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Abstract. The Maximum entropy (ME) approach has been extensively used for various natural 
language processing tasks, such as language modeling, part-of-speech tagging, text segmentation and 
text classification. Previous work in text classification has been done using maximum entropy modeling 
with binary-valued features or counts of feature words. In this work, we present a method to apply 
Maximum Entropy modeling for text classification in a different way it has been used so far, using 
weights for both to select the features of the model and to emphasize the importance of each one of 
them in the classification task. Using the X square test to assess the contribution of each candidate 
feature from the obtained X square values we rank the features and the most prevalent of them, those 
which are ranked with the higher X square scores, they are used as the selected features of the model. 
Instead of using Maximum Entropy modeling in the classical way, we use the X square values to weight 
the features of the model and give thus a different importance to each one of them. The method has 
been evaluated on Reuters-21578 dataset for test classification tasks, giving very promising results and 
performing comparable to some of the �“state of the art�” systems in the classification field.  

1. Introduction 

 
With the volume of electronic digital documents increasing rapidly today, there is a significant interest 

in developing tools and techniques that help people to better organize and manage these resources.  Human 
categorization is very time-consuming and costly and thus its applicability is limited especially for very 
large document collections.  Consequently, text classification techniques have increased in importance and 
economic value for digital world as they develop key technologies for classifying new electronic 
documents, finding interesting information on web and guiding a user�’s search through hypertext.  
In early approaches to text classification a document representation model was employed, usually in a 
term-based vector in some high dimensional Euclidean space where each dimension corresponds to a term, 
with some classification algorithm, trained in a supervised learning manner. Up to now, a great many of 
text categorization and classifying techniques have been proposed to the literature, including Bayesian 
techniques [1],[2],[3], k-nearest neighbors (kNN) classification methods [4],[5],[6], the so-called Rocchio 
algorithm from information retrieval [7],[8], artificial neural networks (ANN) techniques  
[9],[10],[11],[12], support vector machines (SVM) learning method  [13],[14],[15],  hidden Markov models 
(HMM) [19],[20], and decision tree (DT) classification methods  [17],[18],[9],[1].  In most of these 
methods, the aim is to estimate the parameters of the joint distribution between the object X being classified 
and a class category C and assign the object to that category with the greater probability. Unfortunately, in 
most real-world applications the joint distribution is usually unavailable due to the complexity of the 
problem. In general it cannot be computed efficiently since it would involve calculations over all possible 
combinations of X, C, a potentially infinite set. Instead, using the Bayes formula the problem can be 
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decomposed to the estimation of two components P(X|C) and P(C), known as the conditional class 
distribution and prior distribution, respectively.  

Maximum Entropy (ME) modeling is a general and intuitive way for estimating a probability from data 
and it has been successfully applied in various natural language processing tasks such as language 
modeling, part-of-speech tagging and text segmentation [23],[24],[25],[26],[28],[29]. The principle 
underlying ME is that the estimated conditional probability should be as uniform as possible, that is, have 
the maximum entropy.  The main advantage of ME modeling for the classification task is that offers a 
framework for specifying any arbitrary relevant information we believe it might contribute to the 
classification task. This relevant information is expressed in the form of feature functions, the mathematical 
expectations (constraints) of which are estimated upon labeled training data and characterize the class-
specific expectations for the distribution. The principle of ME is clear: among all the allowed probability 
distributions which conform to the constraints of the training data chose the one with the maximum 
entropy, that is, the most uniform. It can be proved that there is a unique solution for this problem. The 
uniformity of the found solution, known as the �“lack of smoothing�”, may be undesirable to some cases, for 
example, if we have a feature that always predict a certain class, then this feature may get an excessively 
high weight.  Another shortcoming of the ME modeling is that the algorithm which is used to find the 
solution can be computationally expensive due to complexity of the problem.  

In this work, we try to eliminate the above undesirable situations. As it is well known, X square statistic 
has been widely used in natural language processing tasks. The X square test for independence can be 
applied to problems where the data is divided into mutual exclusive categories and has the advantage, 
unlike the other tests that it does not assume normally distributed probabilities. The essence of the test is to 
assess the assumption about the independence of a data object with a category comparing the observed 
frequency of that object with the category and the expected frequency for independence. If the difference 
between the observed and expected frequency is large, then we can reject the assumption about 
independence (null hypothesis). In our case, if we think every word term w in a document d as a candidate 
feature we can use the X square statistic to test the independence of this word with each one of the class 
categories c, simply by counting the observed frequencies of the word in each class category in the training 
set. The resulting value of the test is then used to select the most representative features for the maximum 
entropy model as well as to weight the features giving different importance in the classification task in each 
one of them. 

In what it follows we present, in section 2 the application of the X square test in our data for feature 
selection and the weighting scheme, in section 3 the maximum entropy modeling and the improved 
iterative scaling (IIS) algorithm, in section 4 we discuss the way of using maximum entropy modeling for 
text classification, in section 5 experimental results are given and finally in section 6 we conclude with a 
discussion about our method and the similar works. 

2.  X Square Test for Feature Selection 

Among the most challenging tasks in the classification process, we can distinguish the selection of suitable 
features to represent the instances of a particular class. Additively, selection of the best candidate features 
can be a real disadvantage for the selection algorithm, in both means of effort and time consumption [22].  
As we have mentioned above, each document is represented as a vector of words, as is typically done in 
information retrieval.  Although in most text retrieval applications, the entries in the vector are weighted to 
reflect the importance of the term in retrieval, in text classification simpler binary feature values (i.e., a 
term either occurs or does not occur in a document) are often used instead. Usually, text collections contain 
millions of unique terms and for reasons of computational efficiency and efficacy, feature selection is an 
essential step when applying machine learning methods to text categorization.  In this work, the X square 
test is used to reduce the dimensionality of data and for the weighting purposes of the maximum entropy 
modeling. 

In 1900, Karl Pearson developed a statistic that compares all the observed and expected numbers when 
the possible outcomes are divided into mutually exclusive categories. The form in eq.1 gives the chi-square 
statistic: 

 



 

(1) 

 
Where the Greek letter  stands for summation and is calculated over the categories of possible outcomes. 

The observed and expected values can be explained in the context of hypothesis testing. If we have data 
that are divided into mutual exclusive categories and form a null hypothesis about that data, then the 
expected value is the value of each category if the null hypothesis is true. The observed value is the value 
for each category that we observe from the sample data.  

The chi-square test is a remarkably versatile way of gauging the significance of how closely the data 
agree with the detailed implications of a null hypothesis.  

To clarify things let us see an example with real data from Reuters-21578 dataset and specifically 
tailored for the classification task. Suppose we have two distinct class categories c1=�’Acq�’ and c2 �’Acq�’ 
from the Reuters-21578 �‘ModApte�’ split training dataset and we are interested in assessing the 
independence of the word �‘usa�’ with the class categories c1 and c2. From this training dataset we removed 
all numbers and the words of a stopword list. Counting the frequencies of the word �‘usa�’ in the training 
dataset we find that the word �‘usa�’ appears with class Acq (c1=�’Acq�’) 1,238 times, with the other classes, 
that is not the class �‘Acq�’ (c2 �’Acq�’) 4,464 times. In the class �‘Acq�’ there is a total of 125,907 word terms 
while in the other classes a total of 664,241. This is equivalent to a total of N=790,148 word terms overall 
in the Reuters-21578 training dataset.   It would be useful to use the contingency table 1 in which the data 
are classified. 

Table 1. Contigency table of frequencies for the word  usa and the class Acq from the Reuters-21578 �‘ModApte�’ split 
training dataset 

 c1 = �‘Acq�’ c2  �’Acq�’    Total 
w  =  �‘usa�’ 1,238 4,464 5,702 
w ≠ �‘usa�’  124,669  659,777 784,446 
Total 125,907 664,241 N=790,148 

Moreover, using maximum likelihood estimates we can compute the probabilities of class �‘Acq�’ and the 
word �‘usa�’ as follows.  

 
P(c1=�’Acq�’) = 125,907/790,148=0.1593 
 
P(w=�’usa�’) = 5,702/790,148=0.0072 
 
The assumption about the independence (null hypothesis) is that occurrences of the word �‘usa�’ and the 

class label �‘Acq�’ are independent. We compute now the probability of the null hypothesis. 
 
H0 : P(�‘usa�’,�’Acq�’) = P(�‘usa�’) x P(�‘Acq�’) = 0.0072 x 0.1593 = 0.0011 
 
Then we calculate the X2 value using eq. 1. Looking up the X2 distribution from tables or by using 

appropriate statistical software, we find a critical value for a significance level a (usually a=0.05) and for 
one degree of freedom (the statistic has one degree of freedom for a 2x2 contingency table). If the 
calculated value is greater than the critical value we can reject the null hypothesis that the word �‘usa�’ and 
the class label �‘Acq�’ occur independently. So, for a large calculated X2 value we have a strong evidence for 
the pair (�‘usa�’, �‘Acq�’). The word �‘usa�’ is then a good feature for the classification in the category �‘Acq�’. 

To make simpler the things, we are only interested in large calculated X2 values and not to reject the null 
hypothesis. Our aim is to select the most representative features among the large number of candidates and 
perform classification in a lower dimensionality space. 

 
We give now a simpler form that we use in this paper for the calculation of  X2 values. For a contingency 

2-by-2 table, the X square values can be calculated by the following form: 



 

(2) 

Where aij are the entries of the contingency 2-by-2 table A and N the total sum of these entries. 

4. Maximum Entropy Approach 

3.1 Maximum Entropy Modeling 
Entropy has its original back in the dates of Shannon [27] when it was originally used to estimate how 

much of the data can be compressed before they are transmitted over a communication channel. The 
entropy H itself measures the average uncertainty of a single random variable X: 
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Where, p(x) is the probability mass function of the random variable X. The eq. 4 tells us the average bits we 
need to transfer all the information in X.  

In its use in the communication theory to save the bandwidth of a communication channel, we prefer a 
model of X with less entropy so that we can use smaller bits to interpret the uncertainty (information) inside 
X. However, in its use in natural language processing tasks, we want to find a model to maximize the 
entropy. This sounds as though we are violating the basic principle in entropy. Actually, the main reason to 
do so is to preserve as less bias as possible when the certainty cannot be identified from the empirical 
evidence. 

Many problems in natural language processing can be re-formulated as statistical classification 
problems. Specifically, in text classification we think the text classification task to be a random process Y 
which takes as input a document d and produces as output a class label c. The output of the random Y may 
be affected by some contextual information X, whose domain is all the possible textual information 
contained in the document d. Our aim is to specify a model p(y|x) which denotes the probability that the 
model assigns to y∈Y when the contextual information is  x∈X. 

 At the first step, we observe the behavior of the random process in a training sample set collecting a 
large number of samples (x1, y1), (x2, y2)�…(xN, yN).  We can summarize the training sample defining a joint 
empirical distribution over x and y from these samples: 
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N
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One way to represent contextual evidence is to encode useful facts as features and to impose constraints 
on values of those feature expectations. This is done by the following way. We introduce the indicator 
function  

{ '2_''1_'1
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For example, in our classification problem an indicator function may be f(x,y)=1 if y=�’c1�’ and x contains 
the word �‘money�’ and f(x,y)=0 otherwise. Where �‘c1�’ is a particular value from the class labels and x is the 
context (the document) where the word �‘crude�’ occurs within. Such an indicator function f is called feature 
function or feature for short. Its mathematical expectation with respect to the model p(y|x) is  
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We can acknowledge the importance of this statistic by requiring that the expected value, the model 
assigns to the corresponding feature function is in accordance with the empirical expectation of eq. 7. 
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where  is the empirical distribution of x in the training sample.   )(
~

xp
We call the requirement eq. 8 a constraint equation or simply a constraint. 
 
When constraints are estimated in this fashion, there are many conditional probability models which can 

satisfy the constraints. Among all these models there is always a unique distribution that has the maximum 
entropy and it can be shown [] that the distribution has an exponential form: 
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where Z(x) a normalizing factor to ensure a probability distriution given by  
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where i a parameter associated with the constraint fi to be estimated. 

The solution to maximum entropy model in the form of eq. 9 is also the solution to a dual maximum 
likelihood problem for models of the same exponential form. It is guaranteed that the likelihood surface is 
convex, having a single global maximum and no local maxima and there is an algorithm that finds the 
solution performing hillclimbing in likelihood space. 

3.2 Improved Iterative Scaling 

We describe now a basic outline of the improved iterative scaling (IIS) algorithm, a hillclimbing algorithm 
for estimating the parameters i of the maximum entropy model, specially adjusted for text classification. 
The notation of this section follows that of Nigam et al. [31] with x to represent a document d and y a class 
label c. 
Given a set of training dataset D, which consists of pairs (d, c(d)), where d the document and c(d) the class 
label in which the document belongs, we can calculated the loglikelihood  of the model of eq. 9. 
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The algorithm is applicable whenever the feature functions fi(d,c(d)) are non-negative. 
To find the global maximum of the likelihood surface, the algorithm must start from an initial 

exponential distribution of the correct form that is to guess a starting point and then perform hillclimbing in 
likelihood space. So, we start from an initial value for the parameters i , say i =0 for i=1:K (where K the 
total number of features) and in each step we improve by setting them equal to i+ i, where i the 
increment quantity. It can be shown that at each step we can find the best i by solving the equation: 

∑ ∑
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Where f#(d,c) is the sum of all features in training instance d. 
Equation 12 can be solved in a closed form if the is f#(d,c) is constant, say M, for all d, c.   
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where p (c|d) is the distribution of  the exponential model of eq. 9. 
 
If this is not true, then eq. 12 can be solved with a numeric root-finding procedure, such as Newton�’s 

method.  
However in the last case, we can still solve eq. 12 in closed form by adding an extra feature to provide 

f#(d,c) to be constant for all d, c in the following way: 
we define M as the greatest possible feature sum: 

∑
=

=
K

i
icd

cdfM
1,

),(max  
(13) 

and add an extra feature, that is defined as follows: 
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Now we have all the pieces to summarize the improved iterative scaling algorithm (IIS) 

 Begin 

  Add an extra feature fK+1 following eq. 14,15  

  Initialize i =0 for i=1:K+1 

  Repeat 

   Calculate the expected class labels p (c|d) for each  

   document with the current parameters using eq.9 

   calculate i from eq. 13 

   set i= i+ i

  Until convergence 

  Output: Optimal parameters i optimal model p

 End 

4. Maximum Entropy Modeling for Text Classification 

The basic shortcoming of the IIS algorithm is that may be computationally expensive due to complexity of 
the classification problem. Moreover, the uniformity of the found solution (lack of smoothing) can also 
cause problems. For example, if we have a feature that always predict a certain class, then this feature may 
get an excessively high weight. Our innovation in this work is to use the X square test to rank all the 
candidate feature words, that is, all the word terms that appear in the training set and then select the most 
high ranked of them for using in the maximum entropy model.  
If we decide to select the K most high ranked word terms w1, w2, �…, wK we instantiate the features as 
follows: 
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where xsquare(i) denotes the X square score of the word wi obtained during the feature selection phase.   
This way of instantiating features has two advantages: first it gives a weight to each feature and second it 
creates a separate list of features for each class label. These features are activated only with the presence of 
the particular class label and are strong indicators of it. Of course some features participate to more than 
one lists, that is, are common to more than one classes. These lists of features are used from the resulting 
binary text classifier (the optimal model of the IIS algorithm) to calculate the expected class labels 
probabilities for a document d, eq 9, and then to assign the document d to the class with the higher 
probability.  

5. Experimental Results 

We evaluated our method using the �“ModApte�” split of the Reuters-21578 dataset compiled by David 
Lewis. The �“ModApte�” split leads to a corpus of 9,603 training documents and 3,299 test documents. Of 
the 135 potential topic categories we choose to evaluate only over 10 categories for which there is enough 
number of training and test document examples. Because we want to built a binary classifier we split the 
documents into 2 groups: �‘Yes�’ group, the document belongs to the category and �‘No�’ group, the document 
do not belong to the category. The 10 categories with the number of documents for the training and test 
phase are shown in table 1. 

Table 2.  10 categories from the �“ModApte�” split of the Reuters-21578 dataset with the number of documents for the 
Training and the Test phase for a binary classifier. 

 Train Test 
Category Yes No Yes No 

Acq 1615 7988 719 2580 
Corn 175 9428 56 3243 
Crude 383 9220 189 3110 
Earn 2817 6786 1087 2212 
Grain 422 9181 149 3150 

Interest 343 9260 131 3168 
Money-fx 518 9085 179 3120 

Ship 187 9416 89 3210 
Trade 356 9247 117 3182 
Wheat 206 9397 71 3228 

 
In the training phase we parsed all 9,603 documents. We did not stem the words, simply we removed all 

numbers and the words from a stopword list. After this preprocessing phase we ended up with 32,412 
discrete terms of a total of 790,148 word terms. The same preprocessing phase was followed in the test 
phase.    

We applied the X square test on the corpus of those features as exactly is described in the section 3 and 
then we selected for the maximum entropy model the most 2,000 higher ranked word terms for each 
category. Table 3 presents for each category the 10 top ranked word terms by the X square test  

Table 3.  10 top ranked words by the X square test for the 10 categories from the ModApte Reuters-21578 training 
dataset 

Acq Corn Crude Earn Grain Interest Money-fx Ship Trade Wheat 
bgas 
annou 
ameritech 
calny 
adebayo 

values 
july 
egypt 
agreed 
shipment 

crude 
comment 
spoke 
stabilizing 
cancel 

earn 
usa 
convertible 
moody 
produce 

filing 
prevailing 
outlined 
brian 
marginal 

money 
fx 
discontinued 
africa 
signals 

flexible 
conn 
proposals 
soon 
requirement 

acq 
deficit 
buy 
officials 
price 

trade 
brazil 
agreement 
chirac 
communications 

rumors 
monetary 
eastern 
policy 
cbt 



echoes 
affandi 
f8846 
faded 
faultered 

belgium 
oilseeds 
finding 
february 
permitted 

shipowners 
foresee 
sites 
techniques 
stayed 

former 
borrowings 
caesars 
widespread 
honduras 

winds 
proceedings 
neutral 
requiring 
bangladesh 

anz 
exploration 
program 
tuesday 
counterparty 

slow 
soybeans 
robert 
calculating 
speculators 

attempt 
mitsubishi 
mths 
troubled 
departments 

growth 
restraint 
ran 
slowly 
conclusion 

storage 
proposal 
reuter 
usually 
moisture 

 
The 2000 higher ranked word terms from each category are then used to instantiate the features of the 
maximum entropy model (WMEM) as exactly it was described in section 4. Using a number of 200 
iterations in the training phase of classifier, the IIS algorithms outputs the optimal i�’s, that is the optimal 
model p (c|d). We call this method weighted maximum entropy modeling, to emphasize the event that we 
use selected features and give to them a weight. 

Table 4.  Micro-average Breakeven performance for 5 different learning algorithms explored by Dumais et al. 

Findsim NBayes BayesNets Trees LinearSVM
earn 92.9% 95.9% 95.8% 97.8% 98.2%
acq 64.7% 87.8% 88.3% 89.7% 92.7%
money-fx 46.7% 56.6% 58.8% 66.2% 73.9%
grain 67.5% 78.8% 81.4% 85.0% 94.2%
crude 70.1% 79.5% 79.6% 85.0% 88.3%
trade 65.1% 63.9% 69.0% 72.5% 73.5%
interest 63.4% 64.9% 71.3% 67.1% 75.8%
ship 49.2% 85.4% 84.4% 74.2% 78.0%
wheat 68.9% 69.7% 82.7% 92.5% 89.7%
corn 48.2% 65.3% 76.4% 91.8% 91.1%

Avg Top 10 64.6% 81.5% 85.0% 88.4% 91.3%
Avg All Cat 61.7% 75.2% 80.0% N/A 85.5%

 
To evaluate the classification performance of the binary classifiers we use the so-called precision/recall 
breakeven point, which is the standard measure of performance in text classification and it is defined as the 
value for which precision and recall are equal. Precision is the proportion of items placed in the category 
that are really in the category, and Recall is the proportion of items in the category that are actually placed 
in the category.  Table 3 summarizes the breakeven point performance for 5 different learning algorithms 
explored by Dumais et al. [32] for the 10 most frequent categories as well as the overall score for all 118 
categories. 

Table 5.  Breakeven performance of the  weighted maximum entropy model over the top 10 categories of the Reuters-
21578 dataset 

Weighted Maximum Entropy Model (WMEM)  performance 
Category Breakeven point 

Acq 87.93% 
Corn 57.36% 
Crude 72.20% 
Earn 97.98% 
Grain 83.37% 

Interest 64.21% 
Money-fx 75.09% 

Ship 50.22% 
Trade 48.16% 
Wheat 69.88% 

 
The results in table 5 show that our method performs well the larger categories. It performs better than 

the other classifiers in the �‘money-fx�’ category and outperforms most of the other classifiers in some of the 
largest in testing size categories like �‘earn�’, �‘acq�’ and �‘grain�’. 



6. Discussion and Similar Work 

To our knowledge at least three other works have used maximum entropy for text classification: The work 
of Ratnaparkhi, a very preliminary experiment that uses binary features. The work of Mikheev [33] 
examined the performance of maximum entropy modeling and feature selection for text classification on 
the RAPRA corpus, a corpus of technical abstracts. Again in this work binary features were used. Nigam et 
al. [31] used counts of occurrences instead of binary features and the showed that maximum entropy is 
competitive with and sometimes better than naïve Bayes classifier. 
In this work, we extended these previous works both, using a feature selection strategy and assigning 
weights to the features with the X square test. The results of the evaluation are very promising. However, it 
is needed, to further continue the experiments at least to two directions: first, to perform experiments 
changing the number of the selected features or the selection strategy, as well as, the number of the 
iterations in the training phase and second, to perform additional experiments using alternative datasets 
such as, the WebKB dataset, the Newsgroups dataset etc., in order to have a better idea about the 
performance of the method. These remain for a future work.    
 

Acknowledgements 

This work was co-funded by 75% from E.U. and 25% from the Greek Government under the framework of 
the Education  and Initial Vocational Training Program �– Archimedes. 
 

6. References 

1.  Lewis, D. and Ringuette, M., A comparison of two learning algorithms for text categorization. In The Third Annual 
Symposium on Document Analysis and Information Retrieval, pp.81-93, 1994. 
2.  Makoto, I. and Takenobu, T., Cluster-based text categorization: a comparison of category search strategies, In 
ACM SIGIR'95, pp.273-280, 1995. 
3.  McCallum, A. and Nigam, K., A comparison of event models for naïve Bayes text classification, In AAAI-98 
Workshop on Learning for Text Categorization, pp.41-48, 1998. 
4.  Masand, B., Lino, G. and Waltz, D., Classifying news stories using memory based reasoning, In ACM SIGIR'92, 
pp.59-65, 1992. 
5.  Yang, Y. and Liu, X., A re-examination of text categorization methods, In ACM SIGIR�’99, pp.42-49, 1999. 
6.  Yang, Y., Expert network: Effective and efficient learning from human decisions in text categorization and retrieval, 
In ACM SIGIR'94, pp.13-22, 1994. 
7.  Buckley, C., Salton, G. and Allan, J., The effect of adding relevance information in a relevance feedback  
environment, In ACM SIGIR�’94, pp.292-300, 1994. 
8.  Joachims, T., A probabilistic analysis of the rocchio algorithm with TFIDF for text categorization, In ICML�’97, 
pp.143-151, 1997. 
9.  Guo, H. and Gelfand S. B., Classification trees with neural network feature extraction, In IEEE Trans. on Neural 
Networks, Vol. 3, No. 6, pp.923-933, Nov., 1992. 
10.  Liu, J. M. and Chua, T. S., Building semantic perceptron net for topic spotting, In ACL�’01, pp.370-377, 2001. 
11.  Ruiz, M. E. and Srinivasan, P., Hierarchical neural networks for text categorization, In ACM SIGIR�’99, pp.81-82, 
1999. 
12.  Schutze, H., Hull, D. A. and Pedersen, J. O., A comparison of classifier and document representations for the 
routing problem, In ACM SIGIR�’95, pp.229-237, 1995. 
13.  Cortes, C. and Vapnik, V., Support vector networks, In Machine Learning, Vol.20, pp.273-297, 1995. 
14.  Joachims, T., Learning to classify text using Support Vector Machines, Kluwer Academic Publishers, 2002. 
15.  Joachims, T., Text categorization with Support Vector Machines: learning with many relevant features, In 
ECML�’98, pp.137-142, 1998. 
16.  Schapire, R. and Singer, Y., BoosTexter: A boosting-based system for text categorization, In Machine Learning, 
Vol.39, No.2-3, pp.135-168, 2000. 
17.  Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C.J., Classification and Regression Trees, Wadsworth Int. 
1984. 



18.  Brodley, C. E. and Utgoff, P. E., Multivariate decision trees, In Machine Learning, Vol.19, No.1, pp.45-77, 1995. 
19.  Denoyer, L., Zaragoza, H. and Gallinari, P., HMM-based passage models for document classification and ranking, 
In ECIR�’01, 2001. 
20.  Miller, D. R. H., Leek, T. and Schwartz, R. M., A Hidden Markov model information retrieval system, In ACM 

SIGIR�’99, pp.214-221, 1999.  
21. Kira, K. and Rendell, L. A practical approach to feature selection. In Proc. 9th International workshop on machine 

learning (pp. 249-256)  1992. 
22. Gilad-Bachrach, Navot A., Tishby N. Margin Based Feature Selection - Theory and Algorithms. In 
Proc of ICML 2004 
23. Stanley F. Chen and Rosenfeld R. A Gaussian prior for smoothing maximum entropy models. Technical report 

CMU-CS-99108, Carnegie Mellon University, 1999.  
24. Ronald Rosenfeld. Adaptive statistical language modelling: A maximum entropy approach, PhD thesis, Carnegie 

Mellon University, 1994. 
25. Ratnparkhi Adwait, J. Reynar, S. Roukos. A maximum entropy model for prepositional phrase attachment. In 

proceedings of the ARPA Human Language Technology Workshop, pages 250-255, 1994. 
26. Ratnparkhi Adwait. A maximum entropy model for part-of-speech tagging. In Proceedings of the Empirical 

Methods in Natural Language Conference, 1996. 
27. Shannon C.E. 1948. A mathematical theory of communication. Bell System Technical Journal 27:379 �– 423, 623 �– 

656. 
28  Berger A. 1996. A Brief Maxent Tutorial. http://www-2.cs.cmu.edu/~aberger/maxent.html. 
29 Berger A. 1997. The improved iterative scaling algorithm: a gentle introduction. http://www-

2.cs.cmu.edu/~aberger/maxent.html
30 Della Pietra S.,  V. Della Pietra and J. Lafferty. Inducing features of random fields. IEEE transaction on Pattern 

Analysis and Machine Intelligence, 19(4), 1997. 
31 Nigam K.,  J. Lafferty, A. McCallum. Using maximum entropy for text classification, 1999.  
32 Dumais, S. T., Platt, J., Heckerman, D., and Sahami, M.  Inductive learning algorithms and representations for text 

categorization.  Submitted for publication, 1998.  http://research.microsoft.com/~sdumais/cikm98.doc 
33 Mikheev A. Feature Lattics and maximum entropy models. In machine Learning,  McGraw-Hill, New York, 1999. 

http://www-2.cs.cmu.edu/%7Eaberger/maxent.html
http://www-2.cs.cmu.edu/%7Eaberger/maxent.html
http://www-2.cs.cmu.edu/%7Eaberger/maxent.html

