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SUMMARY

The solution of the poroelastic equations for predicting land subsidence above productive gas/oil "elds may
be addressed by the principle of virtual works using either the e!ective intergranular stress, with the pore
pressure gradient regarded as a distributed body force, or the total stress incorporating the pore pressure. In
the "nite element (FE) method both approaches prove equivalent at the global assembled level. However, at
the element level apparently the equivalence does not hold, and the strength source related to the pore
pressure seems to generate di!erent local forces on the element nodes. The two formulations are brie#y
reviewed and discussed for triangular and tetrahedral "nite elements. They are shown to yield di!erent
results at the global level as well in a three-dimensional axisymmetric porous medium if the FE integration is
performed using the average element-wise radius. A modi"cation to both formulations is suggested which
allows to correctly solve the problem of a "nite reservoir with an in"nite pressure gradient, i.e. with a pore
pressure discontinuity on its boundary. Copyright ( 2001 John Wiley & Sons, Ltd.

KEY WORDS: "nite elements; land subsidence; pore pressure gradient; total stress; average element-wise
radius; in"nite pressure gradient

1. INTRODUCTION

Poroelastic theory is the basis for the simulation and prediction of land subsidence above
productive gas/oil "elds [1]. This problem may be addressed by two di!erent approaches, i.e.
the uncoupled (e.g. Reference [2]) or the coupled modelling (e.g. Reference [3]). In the latter case the



poroelastic and #uid dynamic equations are solved together for the pore pressure and medium
displacement unknowns. Following the former approach instead, after the #uid pressure distribu-
tion within (and around) a reservoir is independently obtained with either a #ow simulator or
in situ measurements, the settlement of land surface is provided by a poroelastic model only.
Typically, "nite elements (FE) are used to discretize the porous medium [4,5]. In both approaches
the discrete poroelastic equilibrium equations can be derived using a &total stress' or a &pressure
gradient' formulation [6], in the latter case the pore pressure gradient being regarded as an
external source of strength, i.e. a distributed (known or unknown) body force per unit volume.
Both formulations have been followed in the literature. The pressure gradient formulation is used
by [7}10] and [11], while the total stress formulation is used by [3,12], and [13].

For the arguments and derivations that follow it is irrelevant to think of the pore pressure as
being known or unknown. Since coupling requires a much higher computational burden, with a
possible ill-conditioning of the resulting discretized equations (e.g. References [14}16]), for the
sake of simplicity the analysis that follows is performed in an uncoupled (isotropic) context. The
"ndings turn out to be fully general and can be readily extended to a coupled (anisotropic)
formulation as well.

At the global assembled level the pressure gradient and total stress approaches are fully
equivalent. However, at the element level they are not, if as usual inter-element boundary
integrals are ignored, and produce a di!erent expression for the local loads applied on the element
nodes. The standard FE implementation does not introduce any error into the "nal model since
assembling cancels the contributions arising from the integrals extended to the internal element
boundaries. Since the formal equivalence is not being sought when the FE integration is
performed over each single element, the di!erent expressions taken on by the local nodal forces
should not be surprising. Moreover, for the three-dimensional axisymmetric model making use of
the average element-wise radius, the formulations do not numerically coincide at the global level
as well, and yield a di!erent prediction of land subsidence in the vicinity of the symmetry axis.

In the present paper we address the issue of the equivalence of the pore pressure gradient and
total stress approaches for the FE integration of the poroelastic equations in a porous medium
embedding a depleted gas/oil reservoir. First, both formulations are brie#y reviewed and shown
to be equivalent when appropriate boundary integrals are accounted for. Next, the local nodal
forces are derived in two- and three-dimensional settings for triangular, tetrahedral and annular
elements with a triangular cross-section. An argument is given to explain the di!erent results from
the two formulations when used in three-dimensional axisymmetric models with average element-
wise radii. The in#uence of a pumping well with a "nite radius giving rise to a boundary integral
on the well wall in the total stress approach is discussed. Finally, the problem with an in"nite
pressure gradient, i.e. a reservoir where the pore pressure exhibits a discontinuity on its boundary,
is solved exactly in both formulations properly modi"ed.

2. REVIEW OF BASIC THEORY

Let us assume an orthogonal three dimensional x, y, z reference frame. We use a vector and
matrix notation with bold lower case for vectors and italic upper case for matrices. Start from an
initial equilibrium con"guration and express all the variables related to stress, strain, and
displacement in terms of incremental quantities. If rL T"[p(

x
, p(

y
, p(

z
, p(

xy
, p(

yz
, p(

xz
] and p denote the

vector of the total stress components and the pore pressure, respectively, at any point of the
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poroelastic medium, Terzaghi's e!ective stress principle reads [17, 6]:

rL "r!ip (1)

where rT"[p
x
, p

y
, p

z
, p

xy
, p

yz
, p

xz
] indicates the vector of e!ective (grain to grain) stresses and

iT"[1, 1, 1, 0, 0, 0] represents the Kronecker d in vectorial form. If t; and t denote the total and
e!ective force per unit surface, respectively, and n the outer normal to the boundary of the porous
medium we have

t;"t!np (2)

In the above equations we adopt the sign convention that tensile stresses and pore pressures are
positive.

The deformation of the porous body is described by the strain component vector e and the
displacement vector u.

The equilibrium equations for the porous medium including both the solid grains and the #uid
are
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Replacing Equation (1) into Equations (3) yields
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2.1. Pore pressure gradient formulation

In Equations (4) the pore pressure gradient can be regarded as a distributed force for unit
volume q:

q"!grad(p)"!+p

Let us state the virtual work principle for the whole porous medium. The internal virtual work
is done by the e!ective stress components while the external work is performed by the e!ective
stress acting on the boundary & plus the pore pressure gradient acting on the porous volume <:

P
V

eTrd<"P
V

uTqd<#P&
uTtd& (5)
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2.2. Total stress formulation

The virtual work principle applies to the system made of the porous matrix plus the #uid with the
work done by the total stress and the total forces per unit surface on the boundary. It can be
written as

P
V

eTr( d<"P&
uTt; d& (6)

Using Equations (1) and (2), Equation (6) becomes

P
V

eTr d<"P
V

eTipd<#P&
uTtd&!P&

uTnpd& (7)

2.3. Equivalence of formulations

In Equation (7) the term eTi is the volume strain or dilatation, i.e. the divergence of the position
vector u: eTi"div(u). Using Green's "rst identity yields

P
V

eTipd<"P
V

div(u)p d<"!P
V

uT+pd<#P&
uTnpd&

Replacing the above result in Equation (7) leads to

P
V

eTrd<"!P
V

uT+pd<#P&
uTtd&"P

V

uTq d<#P&
uTtd&

which is Equation (5). Hence the two formulations (5) and (7) are theoretically equivalent. The
di!erence between the volume integrals on the right-hand side is compensated for in Equation (7)
by the extra boundary integral !:

&
uTnpd&.

3. FE SOLUTION TO THE POROELASTIC EQUATIONS

Equations (5) and (7) may be solved in real poroelastic media by the FE method [4,5]. In the
sequel, the contributions arising from any single element are denoted by subscript e. The porous
body is discretized into a number of elements and the local displacement u

e
and pore pressure p

e
are expressed as

u
e
"Nd

e

p
e
"N

1
p
e

where N and N
1
are shape (or basis) function matrices while d

e
and p

e
are local vectors containing

the components of the nodal displacements and nodal pore pressure, respectively. The e!ective
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stress vector r
e
is related to the strain vector e

e
through the elastic matrix D:

r
e
"De

e

The strain components e
e

are given by

e
e
"¸u

e
"¸Nd

e
"Bd

e

with ¸ a "rst-order di!erential operator and B"¸N the strain matrix. Replacing the previous
quantities into Equations (5) and (7) yields the local contributions to the FE solution to the
poroelastic equations:

(1) Pore pressure gradient formulation:

AP
Ve

BTDBd<Bd
e
"A!P

Ve

NT+N
1
d<Bp

e
#P&e

NTt
e
d&

namely

K
e
d
e
"Q

g,e
p
e
#f3

t,e
(8)

where K
e

is the local elastic sti!ness matrix, Q
g,e

is the local matrix which relates the
displacement to the unknown pore pressure in the coupled approach, hence it will be called
the coupling matrix, and f3

t,e
is the vector of the local e!ective forces.

(2) ¹otal stress formulation:

AP
Ve

BTDBd<Bd
e
"AP

Ve

BTiN
1
d<Bp

e
#P&e

NTt
e
d&#A!P&e

NTnN
1
d&Bp

e

namely

K
e
d
e
"Q

t,e
p
e
#f3

t,e
#f3

p,e
(9)

where Q
t,e

may be regarded as another coupling matrix since the vector of the local forced
f3
p,e

related to the pore pressure p
e
is usually ignored.

Consider any internal surface &
e, i

shared by two adjacent elements. In Equations (8) and (9) the
contributions to f3

t,e
and f3

p,e
from the integrals performed over &

e, i
when belonging to either

element are equal and opposite in sign, and hence cancel. Therefore, for any internal node
necessarily Q

g
p"Q

t
p where Q

g
and Q

t
are the global assembled coupling matrices arising from

the pore pressure gradient and the total stress formulations, respectively, and p is the global
vector of the nodal pore pressure. Only for nodes lying on the porous medium boundary we may
have Q

g
pOQ

t
p, the di!erence between these equations being accounted for by the components of

f3
p

in Equation (9) which may be non zero on a boundary node.
When dealing with prediction of land subsidence due to gas/oil withdrawal, the porous

medium is usually represented by a half-space with no external loads prescribed on the upper
horizontal surface that bounds the semi-in"nite medium. Hence, the following boundary condi-
tions apply:

(a) u"0, t"0, and p"0 for x, y, z approaching in"nity;
(b) t"0 and p"0 at z"0;
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with the origin of the positive downward vertical z-axis set on a point of the boundary plane. For
this problem f3

p
and f3

t
on the boundary nodes vanish and hence Q

g
"Q

t
despite the fact that the

local matrices Q
g,e

and Q
t,e

are di!erent.
In the next sections matrices Q

g,e
and Q

t,e
are derived in two, three, and three-dimensional

axisymmetric porous structures using triangular, tetrahedral and annular elements with a tri-
angular cross-section.

3.1. Triangular elements

If i, j, and m are the numbers which de"ne the triangle nodes listed in an anti-clockwise sense, the
basis function N

i
reads

N
i
"

a
i
#b

i
x#c

i
y

2*
e

where:

a
i
"x

j
y
m
!x

m
y
j

b
i
"y

j
!y

m

c
i
"x

m
!x

j

*
e
"triangle area

N
j
and N

m
are obtained from N

i
by a proper index permutation. The local coupling matrices

de"ned in Equations (8) and (9) are

Q
g,e

"!P*e

NT+N
1
d*"!

1

6

b
i

b
j

b
m

c
i

c
j

c
m

b
i

b
j

b
m

c
i

c
j

c
m

b
i

b
j

b
m

c
i

c
j

c
m

Q
t,e
"P*e

BTiN
1
d*"

1

6

b
i

b
i

b
i

c
i

c
i

c
i

b
j

b
j

b
j

c
j

c
j

c
j

b
m

b
m

b
m

c
m

c
m

c
m
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It could be proven that the global Q
g
and Q

t
rows corresponding to any internal node are equal.

3.2. Tetrahedral elements

If i, j, m, and p denote the nodes of a tetrahedron, the basis function N
i
now reads

N
i
"

a
i
#b

i
x#c

i
y#d

i
z

6<
e

with a
i
, b

i
, c

i
, d

i
, and <

e
given by

a
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"K

x
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y
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z
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x
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y
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z
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K

<
e
is the volume element which may be either positive or negative according to nodal numeration.

Index permutation produces N
j
, N

m
, and N

p
. We have
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p
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Q
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The same "nal comment as in Section 3.1 holds for tetrahedral FE meshes.

3.3. Annular elements with a triangular cross-section

We use a cylindrical reference frame with the z-axis coinciding with the symmetry axis. In
Equations (8) and (9) the elementary volume d< is expressed as

d<"2nr drdz

where r is the radial co-ordinate. Over element e the following approximation is used:

d<"2nr
e
drdz

where r
e
"(r

i
#r

j
#r

m
)/3 is the radial distance of the triangle gravity centre from the z-axis.

Using r
e
the local sti!ness matrix becomes

K
e
"2nP*e

BM TDBM r
e
d*

where BM is the strain matrix calculated at r"r
e
. The local coupling matrices take on the following

form:

Q
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"!2nr
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1
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c
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Q
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eP*e

BTiN
1
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#
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#
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While in the pressure gradient approach the local coupling matrices Q
g,e

for the two- and the
three-dimensional axisymmetric problems di!er for the simple multiplying factor 2nr

e
, in the total

stress approach in addition to 2nr
e

the matrices are also di!erent. This suggests that land
subsidence obtained with the FE axisymmetric implementation of the pore pressure gradient and
the total stress formulations may not be equal, as will be shown in the next section.

4. INTERESTING NUMERICAL RESULTS

4.1. Average element-wise radius in three-dimensional axisymmetric FE meshes

Consider the simple cylindrical porous medium whose cross-section is displayed in Figure 1. The
shadowed area represents the trace of the reservoir. The case of a uniform pore pressure and that
of a pressure which varies linearly with r and z are simulated. Since we are concerned with linear
poro-elasticity for the purpose of the present analysis the medium Young modulus E can be taken
arbitrarily. The results that follow are obtained with E"5000 kg/cm2 and the Poisson ratio
l"0.25. Figure 2 shows the land subsidence, i.e. the vertical displacement of the top surface of
the porous body of Figure 1, obtained from both formulations discussed in Section 3.3 using the
average element-wise radius. It may be noted from Figure 2 that the vertical displacement is the
same except in a small region close to the symmetry axis where the pore pressure gradient
approach provides a larger value. This is due to the centroid radius approximation as can be seen
by performing the volume integration in the calculation of Q

g,e
and Q

t,e
with the exact expression

for radius r:

r"N
i
r
i
#N

j
r
j
#N

m
r
m

The local coupling matrices thus become

Q
g,e

"!2nP*e

NT+N
1
(N

i
r
i
#N

j
r
j
#N

m
r
m
) d*

Q
t,e
"2nP*e

BTiN
1
(N

i
r
i
#N

j
r
j
#N

m
r
m
) d*
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Figure 1. FE grid used to solve the axisymmetric problem. The radial spacing *r is equal to 200 m.

Figure 2. Land subsidence obtained from the axisymmetric FE grid shown in Figure 1: uniform
pore pressure p"1 kg/cm2 within the reservoir (a); linear variation of p (between 1 and 2 kg/cm2) with

r and z within the reservoir (b).

Carrying out the above integrals, and keeping in mind that r also appears in the expression of B,
leads to a more accurate result for Q

g,e
p
e
and Q

t,e
p
e
, i.e. for the local nodal forces f

g,e
and f

t,e
:
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Figure 3. Patch of triangular FE close to the symmetry axis in a three-dimensional axisymmetric problem.
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A direct comparison of the assembled loads obtained with the above vectors and those arising
from the approximate radius is tedious to make for arbitrary triangles. However, to gain an
insight into the role the radius approximation plays the simple mesh of Figure 3 su$ces. Assume
that nodes 1, 2, and 3 lie on the symmetry axis and compute the force acting on node 2 by
assembling the contributions from triangles a, b, and c of Figure 3. Using the aforementioned
equations for b

i
, b

j
, b

m
and c

i
, c

j
, c

m
a few calculations with Equations (10) and (11) yield for node 2

the following &exact' z force component (the r component is of no interest since at r"0 the
boundary condition u

r
"0 applies):

f (2)
z,%9

"

n (*r)2

12
(!p1#p3!2p4#2p5) (12)

Note that relationship (12) arises from both Equations (10) and (11). If a similar calculation
is made using the average radius approximation a di!erent result according to either formulation
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is obtained:

f (2)
z,!11

"

n (*r)2

9
(!p1#p3!2p4#2p5) (13)

(pore pressure gradient formulation)

f (2)
z,!11

"

n (*r)2

9
(!p1#p3)#

n (*r)2

18
(!2p4#2p5) (14)

(total stress formulation)

Indeed Equations (13) and (14) are not the same and are both di!erent from Equation (12). Hence
r
e
exerts a di!erent in#uence on the two formulations. In particular comparing Equation (12) with

Equation (13) we observe that in the pore pressure gradient approach the following relation
holds:

f (2)
z,!11

"4
3

f (2)
z,%9

In other words the equivalent nodal load applied on the symmetry axis nodes is 33 per cent larger
than the correct one, so a larger subsidence rate at r"0 might be expected from this approach
(Figure 4). For the total stress approach we have instead:

f (2)
z,!11

"4
3

f (2a)
z,%9

#2
3

f (2b)
z,%9

where f (2a)
z,%9

"(n(*r)2/12)(!p1#p
3
) and f (2b)

z,%9
"(n (*r)2/12)(!2p4#2p5). The above equations

show that f (2)
z,!11

from the total stress formulation consists of two parts, one which overestimates
and one which underestimates the corresponding part of Equation (12) with the associate error
usually counterbalanced in a realistic "eld situation. As a major consequence the prediction of
land subsidence over the symmetry axis may result in a much greater accuracy (Figure 4). Let us
expand on the previous example a little bit more by assuming a uniform pore pressure p in the
reservoir. Then in Figure 3 p1"p2"p3"p4"p5"p and the vertical force component vanishes
on all reservoir axis nodes except on boundary nodes B, C and adjacent nodes A, D of Figure 1.
On node A we obtain from Equation (14):

f (A)
z,!11

"

2n(*r)2

9
p

while Equation (12) gives

f (A)
z,%9

"

n (*r)2

4
p

Hence

f (A)
z,!11

"8
9

f (A)
z,%9

By a similar calculation we get on node B:

f (B)
z,!11

"

n (*r)2

9
p

f (B)
z,%9

"

n (*r)2

12
p
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Figure 4. Land subsidence close to the symmetry axis obtained from the FE grid of Figure 1 using the pore
pressure gradient and the total stress formulations and the average and correct element radii: uniform

p"1 kg/cm2 (a); linearly variable p between 1 and 2 kg/cm2 (b).

namely:

f (B)
z,!11

"4
3

f (B)
z,%9

The same "ndings hold for nodes C and D. Therefore with the total stress formulation and
a uniform pressure distribution within the "eld the vertical forces acting on the axis nodes are
partly overestimated and partly underestimated. On the whole they balance to some extent, and
this accounts for the superior prediction of land subsidence obtained with this approach and
shown in Figure 4(a) which also gives the outcome from the more correct calculation making use
of the exact radius in each element. A similar conclusion holds for the example where p varies
linearly with r and z (Figure 4(b)).

Equations (12)}(14) point out that the nodal forces on the symmetry axis depend on the square
of the "rst radial spacing *r with the di!erence becoming smaller when *r decreases. This
suggests that the formulations using the average and the exact radius expression converge to the
same result for *rP0, as expected on the other hand from the general FE theory. Figure 5
provides the di!erence between the vertical displacement at r"0 and z"0 (Figure 1) obtained
from using Equations (13) and (14) versus *r. The di!erence approaches zero as *rP0. Hence on
re"ned grids the outcomes from both formulations using the average element-wise radius are
close and practically coincide with that obtained from performing the integration with the exact
radius.

4.2. Inyuence of boundary integrals

The in#uence of Neumann boundary integrals in the pressure gradient (8) and total stress (9)
formulations is investigated here on a cylindrical porous medium having an internal cavity that
represents a pumping well. In Figure 8(a) the well wall of "nite radius R"0.2 m is assumed to be
a free moving boundary while on the bottom of the cylinder a zero displacement is prescribed. In
the reservoir the pore pressure p is set to 1 kg/cm2 and zero elsewhere. The Poisson ratio is taken
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Figure 5. Di!erence between land subsidence predicted with the pore pressure gradient and the
total stress formulations versus the "rst radial spacing using the average element-wise radius

(sample problem of Figure 1).

equal to 0.25 while the Young modulus is that of the sedimentary Northern Adriatic basin and
increases with depth [10, Figure 3].

On the inner Neumann boundary we assume a zero variation of the total stress, i.e. t"np, thus
the elemental boundary force f3

t,e
in Equations (8) and (9) reads

f3
t,e
"P&e

NTt
e
d&"P!e

NTnp2nrd!"!f3
p,e

(15)

On a well wall node Equation (15) gives fI
t,e
"2nRp*z

e
/2, with *z

e
the vertical spacing of element e.

Note that fI
t,e
P0 when R approaches 0.

The total stress formulation (9) simply provides

K
e
d
e
"Q

t,e
p
e

While the total stress formulation does not require a boundary integral contribution, in the pore
pressure gradient formulation the boundary integral (15) does not vanish and the pore pressure p
acts as a distributed force on the well wall.

Figures 6(a) and 6(b) compare the radial and vertical displacements of the well wall for the
porous medium of Figure 8(a), respectively, and shows the importance of the boundary integral (15)
in the pore pressure gradient approach. Notice that neglecting term (15) has practically no
in#uence on the vertical motion of the well (Figure 6(b)), while it provides a radial displacement
with a wrong sign on the wall connected to the reservoir, namely on the pumped portion of the
wellbore (Figure 6(a)).

4.3. Inxnite pore pressure gradient

Frequently the reservoir is represented as a "nite cylindrical volume embedded in a semi-in"nite
porous medium and subjected to a uniform pore pressure p with an abrupt drop to zero on its
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Figure 6. Radial (a) and vertical (b) displacement at r"R as predicted by the two formulations for the
porous medium shown in Figure 8(a) with R"0.2 m.

boundary. Analytical solutions of land subsidence for this idealized con"guration in a homogene-
ous medium were developed in References [1, 18, 19] using the concept of nucleus of strain [20]
that was derived by analogy from thermoelasticity [21, pp. 66}74]. By distinction, the FE method
with the nodal forces as derived in Section 3 for various dimensional settings does not allow to
address the exact solution to this problem which is characterized by an in"nite pore pressure
gradient on the "eld boundary. Approximate FE solutions may be obtained instead by employing
a string of elements around the reservoir across which p goes linearly to zero. The smaller these
elements are, the closer the FE solution is to the idealized one.

We discuss in the sequel a modi"cation of the FE equations given in Section 3 for the nodal
forces Q

g,e
p
e

and Q
t,e

p
e

which allows for an exact FE solution to the in"nite pore pressure
gradient problem. This solution does not require a set of tiny elements around the gas/oil "eld
where the pore pressure is assumed to dissipate. Since the ad hoc modi"cations are di!erent
according to formulation, these are addressed separately.

4.3.1. Pore pressure gradient implementation. For the sake of simplicity let us consider the two-
dimensional FE mesh of Figure 7. Using the equations developed in Section 3.1 the global nodal
forces on the typical boundary node 2 contributed by triangles a, b, and c under the assumption
of a uniform pore pressure p within the reservoir are

triangle a: G
f (2)a,x

"!

1

6
(b1p1#b2p2)"!

*y

6
(p2!p1)"0

f (2)a,y
"!

1

6
(c1p1#c2p2)"

*x

6
p
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Figure 7. Detail of a two-dimensional FE mesh showing reservoir boundary nodes 1, 2, and 3 and the string
of adjacent elements where p naturally dissipates.

triangle b: G
f (2)b,x

"!

1

6
b2p2"0

f (2)b,y
"!

1

6
c2p2"

*x

6
p

triangle c: G
f (2)c,x

"!

1

6
(b2p2#b3p3)"!

*y

6
(p3!p2)"0

f (2)c,y
"!

1

6
(c2p2#c3p3)"

*x

6
p

Assembling the above contributions yields on node 2:

f (2)x "0, f (2)y "

*x

2
p (16)

Similarly on node 5 opposite to node 2 we obtain from simple calculations:

f (5)x "0, f (5)y "

*x

2
p (17)

Equations (16) and (17) show that the horizontal force component is zero on the horizontal "eld
boundary of Figure 7, while the vertical components are e!ective on both the reservoir boundary
nodes and the opposite external nodes, and do depend only on the horizontal spacing *x. Hence,
shortening the vertical spacing *y does not a!ect the force components due to the pore pressure
gradient on nodes 2 and 5. In the limiting case when *yP0 node 5 collapses over node 2 with its
contribution to the vertical force component simply added to f (2)y to provide the overall force *xp.

With a similar line of reasoning it can be shown that on the outer reservoir boundary parallel
to the y-axis the force component along y is zero and the one along x is independent of *x, and
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again the "rst string of elements outside the "eld can be eliminated and the x-component of the
force on the vertical boundary nodes set equal twice its value, i.e. *yp. It is therefore concluded
that the in"nite pressure gradient problem may be correctly addressed by the FE method by
doubling the force components which naturally arise on the reservoir boundary nodes in the
standard FE procedure and keeping unloaded the nodes which surround the "eld. The results
obtained above for triangular FE is readily extended to tetrahedral FE.

4.3.2. Total stress implementation. We distinguish between triangular and tetrahedral elements
on one side and annular elements with triangular cross-section on the other.

¹riangular and tetrahedral FE: Since the development is the same for both FE types we provide
the details only for triangles. The extension to tetrahedrons is straightforward. With reference to
Q

t,e
in Section 3.1 the contributions to the nodal forces from triangle e are

Q
t,e

p
e
"f

t,e
"

1

6

b
i
(p

i
#p

j
#p

m
)

c
i
(p

i
#p

j
#p

m
)

b
j
(p

i
#p

j
#p

m
)

c
j
(p

i
#p

j
#p

m
)

b
m
(p

i
#p

j
#p

m
)

c
m
(p

i
#p

j
#p

m
)

"

pN
e

2

b
i

c
i

b
j

c
j

b
m

c
m

(18)

where pN
e
"1

3
(p

i
#p

j
#p

m
) is the average pore pressure over triangle e. Equation (18) shows that

f
t,e

can be obtained from the product between b
i
, c

i
b
j
, etc., and the average element pore pressure pN

e
.

If an average pore pressure is de"ned only for the elements within the reservoir while pN
e
is taken to

be zero over all elements outside the "eld, the FE solution is correctly implemented for the
problem with an in"nite pore pressure gradient on the reservoir boundary. This may be shown
using again the example of Figure 7. Assembling the nodal forces contributed only by triangles a,
b, c, and d yields

f (2)x "0, f (2)y "!

*x

2
p

on node 2 and

f (5)x "0, f (5)y "

*x

2
p

on node 5. The previous equations state that the horizontal loads arising from these triangles are
again zero while the vertical loads acting on a reservoir boundary node and on the external
adjacent node are equal and opposite in sign. In the limiting case when *yP0 these vertical force
components cancel. The above outcome may be simply obtained from the FE method imple-
mented in the form of Equation (18) by prescribing an average pN

e
"0 over triangles a, b, c, and d.
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Annular FE with triangular cross-section: With reference to Q
t,e

in Section 3.3, the local nodal
forces for element e now read

f
t,e
"

nr
e

3

b
i
(p

i
#p

j
#p

m
)#

*
e

r
e
Api#

p
j

2
#

p
m
2 B

c
i
(p

i
#p

j
#p

m
)

b
j
(p

i
#p

j
#p

m
)#

*
e

r
e
A
p
i

2
#p

j
#

p
m
2 B

c
j
(p

i
#p

j
#p

m
)

b
m
(p

i
#p

j
#p

m
)#

*
e

r
e
A
p
i

2
#

p
j

2
#p

mB
c
m
(p

i
#p

j
#p

m
)

which can be rewritten as

f
t,e
"nr

e
pN
e

b
i

c
i

b
j

c
j

b
m

c
m

#n*
e

1
3
[p

i
#0.5(p

j
#p

m
)]

0

1
3
[0.5p

i
#p

j
#0.5p

m
]

0

1
3
[0.5(p

i
#p

j
)#p

m
]

0

(19)

with pN
e
"1

3
(p

i
#p

j
#p

m
) again the average element pore pressure. In Equation (19) it is approx-

imately true that

1
3
[p

i
#0.5(p

j
#p

m
)]:1

3
[0.5p

i
#p

j
#0.5p

m
]:1

3
[0.5(p

i
#p

j
)#p

m
]:2

3
pN
e

Hence, Equation (19) becomes

f
t,e
"nr

e
pN
e

b
i
#

2

3

*
e

r
e

c
i

b
j
#

2

3

*
e

r
e

c
j

b
m
#

2

3

*
e

r
e

c
m

(20)

Again if pN
e
"0 is taken over all elements outside the reservoir we obtain the correct FE solution

to the three-dimensional axisymmetric problem (e.g. a cylindrical "eld) where the pore pressure
goes abruptly to zero on the reservoir boundary.
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Figure 8. Three-dimensional axisymmetric FE grids embedding a disk-shaped reservoir with a di!erent
re"nement. The "ner grid (a) is used to evaluate the in#uence of the boundary integrals in displacement
calculations at the well wall with radius R"0.2 m. The coarser grid (b) is used to validate the implementa-
tion of the in"nite pore pressure gradient model. The shadowed area represents the reservoir, i.e. the area

over which the strength source is distributed.

4.3.3. Numerical solution to the inxnite pore pressure gradient problem. In this section it is shown
that the special FE solution developed previously for an in"nite pore pressure gradient on the
reservoir boundary is the limiting case of the standard FE solution where the string of elements
adjacent to the "eld across which pore pressure dissipates linearly is made in"nitely thin. The
numerical experiments are performed with a cylindrical reservoir embedded in a porous medium
discretized by the annular triangulation of Figure 8(b). The pore pressure p within the reservoir is
uniformly distributed and equal to 1 kg/cm2 with the elastic constants the same as those used in
Section 4.2. Out-side the reservoir a zero pressure is assumed everywhere. However, in the
standard FE implementation the elements close to the "eld are a partial source of strength as well.

We denote by s the thickness of the elements which surround the reservoir (Figure 8). Figure 9
shows the land subsidence as obtained from the standard FE method described in Section 3.3 and
the FE method modi"ed in Sections 4.3.1 and 4.3.2 to account for the in"nite pore pressure
gradient on the "eld boundary. As can be seen from Figure 9 land subsidence from the traditional
FE method is quite sensitive to s. However, as s approaches zero the FE solution gradually
comes close to the solution obtained from the FE implementation discussed in Section 4.3.1 or
4.3.2. Thus these ad hoc implementations allow to address correctly the problem of an idealized
reservoir with a discontinuous pore pressure p on the boundary without the need for introducing
a set of elements over which p is assumed to dissipate. Also note in Figure 9 that the solid pro"le is
obtained from both formulations with the approximation of the average element-wise radius on
performing the FE integration. On account of the relatively small radial spacing used in this
example (equal to 20 m, Figure 8) the two formulations provide practically the same outcome at
r"0 as well.
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Figure 9. Land subsidence as obtained from the in"nite pore pressure gradient FE model using
either the pore pressure gradient or the total stress formulation (solid line) and from the

standard FE method (dashed lines).

5. CONCLUSIONS

Land subsidence above depleted gas/oil "elds can be addressed by the FE method using either the
pore pressure gradient formulation or the total stress formulation. Both approaches are equiva-
lent at the global assembled level but generate di!erent local forces at the element level. If
three-dimensional axisymmetric problems are solved with the use of the average element-wise
radius in the FE integration, the equivalence does not hold at the global level as well, and the two
formulations predict a di!erent land subsidence in the vicinity of the symmetry axis. The total
stress model provides a more accurate result and an argument is developed to account for the
better performance of this approach. At the global level the two formulations may be reconciled
by the introduction of appropriate boundary integrals. An example of this has been shown with
the reservoir pumped by a well of "nite radius. Finally, two modi"cations to the standard FE
method have been discussed which allow for the correct simulation of an in"nite pressure
gradient, i.e. a discontinuity of the pore pressure on the "eld boundary. These modi"ed FE
implementations avoid the need for introducing a string of tiny elements around the "eld where
the pore pressure variation is assumed to dissipate.
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