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Buckling of Force-Excited Liquid-
Filled Shells1 

The matrix equation of motion for liquid-filled shells with a particular reference to 
the influence of ground excitation are derived through a Galerkin/finite element 
discretization procedure. The modal coupling among the various combinations of 
axial and circumferential modes are identified. The equations for the dynamic buck­
ling analysis of liquid-filled shells are presented. The buckling criteria of liquid-
filled shells subjected to horizontal ground excitation are established. A comparison 
to available experimental results gives strikingly good agreement. The importance 
of modal interaction in the axial as well as circumferential directions is also dem­
onstrated. This provides guidelines for a better understanding of dynamic buckling 
of liquid-filled shells. 

1 Introduction 
The complex nature of the damage recorded in recent earth­

quakes has indicated important gaps in our understanding of 
the mechanisms involved in damage and failure of liquid-filled 
systems. It is yet to be explained if this damage is due to simply 
horizontal, vertical and rocking ground motions, or whether 
it requires a consideration of nonlinear fluid-structure inter­
action, or phenomena such as lift-off. 

The buckling tests by Shih and Babcock (1987) showed that 
buckling is predominantly influenced by the stresses resulting 
from the lowest response mode and the higher order shell 
modes play only a secondary role. However, shaking table 
experiments with aluminum tank models conducted by Clough 
and Niwa (1979) indicated that cos(«0)-type modes were sig­
nificantly excited by earthquake-type motions, possibly due to 
the initial imperfections of the tank geometry. Similarout-of-
round modes have also been observed in the vibration tests of 
the full-scale thin shell water tanks conducted by Housner and 
Haroun (1979). 

The intriguing task of identifying the loading mechanism 
onto an anchored liquid storage tank has been taken up by a 
small number of researchers. The possibility of buckling can 
be attributed to periodic axial membrane stresses caused by 
vertical seismic excitation. In the dynamic buckling analysis 
by Kana and Craig (1968), an uncoupled set of Mathieu's 
equations were obtained from the fluid-structure governing 
equations and only hoop stresses were considered in the sta­
bility analysis. Whereas, in the Chiba and Tani (1987) analysis, 
a set of coupled Mathieu's equations in the axial direction is 
obtained since the effect of axial modal coupling and all com­
ponents of the membrane stresses are included. 
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Static buckling analyses due to moments caused by high 
lateral pressures exerted by the fluid onto the upper part of 
the tank revealed a possibility of buckling. This buckling mech­
anism has been studied by Liu and Lam (1983), Liu and Lam 
(1989) and Rammerstorfer et al. (1988). 

A buckling analysis which considers dynamic fluid-structure 
interaction and modal coupling in both axial and circumfer­
ential directions is needed in order to shed light into the un­
derstanding of the damage mechanisms of anchored liquid-
filled tanks due to seismic excitations. Although there has been 
an experimental study on the dynamic buckling characteristics 
of liquid-filled shells under horizontal excitation conducted by 
Chiba et al. (1986), little theoretical analysis of the dynamic 
buckling of liquid-filled shells under general seismic loading 
has been found in the literature. 

This study introduces a method of analysis for the dynamic 
stability of liquid-filled shells. The discrete fluid-structure in­
teraction equations are obtained through the use of a Galerkin/ 
finite element procedure. An appropriate form of the mem­
brane forces to represent the response of liquid-filled shells to 
seismic excitation is proposed. The conditions of buckling are 
established for a liquid-filled shell under horizontal ground 
motion. Finally, a comparison of experimental findings by 
Chiba et al. (1986) with the theoretical analysis is given. The 
present analysis yields the same buckling frequencies due to 
the (n)th and {n + l)th circumferential modal coupling as found 
in the experiments. It is also found that each of the experi­
mental instability regions consists of many regions due to var­
ious axial and circumferential modal coupling. These 
bifurcation solutions can be identified from the present anal­
ysis. 

In the next Section, a variational formulation is introduced 
for fluid-structure interaction problems, and the matrix gov­
erning equations for a thin cylindrical shell are obtained through 
a Galerkin/finite element discretization. Modal coupling for 
the resulting matrix equations is studied in Section 3. The 
dynamic stability equations are derived in Section 4. In Section 
5, the experimental results of the dynamic buckling of liquid-
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filled shells by Chiba et al. (1986) are compared with the present 
study and the findings are summarized in Section 5. Finally, 
Section 6 is devoted to answer some key questions on buckling 
failure of anchored tanks. 

2 Formulation of Fluid-Structure Interaction 

The principle of virtual work statement for a structure sub­
jected to hydrodynamic loads due to an inviscid, incompres­
sible fluid can be expressed as 

1 5uijTijdQ+\ p5UjUidQ-\ 5w,Prf(ii, x)n,dT 
•>n Jn ^r 

- 5UiPF(x, 0 « 4 T - SUiPL(x)njdr = 0 (1) 

where T,«,, x, and w, denote the fluid-structure interface bound­
ary, the outward normal to the structural surface, the spatial 
coordinates, and the structural displacement components, re­
spectively. Q is the domain of the structure; r,y is the Cauchy 
stress tensor; p is the structural mass density. Pd, PF and PL 

are the fluid-structural vibrational pressure, the pressure due 
to ground motion, and hydrostatic fluid pressure, respectively, 
(Liu and Uras, 1989). The spatial derivatives are denoted by 
a subscripted " , " and repeated indices indicate sum. A su­
perposed dot designates the temporal derivative. 

After expanding r,y, «,-, Pd, PF, and «,• into the zeroth and 
first-order parts via a consistent linearization procedure and 
rearranging terms, the zeroth and first-order equations are 
identified. 

Zeroth Order 

I pdUjiiidQ- \ buinfA(x, t)njdT + \ 8UjjTjjdU 
•>a ^ r •'a 

= bUjPF(x, t)rijdr+ bUjPL{x)nidT (2) 

First Order 

I, Lbu" pdiijAiiidQ- <5w,Amaa(x, t)riidT + 
n 

AUicmdQ, 

8uiJrjlAui,idQ = 0 (3) 
•'a 

where C'ijkm, TJ\ and 5* are the material response tensor, the 
time-dependent Cauchy stress tensor arising from Eq. (2), and 
the Kronecker delta, respectively. In expanding the material 
response part of the incremental Cauchy stress tensor a Trues-
dell rate is employed. The added fluid inertia and the surface 
normal are defined as 

a d , ,v def dPrf(ii, X, t) 
mm(x, t) 

diij 

and 

A ad/ M def dPd(u, X, t) .. 
Amm(x, t) = — Auj 

duj 

(4a) 

(4b) 

Arii = AuKknj- AumJnm (4c) 

respectively. 
The following guidelines together with the assumptions of 

the classical shell theory are adopted to obtain the discretized 
equations of motion: 

• the rotational inertia which is assumed of higher order is 
neglected; 
• the standard reduction procedure commonly employed in 
plane stress problems is applied to the constitutive relation for 
linear elastic materials; 
• the initial state of stress is assumed to be governed by the 

membrane stresses; therefore, the higher order curvature terms 
are neglected; 
• since small deformation theory is used, total fluid pressure 
acting upon the shell wall and its derivatives are computed at 
the initial state of stress; 
• Galerkin method is applied to discretize the governing equa­
tions; the three displacement components are decomposed into 
/axial and Ncircumferential modal components: 

/ N 

u{zfi,t) = ̂  2 u-m(t)-*i(z) cos nB (axial) (5a) 
1=1 n=0 

/ N 

v(z,0,t) = ̂ ] ^ Vm(t)4>i(z) sin nd (circumferential) (5b) 
i=l fl = 0 

/ N 

w(z,d,t) = J] YJ win(0</>;U) cos nd (radial) (5c) 

; = i n=o 

The axial mode shapes are taken as 

4>i(z) =^4i,cosh \)Z + A2iCOs \,z 

+ Ay,sinh XjZ + A^sm A,z (6a) 

and 

*,(z)=y41/sinh A/Z-y^/sin A,z 
+vl3/COsh A/z+yl^cos A;Z (6b) 

where 

cosh \jL + cos XjL 
Au= -A2i= 1 A3i= - ^ 4 ; = ~ • • , T , • , . 

smh KjL + sin KJL 

and \jL are the roots of 

cosh XjLcos \jL = - 1 
After applying the Galerkin discretization to the variational 

equation, Eq. (3), the global matrix equation which governs 
the dynamic stability is obtained 

Md + Kd + K*(0d = 0 (7) 

where M, K, K*(/) and d are the general mass (including the 
fluid added mass) matrix, the stiffness matrix, the time-de­
pendent geometrical stiffness matrix, and the generalized dis­
placement vector, respectively. 

3 Governing Equations for the Dynamic Stability 
Analysis of Liquid-Filled Shells 

The effect of the geometric stiffness and load correction 
matrices is incorporated in the time-dependent coefficient ma­
trix K*(t). Physical systems modeled through equations of 
this type are referred to as parametrically excited systems. 

For stability analysis, an orthogonality transformation is 
applied to Eq. (7) 

(d)« = (Q)„(u)„ no sum on n (8) 

where (Q)„ are the diagonal entries of the orthogonal matrix 
Q 

0 0 0 0 
0 0 0 0 

0 0 0 
0 (Q)„ 0 0 
0 0 - 0 
0 0 0 (Q)A 

By applying this transformation, the total mass matrix is nor­
malized to the identity matrix and the stiffness matrix is re­
duced to a diagonal matrix, A, of natural frequencies, cofn, for 
/ = 1 through / a n d n = 1 through TV. Consequently, Eq. (7) 
becomes 

Q = 

(Q)i 
0 
0 
0 
0 
0 

0 
(Q)2 

0 
0 
0 
0 

(9) 

u+[A + G(0]u = 0 (10) 

where 
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A = 

(A)i, 
0 
0 
0 
0 
0 

0 
(A)22 

0 
0 
0 
0 

0 0 
0 0 

0 
0 (A)„ 
0 0 
0 0 

0 
0 
0 
0 

• 0 

0 WNN. 

eze = N 
TV* = 0.755 (hE) (22) 

(11) where E, v, h, and R the Young modulus, the Poisson ratio, 
the shell thickness, and the radius of the shell, respectively, 
and the subscript cr refers to the respective static critical buck­
ling forces (Yamaki (1984)). 

G(/) = 

and 

(G°)n 
(G<-»)21 

0 
0 
0 
0 

(G')I2 

(G°)22 (G')2 

(G )n,n-\ 
0 
0 

(G°)„ 

0 
0 
0 

(G )„,„+[ 

(G )N,N- I 

0 
0 
0 
0 

( G \ 

u = [(u)i, (u)2, . , (u)„, . , (u)N]T 

The submatrices in Eqs. (11) and (12) are defined as: 

N°e(z,e,t)=Ne(t)Te(z)lag + becosd] (lSb) 

1 v cr 
Eh2 

R"sfxi- V) 

to 
M l 

JV?r = 0 . 9 2 7 l - (hE) 

(20) 

(21) 

(12) 

(13) 

Eigenvalue submatrices 

(Q)„r(K)„„(Q)„ = (A)„„ no sum on n (14) 

Geometric stiffness submatrices due to vertical ground exci­
tation 

(Q)„r(K*°)™(Q)« = (G°)M no sum on n (15) 

Geometric stiffness submatrices due to horizontal ground ex­
citation 

(Q)RK*X,n+i(Q)n+i = (.Gl)n,n + i no sum on « (16) 
(Q)J(K*(-1))„,„„1(Q)„_, = ( G ( - V - i no sum on n (17) 

Therefore, A and G(?) are N x N matrices and each submatrix 
is (37) x (37). The block-diagonal terms in G(0 reflect the 
effect of vertical ground excitation, whereas the nonzero block-
off-diagonal terms arise as a result of horizontal ground ex­
citation and rocking motion. 

Since the membrane theory yields a good approximation for 
the actual stress distribution away from the built-in end, the 
membrane stresses can be assumed of the following form: 

N°z(z,e,t)=Nz(t)rz(z)[az + bzCosOl (18a) 

Na
ze(z,e,t)=Nw(t)Tze(z) bz6sm8 (18c) 

where Na(t) are the time-dependent membrane force ampli­
tudes; Ta(z) represent the axial distribution of membrane 
forces; aa and ba account for the relative weights of vertical 
and horizontal ground excitations, respectively; and a = z or 
6 or z6. 

The membrane force amplitudes can be obtained by ex­
panding Na(t) into Fourier series 

s 
Na(t) = 2 [Nl, cos(sut) +N%sm(sut)] a = z or 6 or zd 

s=i (19) 

where S is the truncation limit for the expansion. Nfs and 
A^ are the Fourier coefficients for the cosine and sine series, 
respectively. 

For stability analysis, three nondimensional parameters ez, 
ee and tze are defined for the axial, circumferential and torsional 
stresses, respectively, 

The Fourier expansion of the time-dependent geometric 
stiffness matrix becomes 

s 
G(r) = J ] [Gl cos(«or) +G 2 sin(.sW)] (23) 

s = l 

where G\ and G2 are the Fourier coefficients. 
In summary, the governing equation of motion, Eq. (10) 

takes the following form: 
s 

ii + Cii + Au + 2 [Gf cos(sW) + G£ sin(sW)]u = 0 (24) 
s=l 

where C, a diagonal damping matrix, has been included for 
the completeness of the stability analysis. The /th and «th 
components of the C matrix are given by 

Cm = 2f,-n«j« (25) 

where f,„ is the damping coefficient associated with eigenfre-
quency w/n. 

This form of equations is commonly referred to as the cou­
pled Hill's equation. 

s & a s a £ 

n=l 240 

axial wave 
numbers 
circumferential ^ ^ 
wave numbers ^ 

240 
to (Hz.) 

Fig. 1 Stability charts prepared using (a) the analysis by Liu and Uras 
(1989b); (b) the experiments by Chiba et al. (1986) 
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4 Dynamic Buckling Analysis 

In seismic analysis, the response of the fluid-structure system 
is dominated by only a few modes. With this assumption, Eq. 
(24) can be simplified to 

a + Cii + Au + eGu cosut = 0 (26) 

where w and e represent a typical dominant frequency and the 
normalized amplitude of the seismic excitation, respectively. 
A superposed dot denotes time differentiation; and u is the 
vector of modal displacement amplitudes. When mass pro­
portional damping is adopted, the rth and «th components of 
the damping matrix, C, are given by 

= 2t - - ^ - for / = 1, / and n = 1, N (27) 

(G)n 

(G)21 
0 
0 
0 
0 
0 

(G),2 

(G)22 

0 
0 
0 
0 

0 
(G)23 

(G)„,n--i 
0 
0 
0 

0 
0 

(G)„„ 
(G)„+i,„ 

0 
0 

0 
0 
0 

(G)„,„+i 

0 

0 
0 
0 
0 

(G)N,N- I 

0 
0 
0 
0 
0 

(G)w_i,w 
(fi)NN . 

where / and N are the total number of modes in the axial and 
circumferential directions, respectively; comin and fmin are the 
lowest frequency and the corresponding damping coefficient, 
respectively. A is a diagonal matrix of natural frequencies, oifn. 
G is the block-tri-diagonal matrix 

G = 

The diagonal blocks of Eq. (28) vanish if only horizontal 
ground excitation is applied to the fluid-structure system, which 
is the focus in this study. Equation (26) falls into the category 
of coupled Hill's equations. General buckling solutions for 
this equation are introduced by Uras and Liu (1989). 

The location of an instability region on a stability chart is 
fixed by the natural frequencies of the respective modes. The 
size of an instability region, is a measure of vulnerability to 
buckling and depends on the system eigenmodes. 

5 Results and Discussion 
In this section, a comparison of results obtained by the 

present method of analysis and Chiba et al.'s (1986) experi­
ments is given for a liquid-filled shell with the following data: 

(/) All the locations of the main buckling frequencies due 
to (rt)th and (n + l)th circumferential modal coupling pre­
dicted by the analysis correspond to those of the experiments. 

(ii) Around the cosfl-frequency, a large number of buck­
ling frequencies are clustered together, which are depicted as 
one instability region on the experimental stability charts (these 
regions are indicated by thick curves in Figs. 1(a) and (b)). 

(Hi) The frequency band is centered by the main buckling 
frequency from type (1), and includes other modes with axial 
and circumferential modal coupling. 

For a liquid-filled geometrically perfect cylindrical shell sub­
jected to horizontal ground excitation, only one type of in­
stability region is expected when the fluid-structure system is 
subjected to horizontal ground motion 

co = <o,„ + u , > + 1 (29) 

On the other hand, in the experimental spectra given by Chiba 
et al. (1986) buckling frequencies of the following types are 
found: 

(28) 

1 The majority of the buckling frequencies are due to axial 
modal coupling and the coupling between the («)th and (n + 
l)th circumferential modes induced by horizontal ground mo­
tion (compare with Eq. (29)) 

(*)~0)j„ + (j)j:„+i (30a) 

R 
h 
L 
E 
V 

P 

PF 

(radius) 
(thickness) 
(length) 
(Young's modulus) 
(Poisson's ratio) 
(shell mass density) 
(fluid mass density) 

0.1 m 
0.0025 R 
1.607 R 
5.56 GPa 
0.3 
1.405-103 kg/ 
1.0-103kg/m 

The experimental and theoretical values of the first cos0-
mode are 220 Hz and 227 Hz, respectively. The comparison 
of results to the Chiba et al. (1986) experiments are depicted 
in Figs. 1(a) and (b). Major buckling modes around this mode 
are identified as cos 120 and cos 130. A second circumferential 
modal coupling is found to be between cos30 and cos40 for 
the first axial mode. The buckling mode shape (as indicated 
by the thick curve in Fig. 1(a) obtained from the present 
analysis agree with the region obtained by Chiba et al. as shown 
in Fig. 1(b). However, in the experiments, only the axial mode 
(1,1) and the circumferential mode (12,13) could be identified 
although the second region is within ± 5 percent of the first 
cos0-mode. It should be noted that only five buckling fre­
quencies in the vicinity of the cos0-mode are available for 
comparison. 

In summary, the general characteristics of the theoretical 
results for the liquid-filled shell can be summarized as follows 
(refer to Figs. 1(a) and (b): 

2 Due to the influence of vertical ground motion and/or 
externally applied axial forces 

a> = 2«,„ (306) 

3 Due to contribution from the nonlinearities of the spec­
imen 

(3a) u«a>/„ + « / m+ (•),•,„+„, (30c) 
(3b) co = co,„ + co,>+2 (30c?) 

The present analysis agrees with their experimental analysis 
in predicting buckling frequencies induced by the axial and 
circumferential modal coupling (Eq. (30a)). It seems that in 
Chiba et al. experiments, the n = 0 breathing modes, called 
principle buckling modes, are also excited (Eq. (306)). One 
possible explanation of this occurrence, is vertical motion in­
troduced by the shaking table and uncertainties in the exper­
iments. The third set of instability regions (Eqs. (30c and d)) 
can be induced either by imperfections in the structure and/ 
or by difficulties of identifying modes due to the coupling 
between axial and circumferential modes. However, the major 
buckling region is governed by Eq. (29), and the rest is of 
minor importance. 

6 Conclusions 
The aim of this paper is to search for a fundamental un­

derstanding of the various possible failure mechanisms of an­
chored storage tanks under seismic excitation. 

The fluid-structure interaction problem is formulated by a 
variational statement. A Galerkin/finite element discretization 
is applied to obtain the governing matrix equations. For a 
better understanding of the transient failure mechanisms, the 
shell membrane forces are decomposed into a hydrostatic part, 
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and into a dynamic part due to various components of the 
ground motion. The modal coupling in the axial and circum­
ferential directions due to different types of seismic loads is 
identified. The significance of the axial and circumferential 
cross-coupling in the failure of tanks is also revealed. For 
dynamic stability analysis, the matrix equations are cast into 
a set of coupled Hill's equations by employing an orthogonality 
transformation. A comparison of the results obtained through 
the present study, and the available experimental findings re­
veals very good agreement in predicting instability conditions. 

The significant buckling phenomena for failure conditions 
in which the buckling modes are not exactly known from the 
shaking table experiments can be identified from the conditions 
established in the present analysis. 
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