

effect was not substantial.
Table 4 presents a drill-down analysis of the I/O activi-

ties for the traces. For each trace, we counted separately the
number of page writes requested by the vanilla SQLite or
SQLite/PPL, and the number of metadata page writes re-
quested by the file system. As expected, SQLite/PPL wrote
a far smaller number of data pages to flash memory than
the vanilla SQLite. The reduced number of pages written
to database files also reduced significantly the number of
metadata page writes carried out by the file system.

One notable point in Table 4 is that the number of meta-
data page writes was a few times larger than the number
of data page writes requested by the vanilla SQLite in all
cases except for the Gmail trace in the WAL journal mode.
While no more than four data pages are updated by each
transaction in all traces except Gmail, the file system still
need to write several metadata pages to maintain the con-
sistency against the changes made to database files. Even
with SQLite/PPL, more metadata pages were written than
data pages in three traces, KakaoTalk, Facebook and Web,
but SQLite/PPL reduced the absolute number of metadata
page writes considerably.

Trace
SQLite
Delete

SQLite
WAL

SQLite/-
PPL

KakaoTalk 41.2 13.1 7.5
Twitter 11.5 3.9 0.3
Browser 19.6 6.5 1.8

Facebook 13.3 6.1 2.6
Gmail 3.7 1.8 1.6

AndroBench 66.5 16.3 4.0

Table 5: Average Latency (in millisec)

Some users of mobile applications may be concerned with
the latency of an individual operation as much as the over-
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all throughput. We measured the processing time of individ-
ual queries executed by the vanilla SQLite and SQLite/PPL
with SD Card2. Table 5 summaries the average time taken
to process individual queries of each trace. The difference in
the average latencies was proportional to that in the total
processing times of each trace. Note that all the tests in our
experiments were done by a single thread.

4.3.2 Effect of Log Sector Size
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Figure 7: Effect of Log Sector Size

As is described in Section 3.2, a log merge event is trig-
gered by a committing transaction but not all log sectors
are subject to a log merge operation. A log sector is merged
only if it contains a committed update and is full. Thus,
with respect to write optimization, it will be beneficial to
make a log sector larger and delay merge operations, as a
merge operation costs a page write. However, a read oper-
ation may take longer to roll forward more log records to
create an up-to-date data page.

To evaluate the effect of a log sector size, we measured the
elapsed time of SQLite/PPL with different log sector sizes,
4KB, 8KB and 12KB. We did not include the Delete journal
mode case of vanilla SQLite for the clarity of presentation in
Figure 7. A clear trend was that the performance of SQLite/-
PPL improved as the size of a log sector increased from 4KB
to 12KB consistently across all the traces and benchmark we
tested. With no trade-offs observed between small and large
log sectors, this result indicates that write optimization has
a larger effect on performance than read optimization and
that 8KB appears to be large enough to obtain the best
performance except for the AndroBench.

4.3.3 Read Performance

Trace
Total
pages
read

Pages
rolled

forward

Elapsed
time†

Time to
roll

forward†

KakaoTalk 66 11 28.4 2.1
Twitter 26 10 17.9 2.8
Browser 48 13 55.7 1.7

Facebook 316 113 130.4 34.5
Gmail 63 17 25.3 4.2

†Times measured in millisec

Table 6: Read Performance of SQLite/PPL

As is explained above, for a page read operation, SQL-
ite/PPL has to roll forward the changes stored in the log
records if there is a log sector associated with the page to
read. In order to understand the read overhead of SQLite/-
PPL, we extracted all select statements from the traces and
replayed them with SQLite/PPL, immediately after running
the whole traces, so that updates are left with data pages
in their log sectors. Table 6 shows the total elapsed times
taken to process the statements and the time taken to roll
forward log records. The time for rolling forward was within
26% of the total elapsed time of the read-only traces, and
it was negligible compared with the total elapsed time for
read-write traces.

4.3.4 Effect of All in PCM
In order to assess the performance gain by SQLite/PPL

more accurately, we ran SQLite/PPL and the vanilla SQLite
with the entire databases (as well as journal files for the
vanilla SQLite) stored in PCM. In Figure 8, Delete-on-PCM,
WAL-on-PCM, and SQLite/PPL-on-PCM denote the runtime
measurements of the vanilla SQLite in Delete and WAL jour-
nal modes, and SQLite/PPL, respectively. With the databases
stored in PCM, SQLite/PPL outperformed the vanilla SQLite
considerably and consistently for all the traces and bench-
mark. This result matches the performance trend observed
above in this section.

For comparison, Figure 8 also includes the runtime mea-
surements of SQLite/PPL, denoted by SQLite/PPL, executed
in the standard configuration. Even with the databases stored
in flash memory, SQLite/PPL outperformed the vanilla SQLite
accessing the databases stored in PCM for KakaoTalk, Twitter
and AndroBench, and performed comparably for Browser,
Facebook and Gmail.
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5. RELATED WORK
Our work on SQLite/PPL is unique in that the hardware

and software components work in harmony to accelerate the
performance of a transactional database system. To the best
of our knowledge, SQLite/PPL is the first that adopts phase
change memory (PCM) with a memory abstraction and min-
imizes write latency by storing the changes in PCM on a per-
page basis. In this section, we briefly survey the recent work
on PCM from the standpoint of SQLite/PPL, and compares
the per-page logging with its precursor, in-page logging.

5.1 Recent Study on PCM
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Since the late 2000s, the phase change memory (PCM)
has been actively studied in the operating system and ar-
chitecture communities [7, 8, 21, 31]. While it is consid-
ered a promising technology for the next generation byte-
addressable non-volatile memory, some of the benefits from
PCM are overpromised. For example, a recent study con-
firms that, for a page write, PCM could deliver longer la-
tency than flash memory when it is accessed through the
standard I/O stack [18]. For this reason, we argue that caching
or tiering is not the best use of PCM.

Based on recent studies [7, 31], it appears that the over-
head of I/O stack can be best avoided by exposing PCM as
a persistent memory abstraction and providing direct access
to it. SQLite/PPL presented in this paper is similar in spirit
to them in that it accesses PCM at byte level through the
DIMM interface on the UMS board and avoids the I/O stack
overhead. The difference is of course that SQLite/PPL uses
PCM as a persistent but transient memory and stores the
majority of data in flash memory.

PCM has also been studied to accelerate database sys-
tems. Fang et al. proposed to use PCM as a write-ahead
logging device in a transactional database system [10]. How-
ever, we argue against it, because the sequential page writes
of PCM is not even better than that of a commodity flash
memory SSD, especially when PCM is accessed through the
I/O stack. There are other studies that have considered
PCM for in-page logging [19, 30] and transaction-wise log-
ging [11], but they do not support transactional atomicity
and durability in the presence of failure.

A hybrid storage engine called SOFORT proposes a fast
recovery mechanism that takes advantage of non-volatility
of storage class memory [27]. SOFORT builds on an under-
lying assumption that the storage class memory takes 700ns
to write a page. Non-volatile memory has also been studied
to reduce logging delay in a transactional database system,
which can adopt it as either a DIMM device or an I/O de-
vice [6, 13, 32]. While those bodies of research are similar to
our work in that non-volatile memory plays a critical role,
SQLite/PPL attempts a different problem, namely, buffer-
ing writes in PCM.

5.2 In-Page vs. Per-Page Logging
The per-page logging (PPL) proposed in this paper is sim-

ilar in spirit to in-page logging (IPL) in that updates are
captured in physiological log records, stored closely with cor-
responding data pages, and applied to the data pages later
in a merge event. It was a while ago when IPL was pro-
posed for enterprise database servers to get over the limited
performance of flash memory for random writes [22]. Since
then, however, IPL has never been implemented for any real
database server for a few critical technical reasons.

IPL assumed all-flash devices as underlying storage media.
This requires that both data pages and log sectors be stored
in flash memory and the only way to co-locate them is to
store both data pages and their log records in the same block
of flash memory. Therefore, merging update log records to
their pages is performed at the granularity of a flash memory
block, which is much larger than a flash memory page, and a
merge event is triggered by a flash memory block becoming
full not by a committing transaction. This coarse-grained
merge procedure requires more sophisticated commit proce-
dures such as three phase commit and redundant logging [23].

Since flash memory is not byte-addressable, IPL cannot
write log records individually and immediately to log sectors
in flash memory. Instead, log records need to be collected in
memory and grouped by data pages they belong to. They are
then written to flash memory when an in-memory log sector
becomes full or its page frame is evicted from the buffer pool.
This requires in-memory log sectors to be maintained for all
dirty pages in the buffer pool and increases the overhead of
buffer management.

These restrictions has a critical and negative impact on
the performance of IPL, especially in comparison with PPL
with no such restriction. Unlike PPL that can write a log
record individually and immediately to PCM when it is cre-
ated, IPL has to do it by performing a page write no matter
how full the log sector is of log records. If dirty pages are
often evicted from the buffer pool after undertaking only a
few updates, then IPL will end up with performing too many
page writes only to write a small number of log records in
flash memory. Obviously, this will lead to increased write
amplification and update latency, and consequently, reduced
throughput of a database server. Unfortunately, this will
only get aggravated with the current upward trend in flash
memory page sizes. Storing log sectors in PCM has been con-
sidered to get over the limitation of flash memory [19], but
it has never been implemented into a transactional database
server to the best of our knowledge.

PPL takes advantage of the byte-accessibility and low
read latency of PCM in the UMS board and overcomes the
limitations of IPL. PPL need not maintain the in-memory
log sectors any longer. Update log records can be written to
the PCM log sectors immediately without increasing the av-
erage latency of log write operations, because the write time
of PCM is approximately proportional to the amount of data
to transfer. PPL handles read operations that need to roll
forward changes efficiently by reading update log records
quickly from the PCM log sectors.

6. CONCLUSIONS
Among many promising non-volatile memory technologies

under active development, the phase change memory (PCM)
is expected to arrive in market earlier than others. PCM is
absolutely faster than flash memory for a small update but
it could deliver longer latency than flash memory for a page
write, when it was accessed through the standard I/O stack.
For this reason, we argue that caching or tiering is not the
best use of PCM and a persistent memory abstraction with
DIMM interface is the best way to avoiding the latency of
I/O stack.

In this paper, we present the design and implementation of
SQLite/PPL, which is augmented with several new features
for the realization of the per-page logging strategy. SQLite/-
PPL adopts phase change memory with a persistent mem-
ory abstraction and minimizes write latency by capturing
an update in a physiological log record and adding it to the
PCM log sector. In effect, SQLite/PPL can replace a multi-
tude of successive page writes made against the same logical
page with much smaller log writes done to PCM significantly
more efficiently.

We have evaluated the performance gain by SQLite/PPL
with real traces obtained from popular mobile applications
as well as a publicly available mobile benchmark. SQLite/-
PPL outperformed the vanilla SQLite significantly and con-
sistently across all the traces and benchmark.
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