# The chromatic number of the convex segment disjointness graph* 

Dedicat al nostre amic i mestre Ferran Hurtado

Ruy Fabila-Monroy ${ }^{\dagger} \quad$ David R. Wood ${ }^{\ddagger}$

May 26, 2011


#### Abstract

Let $P$ be a set of $n$ points in general and convex position in the plane. Let $D_{n}$ be the graph whose vertex set is the set of all line segments with endpoints in $P$, where disjoint segments are adjacent. The chromatic number of this graph was first studied by Araujo et al. [CGTA, 2005]. The previous best bounds are $\frac{3 n}{4} \leq \chi\left(D_{n}\right)<n-\sqrt{\frac{n}{2}}$ (ignoring lower order terms). In this paper we improve the lower bound to $\chi\left(D_{n}\right) \geq n-\sqrt{2 n}$, to conclude a near-tight bound on $\chi\left(D_{n}\right)$.


## 1 Introduction

Throughout this paper, $P$ is a set of $n>3$ points in general and convex position in the plane. The convex segment disjointness graph, denoted by $D_{n}$, is the graph whose vertex set is the set of all line segments with endpoints in $P$, where two vertices are adjacent if the corresponding segments are disjoint. Obviously $D_{n}$ does not depend on the choice of $P$. This graph and other related graphs, were introduced by Araujo, Dumitrescu, Hurtado, Noy and Urrutia [1, who proved the following bounds on the chromatic number of $D_{n}$ :

$$
2\left\lfloor\frac{1}{3}(n+1)\right\rfloor-1 \leq \chi\left(D_{n}\right)<n-\frac{1}{2}\lfloor\log n\rfloor .
$$

Both bounds were improved by Dujmović and Wood [5] to

$$
\frac{3}{4}(n-2) \leq \chi\left(D_{n}\right)<n-\sqrt{\frac{1}{2} n}-\frac{1}{2}(\ln n)+4
$$

[^0]In this paper we improve the lower bound to conclude near-tight bounds on $\chi\left(D_{n}\right)$.

Theorem 1.

$$
n-\sqrt{2 n+\frac{1}{4}}+\frac{1}{2} \leq \chi\left(D_{n}\right)<n-\sqrt{\frac{1}{2} n}-\frac{1}{2}(\ln n)+4 .
$$

The proof of Theorem 1 is based on the observation that eah colour class in a colouring of $D_{n}$ is a convex thrackle. We then prove that two maximal convex thrackles must share an edge in common. From this we prove a tight upper bound on the number of edges in the union of $k$ maximal convex thrackles. Theorem 1 quickly follows.

## 2 Convex thrackles

A convex thrackle on $P$ is a geometric graph with vertex set $P$ such that every pair of edges intersect; that is, they have a common endpoint or they cross. Observe that a geometric graph $H$ on $P$ is a convex thrackle if and only if $E(H)$ forms an independent set in $D_{n}$. A convex thrackle is maximal if it is edge-maximal. As illustrated in Figure 1(a), it is well known and easily proved that every maximal convex thrackle $T$ consists of an odd cycle $C(T)$ together with some degree 1 vertices adjacent to vertices of $C(T)$; see [2, 3, 4, 5, 6, 7, 8, ,9, In particular, $T$ has $n$ edges. For each vertex $v$ in $C(T)$, let $W_{T}(v)$ be the convex wedge with apex $v$, such that the boundary rays of $W_{T}(v)$ contain the neighbours of $v$ in $C(T)$. Every degree- 1 vertex $u$ of $T$ lies in a unique wedge and the apex of this wedge is the only neighbour of $u$ in $T$.


Figure 1: (a) maximal convex thrackle, (b) the intervals pairs $\left(I_{u}, J_{u}\right)$

## 3 Convex thrackles and free $\mathbb{Z}_{2}$-actions of $S^{1}$

A $\mathbb{Z}_{2}$-action on the unit circle $S^{1}$ is a homeomorphism $f: S^{1} \rightarrow S^{1}$ such that $f(f(x))=x$ for all $x \in S^{1}$. We say that $f$ is free if $f(x) \neq x$ for all $x \in S^{1}$.

Lemma 1. If $f$ and $g$ are free $\mathbb{Z}_{2}$-actions of $S^{1}$, then $f(x)=g(x)$ for some point $x \in S^{1}$.

Proof. For points $x, y \in S^{1}$, let $\overrightarrow{x y}$ be the clockwise arc from $x$ to $y$ in $S^{1}$. Let $x_{0} \in S^{1}$. If $f\left(x_{0}\right)=g\left(x_{0}\right)$ then we are done. Now assume that $f\left(x_{0}\right) \neq g\left(x_{0}\right)$. Without loss of generality, $x_{0}, g\left(x_{0}\right), f\left(x_{0}\right)$ appear in this clockwise order around $S^{1}$. Paramaterise $\overrightarrow{x_{0} g\left(x_{0}\right)}$ with a continuous injective function $p:[0,1] \rightarrow$ $\overrightarrow{x_{0} g\left(x_{0}\right)}$, such that $p(0)=x_{0}$ and $p(1)=g\left(x_{0}\right)$. Assume that $g(p(t)) \neq f(p(t))$ for all $t \in[0,1]$, otherwise we are done. Since $g$ is free, $p(t) \neq g(p(t))$ for all $t \in[0,1]$. Thus $g(p([0,1]))=\overrightarrow{g(p(0)) g(p(1))}=\overrightarrow{g\left(x_{0}\right) x_{0}}$. Also $f(p([0,1]))=$ $\overrightarrow{f\left(x_{0}\right) f(p(1))}$, as otherwise $g(p(t))=f(p(t))$ for some $t \in[0,1]$. This implies that $p(t), g(p(t)), f(p(t))$ appear in this clockwise order around $S^{1}$. In particular, with $t=1$, we have $f(p(1)) \in \overrightarrow{x_{0} g\left(x_{0}\right)}$. Thus $x_{0} \in \overrightarrow{f\left(x_{0}\right) f(p(1))}$. Hence $x_{0}=f(p(t))$ for some $t \in[0,1]$. Since $f$ is a $\mathbb{Z}_{2}$-action, $f\left(x_{0}\right)=p(t)$. This is a contradiction since $p(t) \in \overrightarrow{x_{0} g\left(x_{0}\right)}$ but $f\left(x_{0}\right) \notin \overrightarrow{x_{0} g\left(x_{0}\right)}$.

Assume that $P$ lies on $S^{1}$. Let $T$ be a maximal convex thrackle on $P$. As illustrated in Figure 1(b), for each vertex $u$ in $C(T)$, let $\left(I_{u}, J_{u}\right)$ be a pair of closed intervals of $S^{1}$ defined as follows. Interval $I_{u}$ contains $u$ and bounded by the points of $S^{1}$ that are $1 / 3$ of the way towards the first points of $P$ in the clockwise and anticlockwise direction from $u$. Let $v$ and $w$ be the neighbours of $u$ in $C(T)$, so that $v$ is before $w$ in the clockwise direction from $u$. Let $p$ be the endpoint of $I_{v}$ in the clockwise direction from $v$. Let $q$ be the endpoint of $I_{w}$ in the anticlockwise direction from $w$. Then $J_{u}$ is the interval bounded by $p$ and $q$ and not containing $u$. Define $f_{T}: S^{1} \longrightarrow S^{1}$ as follows. For each $v \in C(T)$, map the anticlockwise endpoint of $I_{v}$ to the anticlockwise endpoint of $J_{v}$, map the clockwise endpoint of $I_{v}$ to the clockwise endpoint of $J_{v}$, and extend $f_{T}$ linearly for the interior points of $I_{v}$ and $J_{v}$, such that $f_{T}\left(I_{v}\right)=J_{v}$ and $f_{T}\left(J_{v}\right)=I_{v}$. Since the intervals $I_{v}$ and $J_{v}$ are disjoint, $f_{T}$ is a free $\mathbb{Z}_{2}$-action of $S^{1}$.

Lemma 2. Let $T_{1}$ and $T_{2}$ be maximal convex thrackles on $P$, such that $C\left(T_{1}\right) \cap$ $C\left(T_{2}\right)=\emptyset$. Then there is an edge in $T_{1} \cap T_{2}$, with one endpoint in $C\left(T_{1}\right)$ and one endpoint in $C\left(T_{2}\right)$.

Topological proof. By Lemma 1, there exists $x \in S^{1}$ such that $f_{T_{1}}(x)=y=$ $f_{T_{2}}(x)$. Let $u \in C\left(T_{1}\right)$ and $v \in C\left(T_{2}\right)$ so that $x \in I_{u} \cup J_{u}$ and $x \in I_{v} \cup J_{v}$, where $\left(I_{u}, J_{u}\right)$ and $\left(I_{v}, J_{v}\right)$ are defined with respect to $T_{1}$ and $T_{2}$ respectively. Since $C\left(T_{1}\right) \cap C\left(T_{2}\right)=\emptyset$, we have $u \neq v$ and $I_{u} \cap I_{v}=\emptyset$. Thus $x \notin I_{u} \cap I_{v}$. If $x \in J_{u} \cap J_{v}$ then $y \in I_{u} \cap I_{v}$, implying $u=v$. Thus $x \notin J_{u} \cap J_{v}$. Hence $x \in\left(I_{u} \cap J_{v}\right) \cup\left(J_{u} \cap I_{v}\right)$. Without loss of generality, $x \in I_{u} \cap J_{v}$. Thus $y \in J_{u} \cap I_{v}$. If $I_{u} \cap J_{v}=\{x\}$ then $x$ is an endpoint of both $I_{u}$ and $J_{v}$, implying $u \in C\left(T_{2}\right)$,
which is a contradiction. Thus $I_{u} \cap J_{v}$ contains points other than $x$. It follows that $I_{u} \subset J_{v}$ and $I_{v} \subset J_{u}$. Therefore the edge $u v$ is in both $T_{1}$ and $T_{2}$. Moreover one endpoint of $u v$ is in $C\left(T_{1}\right)$ and one endpoint is in $C\left(T_{2}\right)$.

Combinatorial Proof. Let $H$ be the directed multigraph with vertex set $C\left(T_{1}\right) \cup$ $C\left(T_{2}\right)$, where there is a blue arc $u v$ in $H$ if $u$ is in $W_{T_{1}}(v)$ and there is a red arc $u v$ in $H$ if $u$ is in $W_{T_{2}}(v)$. Since $C\left(T_{1}\right) \cap C\left(T_{2}\right)=\emptyset$, every vertex of $H$ has outdegree 1. Therefore $|E(H)|=|V(H)|$ and there is a cycle $\Gamma$ in the undirected multigraph underlying $H$. In fact, since every vertex has outdegree $1, \Gamma$ is a directed cycle. By construction, vertices in $H$ are not incident to an incoming and an outgoing edge of the same color. Thus $\Gamma$ alternates between blue and red arcs. The red edges of $\Gamma$ form a matching as well as the blue edges, both of which are thrackles. However, there is only one matching thrackle on a set of points in convex position. Therefore $\Gamma$ is a 2 -cycle and the result follows.

## 4 Main Results

Theorem 2. For every set $P$ of $n$ points in convex and general position, the union of $k$ maximal convex thrackles on $P$ has at most $k n-\binom{k}{2}$ edges.
Proof. For a set $\mathcal{T}$ of $k$ maximal convex thrackles on $P$, define

$$
r(\mathcal{T}):=\mid\left\{\left(v, T_{i}, T_{j}\right): v \in C\left(T_{i}\right) \cap C\left(T_{j}\right), T_{i}, T_{j} \in \mathcal{T} \text { and } T_{i} \neq T_{j}\right\} \mid
$$

The proof proceeds by induction on $r(\mathcal{T})$.
Suppose that $r(\mathcal{T})=0$. Thus $C\left(T_{i}\right) \cap C\left(T_{j}\right)=\emptyset$ for all distinct $T_{i}, T_{j} \in \mathcal{T}$. By Lemma 2, $T_{i}$ and $T_{j}$ have an edge in common, with one endpoint in $C\left(T_{i}\right)$ and one endpoint in $C\left(T_{j}\right)$. Hence distinct pairs of thrackles have distinct edges in common. Since every maximal convex thrackle has $n$ edges and we overcount at least one edge for every pair, the total number of edges is at most $k n-\binom{k}{2}$.

Now assume that $r(\mathcal{T})>0$. Thus there is a vertex $v$ and a pair of thrackles $T_{i}$ and $T_{j}$, such that $v \in C\left(T_{i}\right) \cap C\left(T_{j}\right)$. As illustrated in Figure 2, replace $v$ by two consecutive vertices $v^{\prime}$ and $v^{\prime \prime}$ on $P$, where $v^{\prime}$ replaces $v$ in every thrackle except $T_{j}$, and $v^{\prime \prime}$ replaces $v$ in $T_{j}$. Add one edge to each thrackle so that it is maximal. Let $\mathcal{T}^{\prime}$ be the resulting set of thrackles. Observe that $r\left(\mathcal{T}^{\prime}\right)=r(\mathcal{T})-1$, and the number of edges in $\mathcal{T}^{\prime}$ equals the number of edges in $\mathcal{T}$ plus $k$. By induction, $\mathcal{T}^{\prime}$ has at most $k(n+1)-\binom{k}{2}$ edges, implying $\mathcal{T}$ has at most $k n-\binom{k}{2}$ edges.

We now show that Theorem 2 is best possible for all $n \geq 2 k$. Let $S$ be a set of $k$ vertices in $P$ with no two consecutive vertices in $S$. If $v \in S$ and $x, v, y$ are consecutive in this order in $P$, then $\left.T_{v}:=\{v w: w \in P \backslash\{v\})\right\} \cup\{x y\}$ is a maximal convex thrackle, and $\left\{T_{v}: v \in S\right\}$ has exactly $k n-\binom{k}{2}$ edges in total.
Proof of Theorem 1. If $\chi\left(D_{n}\right)=k$ then, there are $k$ convex thrackles whose union is the complete geometric graph on $P$. Possibly add edges to obtain $k$ maximal convex thrackles with $\binom{n}{2}$ edges in total. By Theorem $2\binom{n}{2} \leq k n-\binom{k}{2}$. The quadratic formula implies the result.


Figure 2: Construction in the proof of Theorem 2

## References

[1] Gabriela Araujo, Adrian Dumitrescu, Ferran Hurtado, Marc Noy, and Jorge Urrutia. On the chromatic number of some geometric type Kneser graphs. Comput. Geom. Theory Appl., 32(1):59-69, 2005.
[2] Grant Cairns and Yury Nikolayevsky. Bounds for generalized thrackles. Discrete Comput. Geom., 23(2):191-206, 2000.
[3] Grant Cairns and Yury Nikolayevsky. Generalized thrackle drawings of nonbipartite graphs. Discrete Comput. Geom., 41(1):119-134, 2009.
[4] Grant Cairns and Yury Nikolayevsky. Outerplanar thrackles. Graphs and Combinatorics, to appear.
[5] Vida Dujmović and David R. Wood. Thickness and antithickness. 2010, in preparation.
[6] W. Fenchel and J. Sutherland. Lösung der aufgabe 167. Jahresbericht der Deutschen Mathematiker-Vereinigung, 45:33-35, 1935.
[7] H. Hopf and E. Pammwitz. Aufgabe no. 167. Jahresbericht der Deutschen Mathematiker-Vereinigung, 43, 1934.
[8] László Lovász, János Pach, and Mario Szegedy. On Conway's thrackle conjecture. Discrete Comput. Geom., 18(4):369-376, 1997.
[9] Douglas R. Woodall. Thrackles and deadlock. In Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969), pages 335-347. Academic Press, London, 1971.


[^0]:    *Presented at the XIV Spanish Meeting on Computational Geometry Alcalá de Henares, Spain, June 27-30, 2011
    ${ }^{\dagger}$ Departamento de Matemáticas, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, México, D.F., México (ruyfabila@math.cinvestav.edu.mx). Supported by an Endeavour Fellowship from the Department of Education, Employment and Workplace Relations of the Australian Government.
    ${ }^{\ddagger}$ Department of Mathematics and Statistics, The Univesity of Melbourne, Melbourne, Australia (woodd@unimelb.edu. au). Supported by a QEII Fellowship from the Australian Research Council.

