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System modeling can help designers make and verify design deci-
sions early in the design process if the model’s accuracy can be
determined. The formula typically used to analytically propagate
error is based on a first-order Taylor series expansion. Conse-
quently, this formula can be wrong by one or more orders of mag-
nitude for nonlinear systems. Clearly, adding higher-order terms
increases the accuracy of the approximation but it also requires
higher computational cost. This paper shows that truncation error
can be reduced and accuracy increased without additional com-
putational cost by applying a predictable correction factor to
lower-order approximations. The efficiency of this method is dem-
onstrated in the kinematic model of a flapping wing. While Taylor
series error propagation is typically applicable only to closed-
form equations, the procedure followed in this paper may be used
with other types of models, provided that model outputs can be
determined from model inputs, derivatives can be calculated, and
truncation error is predictable. [DOI: 10.1115/1.4005444]

1 Introduction

In the system design process, designers frequently experience
significant uncertainty in predicting whether a proposed design
will meet the design objectives. This is a limiting obstacle in sys-
tem design [1]. However, if a system model can be obtained and
its accuracy quantified, the designer can then verify design deci-
sions early in the design process. This greatly reduces the risk of
creating a failed system design. Unfortunately, determining sys-
tem model accuracy is a significant challenge.

Nondeterministic uncertainty analysis methods can enable the
system designer to obtain a statistical output distribution, which
often is more meaningful than a simple max=min error bound [2].
Nondeterministic uncertainty analysis methods fall into two main

categories: (1) reliability-based design methods [3–5] and (2)
methods based on robust design [6–11].

Most nondeterministic error analysis techniques use probabilis-
tic methods to represent sources of uncertainty and then propagate
these error sources through a deterministic model [12]. This is
commonly done with a Monte Carlo simulation, though other
quasi Monte Carlo simulation techniques including Halton [13],
Hammersley [14], and Latin supercube sampling [15] have been
suggested. A hybrid approach combining a derivative-based
method with a Monte Carlo simulation has also been proposed
[16]. Some nondeterministic error propagation methods use sub-
optimizations [17], others use response surface methodologies
[18].

The formula to analytically propagate error through a closed-
form equation that is most-often cited in literature is based on a
first-order Taylor series [19]. This approach makes several impor-
tant assumptions and may produce results that are wrong by one
or more orders of magnitude for nonlinear functions [20]. While
higher-order terms clearly improve the accuracy of the approxi-
mation, they also require greater computational cost. This paper
presents the derivations of the first- and second-order Taylor se-
ries error propagation formulas, discusses their assumptions and
limitations, and then shows that the truncation error in lower-
order approximations can be predicted and accounted for. Conse-
quently, higher-order accuracy in error propagation can be
obtained with lower-order computational cost.

While Taylor series error propagation is typically applicable
only to closed-form equations, the procedure followed in this pa-
per may be used with other types of models, provided that model
outputs can be determined from model inputs, derivatives can be
calculated, and truncation error is predictable.

2 Error Propagation via First-Order Taylor Series

Given a system model, a distribution in input values generally
propagates through the model to produce a distribution in out-
puts. The analytical formula most-often cited in literature that
calculates variance propagation is based on a first-order Taylor
series expansion. It makes several important assumptions that
are limiting in many practical situations. The authors have found
that the complete derivation of this formula is absent in text-
books and archival journal literature, though it is fundamental to
understanding the limitations of the method and how to over-
come them. Consequently, this section presents the derivation of
the first-order Taylor series approximation of error propagation
in order to more fully describe all of its assumptions and
limitations.

2.1 First-Order Formula Derivation. Let y be some func-
tion of n inputs xi. The first-order Taylor series approximation
expanded about the input means, �xi, is shown in Eq. (1)

y � y1 ¼ f ð�x1;…; �xnÞ þ
Xn

i¼1

@f

@xi
ðxi � �xiÞ (1)

where the partial derivatives are evaluated at the mean xi ¼ �xi. An
approximation of the output mean �y is given in Eq. (2)

�y1 ¼ E½y1� ¼ f ð�x1;…; �xnÞ þ
Xn

i¼1

@f

@xi
l1;i (2)

where E is the expectation operator and lk,i is the kth moment for
the ith input, lk;i ¼ E½ðxi � �xiÞk�. Subtracting Eq. (1) from Eq. (2)
produces Eq. (3)

y1 � �y1 ¼
Xn

i¼1

@f

@xi
ðxi � �xiÞ �

Xn

i¼1

@f

@xi
l1;i (3)
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Squaring and taking the expectation of Eq. (3) produces Eq. (4)

r2
y �

Xn

i¼1

@f

@xi

� �2

r2
xi
� N þ COV

" #
(4)

where r2
y and r2

x are the variances (second moments) in y and x,
respectively. Variance r2 is defined in Eq. (5), the non-Gaussian
terms N are given by Eq. (6), and the covariance terms COV are
given by Eq. (7)

r2
x ¼ E½ðx� �xÞ2� ¼ 1

n

Xn

i¼1

ðxi � �xÞ2 (5)

N ¼ @f

@xi

� �2

ðl1;iÞ2 þ 2
Xn

j¼iþ1

@f

@xi

@f

@xj
ðl1;iÞðl1;jÞ (6)

COV ¼ 2
Xn

j¼iþ1

@f

@xi

@f

@xj
r2

xixj
(7)

where r2
xixj is the covariance between xi and xj.

In the case where every input xi is Gaussian, the first moments
(l1,i) are zero and Eq. (4) reduces to Eq. (8)

r2
y �

Xn

i¼1

@f

@xi

� �2

r2
xi
þ 2

Xn

j¼iþ1

@f

@xi

@f

@xj
r2

xixj

" #
(8)

When the inputs are also independent, the covariance terms are all
zero and Eq. (8) further reduces to Eq. (9)

r2
y �

Xn

i¼1

@f

@xi

� �2

r2
xi

(9)

Equation (9) is the formula typically given in literature for analyti-
cal error propagation through a system [20–24].

2.2 Summary of Assumptions and Limitations

(1) Error propagation via Taylor series generally assumes the
system model y can be represented as a closed-form, differ-
entiable, mathematical equation. However, a closed-form
model is not necessary if model outputs can be obtained
from given inputs and derivatives can be obtained numeri-
cally or analytically.

(2) Taking the Taylor series expansion about a single point ð�xÞ
causes the approximation to be of local validity only
[16,21]. Consequently, the accuracy of the approximation
generally decreases with an increase in the input variance
r2

x .
(3) The approximation is generally more accurate for linear

and polynomial-type models.
(4) All inputs xi are assumed be Gaussian. When inputs are not

Gaussian, the non-Gaussian terms in Eq. (4) given by
Eq. (6) cannot be neglected.

(5) All inputs xi are assumed to be independent. When inputs
are not independent, the covariance terms in Eq. (4) cannot
be neglected [20,22,25].

(6) The input means and variances must be known.
(7) The output error distribution is assumed to be Gaussian,

described by only a mean and standard deviation. A method
to achieve a fully-described non-Gaussian output distribu-
tion using a Taylor series is currently being researched by
the authors [26].

2.3 First-Order Accuracy. Clearly, Eq. (9) is an approxima-
tion only and can be wrong by one or more orders of magnitude.

This is especially evident when dealing with nonlinear functions
[20].

For example, let y be modeled by the function y¼ 1000sin(x).
An estimation of the output variance r2

y obtained from Eq. (9) is
given in Eq. (10)

r2
y � 106 cos2ð�xÞr2

x (10)

“Actual” output variance was determined from a Monte Carlo
simulation using 1 million input values normally distributed about
�x with a standard deviation of rx¼ 0.2. The relative error e of
Eq. (10) can be calculated using Eq. (11) and the result is plotted
as a function of input mean �x in Fig. 1

e ¼
jr2

y; predicted � r2
y;Monte Carloj

r2
y;Monte Carlo

(11)

As illustrated in Fig. 1, the first-order approximation of var-
iance propagation is fairly accurate for most values of �x. However,
for certain input values, the approximation can be wrong by one
or more orders of magnitude, as indicated by the 100% jump in
relative error at �x ¼ p

2
. This spike in relative error occurs because

the sin function is nonlinear and the higher-order terms in the
Taylor series used to derive Eq. (9) were neglected.

3 Higher-Order Terms

As expected, the accuracy of this estimate of variance propaga-
tion through a system can be improved by including higher-order
terms in the Taylor series. The derivation of the second-order
approximation is presented in this section. The effect of adding
the second- and higher-order terms is also discussed.

3.1 Second-Order Formula Derivation. For the sake of
brevity, the second-order derivation will be presented only for a
monovariable function, y¼ f(x), though extending this derivation
to multivariate functions is trivial. The second-order Taylor series
expansion taken about the input mean �x is given in Eq. (12), and
the second-order approximation of the output mean �y is given in
Eq. (13)

y � y2 ¼ f ð�xÞ þ @f

@x
ðx� �xÞ þ 1

2

@2f

@x2
ðx� �xÞ2 (12)

where the partial derivatives are again evaluated at the mean,
x ¼ �x

�y2 ¼ E½y2� ¼ f ð�xÞ þ @f

@x
l1 þ

1

2

@2f

@x2
l2 (13)

Fig. 1 Relative error in output variance using a first-order Tay-
lor series expansion for the function y¼1000sin(x)
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The expectation of ðy2 � �y2Þ2 is given in Eq. (14)

r2
y �

@f

@x

� �2

l2 � l2
1

� �
þ @f

@x

@2f

@x2
l3 � l1l2ð Þ

þ 1

4

@2f

@x2

� �2

l4 � l2
2

� �
(14)

If x is Gaussian, all odd moments (lk where k is odd) are zero and
Eq. (14) reduces to Eq. (15)

r2
y �

@f

@x

� �2

l2 þ
1

4

@2f

@x2

� �2

ðl4 � l2
2Þ (15)

The first-order approximation in Eqs. (8) and (9) requires that
only common statistical properties of the input population be
known (i.e., mean and variance), but the second-order approxima-
tion in Eq. (15) requires fourth central moments. However, for
perfectly Gaussian inputs, l4� 3r4 [27]. This substitution is made
in Eq. (16)

r2
y �

@f

@x

� �2

r2
x þ

1

2

@2f

@x2

� �2

r4
x (16)

If y is a function of multiple independent inputs, the generalized
form of Eq. (16) is given in Eq. (17)

r2
y �

Xn

i¼1

@y

@xi

� �2

r2
xi
þ 1

2

Xn

j¼1

Xn

i¼1

@2y

@xi@xj

� �2

r2
xi
r2

xj
(17)

This is the second-order variance propagation formula most-often
cited in literature [21,24,28]. Once again, Eqs. (16) and (17)
assume all inputs are Gaussian and independent. When this is not
the case, the non-Gaussian and covariance terms cannot be
neglected.

3.2 Accuracy and Computational Cost. Continuing with
the same function y¼ 1000 sin(x), the relative error obtained from
the second-order approximation in Eq. (14) is compared with the
relative errors from other-order approximations in Fig. 2.

The second-order approximation successfully filters the large
spikes in relative error present in the first-order approximation.
However, the second-order approximation still overestimates the
actual variance propagation, which could degrade system per-
formance and lead to failure or infeasibility [29]. This bias (about
4%, in this case) is a result of truncating the higher-order terms in
the Taylor series.

Figure 2 also illustrates that higher-order terms reduce the
second-order bias. With an infinite number of terms, the Taylor

series approximation eventually converges to zero error. How-
ever, computational cost grows exponentially as higher-order
terms are included. This growth in computational cost is acceler-
ated at an exponential rate with an increase in the number of sys-
tem inputs, as shown in Table 1. Furthermore, higher-order terms
also require the calculation of higher-order moments and covari-
ance terms for the system inputs. This exponential growth in cost
causes higher-order terms to quickly become prohibitively expen-
sive for complex systems.

4 Higher-Order Accuracy With Lower-Order Cost

This section presents a method to achieve greater accuracy in
error propagation through nonlinear systems without increasing
computational cost. This is accomplished by predicting the
higher-order truncation error and applying a resultant correction
factor to the lower-order Taylor series approximation.

This section presents the empirically-determined correction
factors for trigonometric, logarithmic, and exponential functions.
The procedure presented in this section may be used to determine
correction factors for other types of models provided that (1)
model outputs can be determined for given inputs, (2) derivatives
can be numerically or analytically obtained, and (3) truncation
error for that specific model is predictable.

4.1 Reducing Truncation Error. As Fig. 2 illustrates, the
second-order truncation error for a sin function is essentially a
constant bias for all �x. Figure 3 shows that the magnitude of
this bias has a linear relationship to the input variance, r2

x . Conse-
quently, this truncation error can easily be estimated and the
resultant correction factor e, given in Eq. (18), can be applied to
the second-order approximation with Eq. (19)

e ¼ 1

1þ 1:022r2
x

(18)

r2
y;CF ¼ r2

yðeÞ (19)

Fig. 2 Relative error in variance propagation using Taylor se-
ries approximations

Table 1 The number of different order partial derivatives
required to propagate variance through a system of various
input quantities

Inputs O1 O2 O3 O4 O5 O6 O7

2 2 3 6 10 15 21 28
4 4 10 20 35 56 84 120
6 6 21 56 126 252 462 792
8 8 36 120 330 792 1716 3138
10 10 55 220 715 2002 5005 11146

Fig. 3 Relationship between the second-order bias and the
input standard variance r2

x for a sin function
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The correction factor in Eq. (18) applies to all sin and cos func-
tions. For y¼ 1000 sin(x), this correction factor and Eq. (19) esti-
mate error propagation with nearly fourth-order accuracy at only
second-order computational cost, as higher-order derivatives and
input moments are not required.

Figure 4 compares the relative errors in variance estimations.
Note that the fourth-order and corrected second-order (CF)
approximations are almost identical in Fig. 4.

4.2 Correction Factors for Other Nonlinear
Functions. Table 2 gives the correction factors for some common
nonlinear functions. Note that the cyclical nature of trigonometric
functions and derivatives require a second-order approximation
before the higher-order truncation error can easily be determined
but the exponential and logarithmic functions only require a first-
order calculation. The correction factors for y¼ ln(x), y¼ exp(x),
and y¼ bx are given in Eqs. (20)–(22), respectively

e ¼
exp �1:9772r þ 0:9128ð Þ þ 1 if r >¼ 0

�3:88r3 � 4:9835r2 � 1:5704r þ 1:3302 if r < 0

�
(20)

where r ¼ lnð �x
rx
Þ.

e ¼ max 1; min 2; 0:3375r2
x þ 0:4937rx þ 0:959

� �� �
(21)

where e is constrained to a maximum value of 2 and a minimum
value of 1

e ¼
max 1; min 2; X � Z1 � Bð ÞT

h i	 

þ 1 if b < 1

max 1; min 2; X � Z2 � Bð ÞT
h i	 


þ 1 if b > 1

8<
: (22)

where e is constrained to maximum value of 3 and a minimum
value of 2, and

X ¼ 1 rx r2
x r3

x r4
x

� �
B ¼ 1 b b2 b3

� �T

Z1 ¼

0:224 0:012 �2:570e3 0 0

�0:992 0:076 1:544e4 0 0

�0:037 7:803 �2:061e4 7:135 �38:093

0 0 0 23:556 61:532

2
664

3
775

Z2 ¼
1

1000

�8:612 0:018 �897:1 0:006 0:005

1:182 0:084 986:2 �0:002 �0:008

0:101 �6:891 54:93 �240:9 26:52

�0:002 0:089 �0:276 �1:743 11:06

2
664

3
775

4.3 Model Composition. It should be noted that the correc-
tion factors given in Table 2 are only pertinent to a particular
function. If a system model contains this function along with other
operators, the system should be decomposed into components
(with sin(x) being a single component, for example). The error
should then be propagated through each component individually.
The variances in each component’s output can then be propagated
through the rest of the system model.

5 Example: Kinematic Model of Flapping Wing

Consider the flapping flight wing mechanism shown in Fig. 5.
The kinematic model used in the design and optimization of this
mechanism is the Fourier series in Eq. (23) [30,31].

/ðtÞ
hðtÞ
aðtÞ

2
4

3
5 ¼X2

n¼0

A/n

Ahn

Aan

2
4

3
5 cosðnxtÞ þ

B/n

Bhn

Ban

2
4

3
5 sinðnxtÞ (23)

where / is the positional angle (deg), h is the elevation angle (deg), a
is the feathering or attack angle (deg), the As and Bs are Fourier series
coefficients (deg), x is the flapping frequency (hz), and t is time (s).
This three output system model has 16 Gaussian inputs (time does not
vary), which are statistically described in Table 3 [31].

Fig. 4 Relative error in estimations of variance propagation

Table 2 Correction factors to account for higher-order trunca-
tion error when propagating error through nonlinear functions
with a Taylor series

Func. Ord. Correction factor (e)

y¼ sin(x) 2nd Eq. (18)
y¼ cos(x) 2nd Eq. (18)
y¼ ln(x) 1st Eq. (20)
y¼ ex 1st Eq. (21)
y¼ bx 1st Eq. (22)

Fig. 5 Mechanism used by the BYU Flapping Flight Research
Team to simulate 3-degree-of-freedom motion of a flapping wing

Table 3 Mean values and standard deviations of 16 model
input parameters

Mean StdDev Mean StdDev

A/0 �20 0.1 — — —
A/1 �4 1.5 B/1 44 1.5
A/2 8 3.0 B/2 33 8.0

Ah0 0 0.1 — — —
Ah1 43 0.75 Bh1 0 0.1
Ah2 17 0.5 Bh2 0 0.1

Aa0 12 4.0 — — —
Aa1 0 0.1 Ba1 50 0.1
Aa2 �2 0.75 Ba2 0 0.1
x 0.298 0.1
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Various orders of a Taylor series were used to estimate the var-
iance in the three output wing angles based on the variance in
these system inputs. The trigonometric correction factors given in
Table 2 were then applied to the second-order Taylor series using
Eq. (19). Figure 6 shows the computational cost of error propaga-
tion (in minutes) using these different methods. These costs
are summed over the time interval 0 s� t� 5 s at time steps of
0.001 s for all three output angles. The cost of calculating input
moments and input covariances from 10k input samples is also
included. Computational cost was determined using MATLAB

execution time. Notice that the fourth-order prediction took
approximately 70 min to execute, where the corrected second-
order approximation executed in approximately 4 min—a signifi-
cant reduction in computational cost.

The relative error in only one of these output angles, /, is
shown in Fig. 7, as the other two output angles have similar
results. The root-mean-square of the relative error over the time
interval shown (0 s� t� 5 s) for the second-order approximation
is 40.97%, third-order is 11.18%, fourth-order is 1.32%, and a
second-order with a correction factor is 1.96%.

Figures 6 and 7 illustrate that the correction factors presented in
this paper can achieve near fourth-order accuracy in error propa-
gation through this model with near second-order computational
cost.

6 Conclusion

Using a first-order Taylor series to estimate error propagation
through a closed-form model is common in literature and practice,
but this approximation is frequently used without a full apprecia-
tion of its limitations and underlying assumptions. This results in

estimations that may be substantially inaccurate. As the authors
have been unable to locate the full derivation of this formula ei-
ther in textbook or archival journal literature, a useful contribution
of this paper is the presentation of that derivation and the discus-
sion of the formula’s limitations and assumptions.

Additionally, the novel contribution of this paper is the intro-
duction of generic correction factors that account for some of the
Taylor series truncation error. These correction factors are pre-
dictable, easy to calculate and do not require significant computa-
tional cost. They enable a system designer to predict error
propagation with greater accuracy, verify design decisions earlier
in the design process, and reduce the risk of developing a design
that does not meet its objectives. Future research may focus on the
development of predictable correction factors for other nonlinear
models, such as differential equations and state-space models. The
authors believe this can be accomplished using methods based on
the same principles discussed in this paper.
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