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Abstract

Quadrature problems involving functions that have poles outside the interval of integration can pro+tably be solved by
methods that are exact not only for polynomials of appropriate degree, but also for rational functions having the same (or
the most important) poles as the function to be integrated. Constructive and computational tools for accomplishing this
are described and illustrated in a number of quadrature contexts. The superiority of such rational=polynomial methods is
shown by an analysis of the remainder term and documented by numerical examples. c© 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Much of numerical analysis has been dominated by polynomial approximation, i.e., approximation
procedures that yield exact answers if the function to be processed were a polynomial of some
appropriate degree. This is particularly true in the area of numerical quadrature. Frequently, however,
the functions to be integrated are not polynomial-like. They often have poles away from the interval
of integration, in which case it would be more natural to make the integration exact for rational
functions having the same, or at least the more important, poles (those closest to the interval of
integration). It may be desirable to still have some low-degree polynomials, e.g., constants, integrated
exactly. This suggests an approximation procedure that provides exact answers for a mixture of
rational functions and polynomials. The constructive and computational tools for implementing this
idea are described, not only for ordinary quadrature rules, but also for more sophisticated rules such
as Gauss–Kronrod and Gauss–Tur4an rules, and quadrature procedures for Cauchy principal value
integrals.
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An idea somewhat related to our’s is to require exactness for a class of Laurent polynomials,
which is meaningful if the underlying measure of integration is “strong”, i.e., possesses moments of
positive as well as negative orders. The approach is related to two-point Pad4e approximation, the
two points being at the origin and at in+nity. For this we refer to [4–8,29–31] and to [47–49] for
speci+c examples. For rational quadrature over the unit circle, we refer to [9] and the references
cited therein. Our results in Section 6 on rational Gauss-type quadrature formulae are closely related
to multipoint Pad4e approximation. The convergence of such approximations and of related quadrature
formulae has been studied in a series of papers by L4opez Lagomasino and others; see, e.g., [24,
35–38,25,11]. Further convergence results, also for other rational quadrature formulae, can be found
in [10].

There are other approaches, essentially diJerent from those to be described, of incorporating the
inKuence of poles outside (and particularly near) the interval of integration. One is to construct, in
some way or another, a correction term to a standard, in particular Gaussian, quadrature rule. This is
an approach taken by Lether, who in [33] uses the method of subtracting the singularity, and in [34]
uses the principal part of the Laurent expansion at each pole to obtain the correction term. The latter
approach, however, requires the evaluation of the regular part of the integrand at the pole(s). This
is avoided in a method proposed by Hunter and Okecha [28]. Another entirely diJerent approach is
discussed in [3], where expansion in sinc functions is used.

2. The principle of exactness

We begin with a quadrature rule of the simplest kind,∫
R
f(t) d�(t) =

n∑
�=1

��f(t�) + Rn(f); (2.1)

where d� is a given (usually positive) measure of integration all of whose moments exist. The
general principle of exactness can be formulated as follows. Given a linear space Sd of functions
(integrable with respect to d�), having dimension d, determine t� and �� such that formula (2.1) is
exact for all functions in Sd, i.e.,

Rn(g) = 0 for all g ∈ Sd: (2.2)

Such a formula may or may not exist, and if it does, may not be unique. Classical examples are
the Newton–Cotes formulae, where the (distinct) nodes t� are prescribed, and one tries to determine
the weights �� such that (2.2) holds with d = n and Sn =Pn−1, the space of polynomials of degree
6n− 1. This determines formula (2.1) uniquely. Alternatively, one could impose conditions on the
weights ��, for example, that they all be equal, and determine the nodes t� so as to have polynomial
degree of exactness n. This gives rise to quadrature rules of Chebyshev type, which may or may
not exist if one insists on reality of the nodes. Among all polynomial-based quadrature rules, the
optimal one is the Gauss–Christo7el rule, or brieKy the Gaussian rule, where one takes d= 2n and
S2n =P2n−1. In this case, both the nodes t� and the weights �� are to be determined. It is well known
that they exist uniquely, that all t� are contained in the support interval of the measure d�, and the
�� are all positive (if the measure d� is positive).
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Here we are interested in a mixed rational=polynomial type of exactness. More precisely, given an
integer parameter m with 06m6d, we take Sd to be the direct sum of a space of rational functions
and a space of polynomials,

Sd =Qm ⊕ Pd−1−m; 06m6d; (2.3)

where

Qm = span


g : g(t) = (1 + �t)−s; � = 1; 2; : : : ; M ;

s = 1; 2; : : : ; s�;
M∑
�=1

s� = m


 : (2.4)

The � are given (in general complex) numbers satisfying

� �= 0; 1 + �t �= 0 on supp(d�): (2.5)

The rational component Qm of Sd thus is made up of rational functions having poles −1=� of
multiplicities up to s� outside the support of d�. These poles are chosen to match the most important
poles, if any, of the function f in (2.1). If f is an entire function, one might as well take m = 0,
in which case Qm is empty and Sd is a purely polynomial space. The other extreme is m = d, in
which case Sd consists entirely of genuinely rational functions.

3. Characterization of quadrature rules of rational=polynomial exactness

The basic result concerning quadrature rules (2.1) exact on the space Sd of (2.2)–(2.4) was
proved in [16] (for d = 2n) and, independently, in [50] for special choices of Qm. We state it as
the following theorem.

Theorem 3.1. Let 06m6d and

!m(t) =
M∏
�=1

(1 + �t)s� (3.1)

(a polynomial of exact degree m). Assume there exists an n-point quadrature rule of polynomial
degree of exactness d− 1 for the modi9ed measure d�=!m :∫

R
p(t)

d�(t)
!m(t)

=
n∑

�=1

w∗
� p(t∗� ); p ∈ Pd−1; (3.2)

whose nodes t∗� are distinct and contained in the support of d�. De9ne

t� = t∗� ; �� = w∗
� !m(t∗� ); � = 1; 2; : : : ; n: (3.3)

Then ∫
R
g(t) d�(t) =

n∑
�=1

��g(t�) + Rn(g); (3.4)
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where

Rn(g) = 0 for all g ∈ Sd =Qm ⊕ Pd−1−m: (3.5)

Conversely; if (3:4); (3:5) hold for distinct t� ∈ supp(d�); then so does (3:2) with t∗� ; w
∗
� as obtained

from (3:3).

The (rather elementary) proof is given in [16] for d = 2n, but holds equally well for arbitrary d.
The theorem says nothing about the existence or uniqueness of (3.2); it merely states an implica-

tion, namely that (3.2) implies (3.4), (3.5), with t�, �� as de+ned in (3.3), and vice versa. Speci+c
instances of existence and uniqueness will be given later.

4. The remainder term

Assume that d� has compact support and formula (3.2) exists. It then follows by (3.3) and (3.2)
that ∫

R

p(t)
!m(t)

d�(t) =
n∑

�=1

��
p(t�)
!m(t�)

; p ∈ Pd−1: (4.1)

Now de+ne

Ed;m(g) := inf
p∈Pd−1

∥∥∥∥ p
!m

− g
∥∥∥∥
∞

=
∥∥∥∥p∗

!m
− g

∥∥∥∥
∞

(4.2)

to be the best approximation of g by rational functions of the form p=!m in the maximum norm
‖ · ‖∞ on the support of d�. Then by a standard argument in the theory of approximation, using
(4.1), we have (cf. also [45])

|Rn(g)| =

∣∣∣∣∣
∫
R
g(t) d�(t) −

n∑
�=1

��g(t�)

∣∣∣∣∣
=

∣∣∣∣∣
∫
R

[
g(t) − p∗(t)

!m(t)

]
d�(t) −

n∑
�=1

��

[
g(t�) − p∗(t�)

!m(t�)

]∣∣∣∣∣
6Ed;m(g)

{∫
R

d�(t) +
n∑

�=1

|��|
}
;

that is,

|Rn(g)|6Ed;m(g)

{∫
R

d�(t) +
n∑

�=1

|��|
}
: (4.3)

If �� ¿ 0 and formula (3.4) is exact for a constant, i.e., d− 1 − m¿0, then (4.3) simpli+es to

|Rn(g)|62Ed;m(g)
∫
R

d�(t); m6d− 1: (4.4)

The signi+cance of (4.3) is as follows: if g can be well approximated on supp(d�) by a function
p=!m, where p is a polynomial, that is, g!m can be well approximated by a polynomial, then the
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quadrature error Rn(g) is small. By our choice of !m, multiplying g into !m removes the more
important poles of g, and the resulting function !mg, whose (remaining, if any) poles are now
further away from the real axis, can indeed be well approximated by polynomials, certainly better
than the original function g.

5. The rational Fej"er quadrature rule

The classical Fej4er quadrature rule is the interpolatory rule for d�(t) = dt on [ − 1; 1],∫ 1

−1
f(t) dt =

n∑
�=1

��f(t�) + Rn(f); Rn(Pn−1) = 0; (5.1)

where the nodes t� are the Chebyshev points, or, as we call them now, the Fej=er nodes

tF� = cos ��; �� =
2�− 1

2n
�; � = 1; 2; : : : ; n: (5.2)

Fej4er [13] showed that the weights �� in (5.1) can be computed explicitly as

�� =
2
n


1 − 2

�n=2�∑
�=1

cos(2���)
4�2 − 1


 ; � = 1; 2; : : : ; n; (5.3)

and that �� ¿ 0 for all �. Similar results hold for Chebyshev points of the second kind, as was
already shown by Fej4er, and also for Chebyshev points of the third and fourth kind, with or without
one or both of the endpoints ±1 included, as was shown more recently in [43,44]. We consider here
only Chebyshev nodes of the +rst kind, (5.2), and want to make the quadrature rule (5.1) exact on
Sn =Qm⊕Pn−1−m (i.e., d=n in (2.3)). According to our theorem (cf. (3.2), where we write t∗� = tF� ,
w∗

� = wF
� and let d = n), we need to determine wF

� such that
n∑

�=1

wF
� Tk(tF� ) =

∫ 1

−1

Tk(t)
!m(t)

dt; k = 0; 1; : : : ; n− 1; (5.4)

where Tk is the Chebyshev polynomial of degree k. Letting

�k =
∫ 1

−1

Tk(t)
!m(t)

dt; k = 0; 1; 2; : : : (5.5)

and making use of the “orthogonality” relation
n−1∑
k=0

′Tk(tF� )Tk(tF�) =
n
2
���; (5.6)

which is a consequence of the ChristoJel–Darboux formula for Chebyshev polynomials (the prime
on the summation sign means that the +rst term has to be multiplied by 1

2), we +nd from (5.4)
immediately that [51]

wF
� =

2
n

n−1∑
k=0

′�kTk(tF� ); � = 1; 2; : : : ; n: (5.7)
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It is easily seen that (5.7) reduces to (5.3) when m = 0. The computational challenge lies in the
computation of the quantities �k in (5.5); for these, Weideman and Laurie [51] developed recursive
algorithms that allow their stable and eQcient computation.

Similar techniques have been employed earlier by Monegato [41], who uses as nodes the zeros of
orthogonal polynomials, and have been applied in [42] to Fredholm integral equations with rational
kernels. Hasegawa and Torii [27] and Hasegawa [26], instead, use Clenshaw–Curtis nodes. Schneider
[46] constructs quadrature rules by integrating rational Hermite interpolants.

6. The rational Gauss quadrature rule

Here, d=2n in (3.2), and the space of rational=polynomial gauge functions is S2n=Qm⊕P2n−1−m,
where 06m62n. The existence of the rational Gauss formula which is exact on S2n now hinges
on the existence of the (polynomial) Gauss formula∫

R
p(t)

d�(t)
!m(t)

=
n∑

�=1

wG
� p(tG� ); p ∈ P2n−1 (6.1)

(cf. (3.2), with t∗� = tG� ; w
∗
� =wG

� and d= 2n). Since the � in (2.4) may well be complex, hence !m

a complex-valued polynomial, the existence of (6.1) is by no means guaranteed. There are, however,
a number of special cases, of interest in applications, in which the existence and uniqueness of the
Gauss formula (6.1) is assured. Some of these are as follows:

(i) Simple real poles: Here all s� = 1, hence M = m, and we write

� = �� ∈ R; �� �= 0; � = 1; 2; : : : ; m; (6.2)

where �� are distinct real numbers. The corresponding polynomial !m becomes

!m(t) =
m∏

�=1

(1 + ��t); (6.3)

which by the assumption 1 + ��t �= 0 on supp(d�) (cf. (2.5)) has constant sign on the support of
d� if the support is connected. Furthermore, if d� has +nite moments, as we assumed, then so does
d�=!m. Hence, the Gauss formula (6.1) exists for each n and m and is unique. According to (3.3),
the nodes and weights of the rational Gauss formula (2.1) are given by

t� = tG� ; �� = wG
� !m(tG� ); � = 1; 2; : : : ; n: (6.4)

Since all wG
� have the same sign, namely the sign of !m on supp(d�), it follows that all �� are

positive.
(ii) Simple conjugate complex poles: It is natural, in this case, to take m even, and thus

� = �� + i��; �+1 = �� − i�� (� = 1 + 	�=2
); � (odd) = 1; 3; : : : ; m− 1: (6.5)

Here, the polynomial

!m(t) =
m=2∏
�=1

[(1 + ��t)2 + �2
� t

2] (6.6)

is strictly positive on all of R, and the Gauss formula (6.1) again exists and is unique for each n
and m.
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(iii) Simple conjugate complex poles plus a real pole: This is the case where in addition to pairs
of conjugate complex poles there is one simple real pole, i.e., m is odd and

� = �� + i��; �+1 = �� − i�� (� = 1 + 	�=2
); m = �m ∈ R; � (odd) = 1; 3; : : : ; m− 2:

(6.7)

The polynomial !m is now

!m(t) = (1 + �mt)
(m−1)=2∏

�=1

[(1 + ��t)2 + �2
� t

2] (6.8)

and is of constant sign on the support of d�. Here again, formula (6.1) exists uniquely for all n and
m, and is positive.

Some, or all, of the above poles could have multiplicity 2 or higher.
For rational Gauss and Gauss–Lobatto formulae on [− 1; 1], with d�(t) = (1− t2)−1=2 dt, and with

poles distributed as in (i) and (ii), see also [39,40].

7. Spectral characterization of the Gauss formula (6.1)

We assume that d�̂ = d�=!m is a positive measure. The connection between Gaussian quadrature
and orthogonal polynomials is well known. The polynomials we need are those orthogonal with
respect to d�̂; we assume them to be monic and denote them by �̂k(·) = �k(·; d�̂); k = 0; 1; 2; : : :.
They satisfy a three-term recurrence relation

�̂k+1(t) = (t − �̂k)�̂k(t) − �̂k �̂k−1(t); k = 0; 1; 2; : : : ;

�̂−1(t) = 0; �̂0(t) = 1; (7.1)

where �̂k ∈ R and �̂k ¿ 0. Associated with the recurrence relation is the Jacobi matrix

Ĵ = J (d�̂) =




�̂0

√
�̂1√

�̂1 �̂1

√
�̂2√

�̂2 �̂2

√
�̂3

. . . . . . . . .



; (7.2)

an in+nite symmetric tridiagonal matrix. Although �̂0 is arbitrary (it multiplies �̂−1 = 0 in (7.1)), it
is customary to de+ne it as

�̂0 =
∫
R

d�̂(t): (7.3)

If we are interested in the n-point quadrature rule (6.1), we need only the +rst n + 1 orthogonal
polynomials �̂0; �̂1; : : : ; �̂n, hence the truncated Jacobi matrix Ĵ n — the n× n leading principal minor
matrix of (7.2). The quadrature rule can then be characterized in terms of the eigenvalues and
eigenvectors of Ĵ n [23]. Indeed, the Gauss nodes tG� are the eigenvalues of Ĵ n, and the Gauss weights
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wG
� expressible in terms of the +rst components v�;1 of the corresponding normalized eigenvectors

v�; more precisely,

Ĵ nv� = tG� v�; vT
� v� = 1;

wG
� = �̂0v

2
�;1: (7.4)

To compute the Gauss formula, it suQces therefore to solve an eigenvalue=eigenvector problem for
a real symmetric tridiagonal matrix. This, nowadays, is a routine problem, and there are fast and
accurate methods available for its solution, including appropriate software (cf., e.g., [18, Section 6]).
The major challenge is the computation of the recursion coeQcients �̂k ; �̂k , since d�̂= d�=!m is not
a standard classical measure. For these, one can use a simple discretization procedure and special
techniques for “diQcult” poles, i.e., poles very close to the support interval of the measure d�.
These latter techniques are somewhat technical and will not be described here in detail. Basically,
one +rst applies the discretization procedure to the “reduced” measure d�̃= d�=!̃m, where !̃m is the
polynomial !m with the diQcult poles removed, and then incorporates the diQcult poles by special
techniques; see [19]. The discretization procedure is described in the next section.

8. The discretization procedure

If the inner product underlying the measure d�̂ is denoted by

(u; v) =
∫
R
u(t)v(t) d�̂(t); d�̂(t) =

d�(t)
!m(t)

; (8.1)

then, as is well known, the desired coeQcients can be expressed in terms of this inner product and
the orthogonal polynomials �̂k(·) = �k(·; d�̂) as

�̂k =
(t�̂k ; �̂k)
(�̂k ; �̂k)

; 06k6n− 1;

�̂0 = (�̂0; �̂0); �̂k =
(�̂k ; �̂k)

(�̂k−1; �̂k−1)
; k = 1; 2; : : : n− 1: (8.2)

This suggests, as already noted by Stieltjes, a simple “bootstrapping” procedure, which is now known
as Stieltjes procedure: Since �̂0 = 1 is known, one computes �̂0; �̂0 by (8.2) for k = 0. With �̂0; �̂0

at hand, the recurrence relation (7.1), with k = 0, yields �̂1. This allows us to apply (8.2) with
k = 1 to get �̂1; �̂1, which by (7.1) for k = 1 yields �̂2, and so forth. The major diQculty with this
procedure is the computation of the inner products in (8.2); this requires integration with respect to
the measure d�̂, which is not straightforward.

However, already in 1968, and later in 1994, we proposed a simple modi+cation of Stieltjes’s
procedure [14,18], which consists in applying it to a discrete inner product

(u; v)N =
N∑

k=1

!(N )
k u(t(N )

k )v(t(N )
k ); N ¿n; (8.3)
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which approximates (u; v) in such a way that

lim
N→∞

(u; v)N = (u; v) for all u; v ∈ P: (8.4)

Here, P is the space of polynomials. If �̂k;N denote the discrete orthogonal polynomials associated
with the inner product (8.3), and �̂k;N ; �̂k;N the respective recursion coeQcients, it can be shown
[14, Section 4] that for any +xed k,

lim
N→∞

�̂k;N = �̂k ; lim
N→∞

�̂k;N = �̂k : (8.5)

There is no diQculty in computing the �̂k;N ; �̂k;N by a procedure analogous to Stieltjes’s procedure
— now known as the discrete Stieltjes procedure — since all inner products required are +nite
sums.

A natural way of obtaining a discretization (8.3) is by applying the Gaussian quadrature rule for
the measure d� to (8.1), i.e., by taking

t(N )
k = t(N )

k (d�); !(N )
k =

w(N )
k (d�)

!m(t(N )
k )

; k = 1; 2; : : : ; N; (8.6)

where t(N )
k (d�) and w(N )

k (d�) are the nodes and weights of the N -point Gaussian quadrature rule
for d�. Since d� is usually one of the classical measures, these quantities are easily computed; for
related software, see, e.g., [18, Section 2]. Also, the procedure converges relatively fast as N → ∞,
unless there are poles very close to the support interval of d�. It is for this reason that special
techniques are required for incorporating these “diQcult” poles.

9. Examples

We present four examples for the application of rational Gauss formulae, illustrating the three
con+gurations (i)–(iii) of poles described in Section 6 and a case of a single pole with high
multiplicity. The numerical results shown were obtained with the help of software described in [19].

Example 1.

I(!) =
∫ 1

0

t−1=2#(1 + t)
t + !

dt; !¿ 0:

Here, the appropriate measure is d�(t) = t−1=2 dt, a Jacobi measure on [0; 1] with parameters � = 0;
� = − 1

2 . The poles of the integrand are all real; those of the gamma function are located at
−1;−2;−3; : : : and the remaining pole is at −!. This suggests the choices

�� =
1
�
; � = 1; 2; : : : ; m− 1; �m =

1
!

(9.1)

in (6.2) and thus the polynomial !m in (6.3). (Note that ��=�m if ! is an integer � with 16�6m−1.
In this case, 1=!m has a pole of multiplicity 2 at −1=��.) The rational n-point Gauss formula applied
to I(!) then becomes

I(!) ≈ In(!) =
n∑

�=1

��
#(1 + t�)
t� + !

: (9.2)
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Table 1
Numerical results for Example 1

n \ m 2n n 1 0

2 0.995E−03 0.331E−03 0.104E−02 0.143E−01
4 0.258E−06 0.372E−07 0.877E−06 0.819E−04
6 0.153E−10 0.120E−11 0.769E−09 0.431E−06
8 0.377E−13 0.398E−13 0.571E−12 0.223E−08

13 0.419E−13

The discretization method for computing the recursion coeQcients �̂k ; �̂k , and hence the nodes t�
and weights �� (in terms of the eigenvalues and eigenvectors of the Jacobi matrix Ĵ n) works rather
well if ! is not exceptionally small. For ! = 1

2 , for example, it yields essentially machine accuracy
(in IEEE standard double precision) with N = 45 in (8.6) when n610. Some numerical results in
this case are shown in Table 1, which lists the relative errors |[I(!) − In(!)]=I(!)| for the choices
m= 2n; n; 1, and 0. The last choice corresponds to applying the ordinary Gauss rule for the measure
d�. Curiously, the results for m= n are slightly more accurate than those for m= 2n, a phenomenon
also observed in the subsequent examples.

For ! = 0:001, the discretization method must work hard to get comparable accuracy; typically,
N = 350 in this case.

Example 2. Generalized Fermi–Dirac integral

Fk(�; �) =
∫ ∞

0

tk
√

1 + 1
2�t

e−�+t + 1
dt; � ∈ R; �¿0: (9.3)

Integrals of this type are of interest in solid-state physics, where the parameter k assumes half-integer
values k = 1

2 ;
3
2 ;

5
2 , and � is a small parameter; cf. [17] and the literature cited therein.

To prepare the integral (9.3) for the application of our method, we write it in the form

Fk(�; �) =
∫ ∞

0

√
1 + 1

2�t

e−� + e−t
tke−t dt; (9.4)

suggesting the integration measure d�(t) = tke−t dt on [0;∞] — a generalized Laguerre measure.
The integrand in (9.4) has poles at t = � ± �i�, � (odd) = 1; 3; 5; : : :. The pairs of poles closest to
the interval [0;∞] are captured by taking m even and

� = − 1
� + �i� ; �+1 = − 1

�− �i� ; � (odd) = 1; 3; : : : ; m− 1: (9.5)

The discretization method works well for all � and for � not too large. Numerical results analogous
to those in Table 1, for k = 1

2 , � = −1, � = 10−4, are shown in Table 2.

For larger values of �, one should include the square root
√

1 + 1
2�t in the measure d� and proceed

as before.
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Table 2
Numerical results for Example 2

n \ m 2n n 2 0

2 0.134E−02 0.414E−03 0.414E−03 0.377E−02
4 0.487E−06 0.861E−07 0.935E−06 0.241E−03
6 0.127E−09 0.374E−12 0.118E−07 0.262E−05
8 0.220E−13 0.111E−13 0.423E−09 0.250E−05

10 0.726E−14 0.669E−14 0.221E−10 0.158E−06
15 0.304E−13 0.407E−08
20 0.707E−14 0.205E−09
40 0.745E−14

Example 3. Generalized Bose–Einstein integral

Gk(�; �) =
∫ ∞

0

tk
√

1 + 1
2�t

e−�+t − 1
dt; �¡ 0; �¿0: (9.6)

This is conveniently rewritten as

Gk(�; �) =
∫ ∞

0

t
√

1 + 1
2�t

e−� − e−t
tk−1e−t dt; (9.7)

where a factor t was split oJ in order for the integrand to remain regular as t → 0, even if � were
zero. The measure of integration therefore is d�(t)= tk−1e−t dt on [0;∞]. The poles of the integrand
are at t = � + 2�i�, � = 0;±1;±2; : : : ; which include a real pole at �. We thus take m odd and let

� = − 1
� + (� + 1)i� ; �+1 = − 1

�− (� + 1)i� ; � (odd) = 1; 3; : : : ; m− 2; (9.8)

m = −1
�
:

Again, as in the preceding example, the discretization works well for |�| not too small and � not
too large. Numerical results for k = 1

2 , � = −1, � = 10−4 are shown in Table 3.
It can be seen that the rational methods here perform signi+cantly better than the polynomial

method (for m = 0) as far as accuracy is concerned.

Example 4. A radiation transfer integral 1

Gm(c) = 2
∫ 1

0
Pm(x)[sin(2�x)]2e−c=x dx; c¿ 0: (9.9)

Here, Pm is the Legendre polynomial of degree m, and interest rests in large values of m.

1 This example was kindly communicated to the author by Dr. Martin Gander.
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Table 3
Numerical results for Example 3

n \ m 2n− 1 n− 1 1 0

2 0.783E−02 0.362E−02 0.362E−02 0.357E−01
4 0.317E−05 0.831E−06 0.262E−04 0.398E−02
6 0.859E−09 0.122E−10 0.720E−06 0.700E−03
8 0.197E−12 0.482E−13 0.202E−07 0.160E−03

10 0.132E−14 0.585E−15 0.115E−08 0.430E−04
15 0.837E−11 0.261E−05
20 0.924E−13 0.243E−06
40 0.154E−09
80 0.219E−14

Although the following is not necessarily the best way to proceed, it nicely illustrates the case of
a pole of high multiplicity. The change of variables

x =
1

1 + t=c
; 06t6∞

yields

Gm(c) =
2e−c

(2�)2c

∫ ∞

0
Pm

(
1

1 + t=c

)[
2�

1 + t=c
sin

2�
1 + t=c

]2

e−t dt:

We choose to use n-point rational Gauss quadrature with

n¿1 + 	m=2
;

d�(t) =
[

2�
1 + t=c

sin
2�

1 + t=c

]2

e−t dt on [0;∞]

and

Qm = span{g: g(t) = (1 + t=c)−s; s = 1; 2; : : : ; m}:
Since, by the choice of n, we have

S2n =Qm ⊕ P2n−1−m ⊃Qm ⊕ P0

and clearly Pm(1=(1 + t=c)) ∈ Qm ⊕ P0, the rational Gauss formula so constructed should give
the exact answer for Gm(c) except for rounding errors. The latter, unfortunately, are somewhat
bothersome because of the highly oscillatory behavior of the integrand f(t) = Pm(1=(1 + t=c)) when
m is large. For example, if m = 50 and c = 2, we +nd (in IEEE double precision)

G50(2) =
{
0.29351229600590E − 07 if n = 26;
0.29351229563622E − 07 if n = 27:

Theoretically, the results should be identical, but cancellation errors in the evaluation of the quadra-
ture sum wipe out about 5 of the 14 decimal digits.
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10. Other types of integrals

Similar techniques apply, with similar success, to other types of integrals (cf. [21]).

10.1. Rational Gauss–Kronrod quadrature

The theorem of Section 3 holds also for Gauss–Kronrod quadrature, where the polynomial formula
(3.2) is now∫

R
p(t)

d�(t)
!m(t)

=
n∑

�=1

wK
� p(tG� ) +

n+1∑
�=1

w∗K
� p(tK� ); p ∈ P3n+1: (10.1)

Here, tG� are the nodes of the n-point Gauss formula for the measure d�=!m, and wK
� , w∗K

� , tK� are
determined so as to have maximum polynomial degree of exactness 3n + 1. Assuming that this
formula exists with distinct “Kronrod” nodes tK� on the support of d�, all diJerent from the Gauss
nodes tG� , the corresponding rational Gauss–Kronrod formula is given by∫

R
g(t) d�(t) =

n∑
�=1

�K
� g(*G

� ) +
n+1∑
�=1

�∗K
� g(*K

� ) + RK
n (g); (10.2)

where

RK
n (g) = 0 for g ∈ S3n+2 =Qm ⊕ P3n+1−m; 06m63n + 2; (10.3)

provided that

*G
� = tG� ; *K

� = tK� ; �K
� = wK

� !m(tG� ); �∗K
� = w∗K

� !m(tK� ): (10.4)

We recall (see, e.g., [15]) that tG� in (10.1) are the zeros of �̂n( · ) = �n(·; d�=!m), and tK� the zeros
of �∗n+1( · )=�n+1(·; �̂n d�=!m). Constructive procedures for computing Gauss–Kronrod formulae that,
like the Golub–Welsch procedure, are based on eigenvalues and eigenvectors of a Jacobi-like matrix
of order 2n + 1, have recently been developed by Laurie [32], Ammar et al. [1], and Calvetti et al.
[12]; see also [20]. Rational Gauss–Kronrod rules are also considered in [2, Section 4:2], where an
asymptotic error estimate is given for analytic functions.

10.2. Rational Gauss–Tur=an quadrature

These are Gauss-type formulae in which not only function values, but also derivative values up
to some even order, occur in the quadrature sum. The polynomial formula (analogous to (3.2)) has
the form∫

R
p(t)

d�(t)
!m(t)

=
n∑

�=1

2s∑
+=0

w(+)T
� p(+)(tT� ); p ∈ P2(s+1)n−1; (10.5)

whereas the rational counterpart is∫
R
g(t) d�(t) =

n∑
�=1

2s∑
+=0

�(+)
� g(+)(*�) + RT

n (g) (10.6)
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with the exactness property

RT
n (g) = 0 for g ∈ S2(s+1)n =Qm ⊕ P2(s+1)n−m−1; 06m62(s + 1)n; (10.7)

provided that

*� = tT� ; � = 1; 2; : : : ; n;

�(+)
� =

2s∑
,=+

w(,)T
�

(
,
+

)
!(,−+)

m (tT� ); � = 1; 2; : : : ; n; + = 0; 1; : : : ; 2s: (10.8)

We recall that tT� in (10.5) are the zeros of the nth-degree s-orthogonal polynomial �n; s for the
measure d�=!m, i.e., the polynomial of degree n which satis+es the power orthogonality relation∫

R
[�n; s(t)]2s+1p(t)

d�(t)
!m(t)

= 0 for all p ∈ Pn−1: (10.9)

Constructive procedures for generating Gauss–Tur4an formulae (10.5) are discussed in [22].

10.3. Rational Cauchy principal value quadrature

Here the object is to construct a quadrature rule of the form∫
R

g(t)
t − x

d�(t) =
n∑

�=1

��
*� − x

g(*�) + �0(x)g(x) + RC
n (g); (10.10)

where

�0(x) =
∫
R

d�(t)
t − x

−
n∑

�=1

��
*� − x

(10.11)

and where we require the exactness condition

RC
n (g) = 0 for all g ∈ S2n+1 =Qm ⊕ P2n−m; 06m62n: (10.12)

Note that x is assumed to be inside the support of d�, so that the integrals in (10.10) and (10.11)
are Cauchy principal value integrals.

It turns out that the exactness property (10.12) can be achieved for the formula (10.10) if we
choose

*� = tG� ; �� = wG
� !m(tG� ); � = 1; 2; : : : ; n; (10.13)

where tG� and wG
� are the Gauss nodes and weights for the measure d�=!m,∫

R
p(t)

d�(t)
!m(t)

=
n∑

�=1

wG
� p(tG� ); p ∈ P2n−1; (10.14)

provided that none of the tG� equals x. Formula (10.14) can be constructed as described in Sections
7 and 8.
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