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Abstract. This article presents a preliminary and exploratory study of the rela-
tionship between size, on the one hand, and effort, duration and team size, on
the other, for 11 Free/Libre/Open Source Software (FLOSS) projects with cur-
rent size ranging between between 0.6 and 5.3 million lines of code (MLOC).
Effort was operationalised based on the number of active committers per month.
The extracted data did not fit well an early version of the closed-source cost
estimation model COCOMO for proprietary software, overall suggesting that,
at least to some extent, FLOSS communities are more productive than closed-
source teams. This also motivated the need for FLOSS-specific effort models.
As a first approximation, we evaluated 16 linear regression models involving
different pairs of attributes. One of our experiments was to calculate the net
size, that is, to remove any suspiciously large outliers or jumps in the growth
trends. The best model we found involved effort against net size, accounting for
79 percent of the variance. This model was based on data excluding a possible
outlier (Eclipse), the largest project in our sample. This suggests that different
effort models may be needed for certain categories of FLOSS projects. Inciden-
tally, for each of the 11 individual FLOSS projects we were able to model the
net size trends with very high accuracy (R2 ≥ 0.98). Of the 11 projects, 3 have
grown superlinearly, 5 linearly and 3 sublinearly, suggesting that in the majority
of the cases accumulated complexity is either well controlled or don’t constitute
a growth constraining factor.

Keywords: baselines, complexity, COCOMO, cost, economics, effort estimation,
effort operationalisation, empirical studies, large software, free software, metrics, open
source, productivity, software evolution.

1 Introduction

Software development productivity and cost estimation have been research topics for
more than three decades (e.g., [21] [3] [18]). The vast majority of these studies in-
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volved data from closed-source projects. Little seems to be known about effort mod-
els for large, long-lived FLOSS projects. The present paper1 presents our initial ex-
ploratory results in the study of the relationship between size, effort, duration and
number of contributors in eleven large, long-lived FLOSS projects.

FLOSS communities do not use, in general, effort estimation models or other
measurement-based models [1]. As a research topic, the exploration and quantifica-
tion of effort and productivity may help in comparing FLOSS projects and proprietary
systems. This research may provide a basis for baselines, in order to evaluate the possi-
ble impact of changes of processes, methods and tools used by FLOSS communities. It
may also help, in some way, in understanding and better planning the future evolution
of FLOSS communities and their projects2.

Before presenting our approach and results, an important limitation of this type of
research must be mentioned. It has been pointed out (e.g., [11] [13]), that it is difficult
to measure effort accurately in FLOSS. This is so for several reasons: for example, we
do not know the degree of involvement of each contributor (Was it full-time? Was it
some level of part-time?) and contributors may have widely different roles. Despite our
best efforts to measure effort in a meaningful way, we are aware of the limitations of
our approach and this is why the results reported here must be seen as exploratory and
preliminary. Additional research is needed to achieve more reliable measures of effort
involved in FLOSS projects. We hope, however, that our contribution can help establish
FLOSS effort modelling as a line of research and, eventually, lead to scientific insights
and practical tools for the FLOSS communities and other interested stakeholders.

2 Selected projects and measurements

Our research question was how much effort would be required to develop (via evolu-
tion) a FLOSS project of one MLOC (i.e., 1000 KLOC). We chose eleven projects, all
of which exceed 1 MLOC (one 0.6 MLOC project in our sample has achieved this size
at some point before decreasing) and have code repositories compatible with our data
extraction tools. Table 1 shows the names of the eleven FLOSS projects we considered,
the programming language(s) primarily used for each system, a short description and
the life span, that is, the time in years between the first publicly recorded commit to the
code repository (CVS or Subversion) and the data extraction date. This was October
2008, with exception of one system (Eclipse) for which it was April 2008.

The measurements extracted for this study are listed in Table 2. We used the SLOC-
Count tool3 to measure lines of source code. It automatically identifies code developed
in a variety of programming languages and, for each of them, counts the lines of code
present in a directory. We used CVSAnalY4, which stores information extracted from
the version control log (CVS or Subversion) in a MySQL database. Specifically, we

1 This is a revised and extended version of [7].
2 See [12] for a fuller justification for research into FLOSS effort models
3 www.dwheeler.com/sloccount/
4 svn.forge.morfeo-project.org/svn/libresoft-tools/cvsanaly



What Does It Take to Develop a Million Lines of Open Source Code? 191

Table 1. FLOSS systems studied and some of their characteristics
name primary description life span

language in years
Blender C/C++ cross-platform tool suite for 3D animation 6
Eclipse Java IDE and application framework 6.9

FPC Pascal Pascal compiler 3.4
GCC C/Java/Ada GNU Compiler Collection 19.9
GCL C/Lisp/ASM GNU Common Lisp 8.8
GDB C/C++ GNU Debugger 9.5
GIMP C GNU Image Manipulation Program 10.9

GNUBinUtils C/C++ collection of binary tools 9.4
NCBITools C/C++ libraries for biology applications 15.4
WireShark C network traffic analyser 10
XEmacs Lisp/C text editor and application development system 12.2

Table 2. Measured attributes for each system
abbreviation description extracted using

KLOC physical lines of source code (in thousands) SLOCCount
FILES total number of files in code repository CVSAnalY

EFFORT ‘contributor-years’ (based on active committers-month) CVSAnalY
DUR time length of ‘active’ evolution in years CVSAnalY
DEV number of distinct contributors CVSAnalY

indirectly used the data from CVSAnalY by downloading databases from the FLOSS-
Metrics project5.

In order to operationalise the effort variable, we proceeded as follows: first, we
ran a query to the CVSAnalY databases for each system to determine the number of
different person ids contributing to its repository over a given month. This value was
assumed to be the number of person-months in a given month. The total number of
person-months, added over the lifetime of the code repository, was divided by 12 in
order to obtain the equivalent to person-years, which is the value assumed to be the
total effort spent into a system since code commits recording started (EFFORT ). As
said in section 1, measuring effort in FLOSS projects is notably difficult. Our effort
measurement approach is likely to be, in some cases, an overestimation, since not
all the contributors are likely to work full-time on a project (with exception of some
company-supported projects). Interestingly, in some projects one or several gate keep-
ers submit code developed by others. If present, this will turn our EFFORT values
into an underestimation of the real effort. This is clearly a topic for further research.
We present our operationalisation of effort as an starting point which can be improved
in the future by using additional information about, for example, the social networks
and work patterns of contributors in a given project, and eventually by advanced tools
which eventually will register automatically the effort.

5 data.flossmetrics.org
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Fig. 1. Trend in FILES (left) and netFILES (right) per month for GCL. The right-hand-side plot
corresponds to the central part of the left-hand-side plot, after major ‘jumps’ have been
removed.

In 9 out of 11 projects studied – that is, excluding Eclipse and Wireshark – when
looking at the plot of the total number of files (FILES) in the repository per month,
we observed a few, suspiciously large outliers or jumps. This is illustrated for one of
the systems (GCL) on the left part of Figure 1. It is unlikely that the team size or
the productivity of the team of contributors has increased so suddenly on a particular
month. It could be that code added in a jump was created and evolved in a private
space (or as a branch separated from the main version or trunk) for which we have no
active committers information. It could also be that each jump corresponds to external
events such as when the repository receives chunks of externally generated code. An
additional hypothesis would be that many non-code files were added to the repository,
since FILES includes all files, code and non-code.6 Whatever the actual explanation,
the implication for our research is that measuring the total size, including jumps, may
lead to too optimistic estimates (the productivity may appear to be higher than it really
is). We filtered out the jumps by removing their corresponding size increments, that is,
calculating what we call the net size. We also subtracted the initial size value, since we
do not have any records of effort for this initial commit. Figure 1, on the right, shows
the result for GCL. On the left one can observe the trend for FILES with several large
jumps. The filtered trend, that we call netFILES, is shown on the right.

We measured project duration DUR as the time between the earliest and most re-
cent commit. We excluded periods with no commits or with a number of commits
much lower than during other clearly active periods. We did this in order not to pe-
nalise projects with periods of inactivity, when modelling the relationship between
size and duration. This filtering operation determined the value of DUR that we as-
sumed for the GCL project (4.3 years instead of 8.8 years, as can be seen on the right
of Figure 1). We did a similar filtering for GCC, with a resulting value for DUR of
11.2 instead or 19.9 years.

For calculating the number of contributors DEV we obtained the number of people
having made at least one commit since the start of the repository. We computed two

6 SLOCCount automatically discards non-code files but we applied this tool purely to measure
the size of the latest repository for each system. It would have been convenient to apply the
tool to obtain monthly measurements of size but this was beyond our capability.
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Table 3. Best fit models for monthly growth trends in netFILES
system best growth trend model R2

Blender linear 0.99
Eclipse linear 0.99

FPC linear 0.98
GCC superlinear 0.99
GCL sublinear 0.98
GDB linear 0.99
GIMP sublinear 0.99

GNUBinUtils linear 0.99
NCBITools superlinear 0.98
WireShark superlinear 0.99
XEmacs sublinear 0.98

variants, one measuring all the contributors, called DEV [100], and one measuring the
number of developers which provided at least 80% of the effort in contributor-months,
called DEV [80]. We did this in order to try to distinguish the core team, generating
and evolving most of the code, from other less active contributors which may have
contributed with only a few items (e.g., defect fixes) over the lifetime of the project.

3 Results

3.1 Growth models

We modeled the netFILES, the filtered growth trends, over months. We found a very
good fit to linear, quadratic or exponential models, with R2 values7 ranging from 0.98
to 0.99, as can be seen in Table 3. It is worth noting that for GCC and GCL, the growth
model is fitted only over the period of active evolution). Five of the systems have
trends that follow linear models, three follow sublinear (quadratic) models and three
superlinear models (2 quadratic and 1 exponential). The high goodness of fit suggests
that work in these FLOSS communities happens at a regular, very predictable rate.

The net growth trends can be used as a simple estimation model of the amount of
new functionality implemented per month, assuming that there are no radical changes
such as, for example, the departure of key members in the core team, or an important
architectural restructuring. Careful projection of these growth trend models into the
future could be helpful for a given project and can be the basis for project specific effort
models. In the next sections we examine possible generic models, that are based on the
data from the 11 FLOSS projects studied and may have potential to be generalised, that
is, used across systems.

7 In this paper we used R2, the coefficient of determination, as our exploratory measure of
goodness of fit, where a value of 1 indicates a perfect fit and a value of 0 indicates no fit.
Further work should evaluate other measures such as the adjusted-R2, the mean (or median)
magnitude of relative error (MMRE) or the Akaike Information Criterion (AIC).
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3.2 Comparison of FLOSS data with the COCOMO model

The COnstructive COst MOdel (COCOMO) is a classic estimation model developed
by Barry Boehm and colleagues, based on data from closed source systems. Some
of its assumptions are described in [12]. As a starting point, we used here its earli-
est and possibly simplest version [3], called COCOMO 81, published in 1981. Given
that the COCOMO model has itself several variants, we used the default COCOMO
predictions generated by default by the SLOCCount tool. In this comparison, we are
assuming that COCOMO will be representative in the range of size values similar to
those of the studied FLOSS systems8. Figures 2 to 5 show the studied FLOSS sys-
tems as squares, and the COCOMO model as a solid line. In the four figures, the
x-axis represents size in KLOC and the y-axis represents EFFORT,DUR,DEV [100]
and DEV [80], respectively. For illustration purposes and as an initial exploration, we
superimposed a linear regression model to the FLOSS data, shown as a dashed line.
The figures display the mathematical expressions for COCOMO (power models) and
for the linear models based on the FLOSS data. Examining figures 2 to 5 one can
identify the following observations:

• 10 out of 11 projects display EFFORT that is less than the one predicted by CO-
COMO, overall suggesting higher productivity (as KLOC per contributor-month) in
FLOSS than in closed-source. Only the project with smallest KLOC in the sample
(GIMP) is close to COCOMO’s prediction. There is evidence in [10] that GIMP
grew up to 1 MLOC in the past and then shrinked to its current size (646 KLOC).
This could explain why GIMP is the project with the smaller productivity in the
sample.

• 8 out of 11 projects display values of DUR which are higher than COCOMO predic-
tions. This may be explained by the fact that the FLOSS projects are evolving sys-
tems over multiple releases while COCOMO represents software built from scratch
to achieve its first release. The FLOSS projects do not have, in general, a fixed sched-
ule and budget and they continue to evolve as long as there is interest and motivation
in their communities.

• 6 out of 11 projects show values of DEV [100] which are higher than COCOMO.
When looking at DEV [80], however (i.e., our approximation to the number of people
in the core team), only 1 out of 11 projects (namely GIMP) exceeds the team size
predicted by COCOMO.

• Overall, COCOMO 81 isn’t a good model for FLOSS data.
• The goodness of fit of the linear models fitted to the FLOSS data is poor. The best

linear model is the one between EFFORT and KLOC with R2 value of 0.34. This
means that only 34 percent of variance in the data is accounted for in the linear
model.

8 Unfortunately we could not check this when finalising this paper. There is a risk that in our
analysis we used COCOMO 81 beyond its range of validity.
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Fig. 2. EFFORT vs KLOC: FLOSS data (N=11) and COCOMO model.
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Fig. 3. DUR vs KLOC: FLOSS data (N=11) and COCOMO model.

3.3 FLOSS-based estimation models

In search for possible simple FLOSS-based generic estimation models we explored
further the linear correlation between size (measured not only in KLOC but also as
FILES) and EFFORT , DUR and DEV . We also defined netKLOC = KLOC∗ netFILES

FILES
and evaluated whether the net size values (netFILES and netKLOC) provided an im-
provement in the regression results obtained using KLOC and FILES.

Tables 4 and 5 show the parameters of linear models of the form y = (a∗ size)+b
and the corresponding R2 values, for all the systems and excluding Eclipse, respec-
tively. Parameters a and b are not reported when R2 is less than 0.1 because they are
considered as not meaningful. Figure 6 shows a scatter diagram and one of the linear
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Fig. 4. DEV[100] vs KLOC: FLOSS data (N=11) and COCOMO model.
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Fig. 5. DEV[80] vs KLOC: FLOSS data (N=11) and COCOMO model.

models superimposed as a line. In this Figure, it is possible to appreciate that Eclipse,
which is represented by the square closest to the right side of the plot, is one of the
possible outliers. 13 out of 16 models improved, in terms of R2, when Eclipse was ex-
cluded from the dataset. In Tables 4 and 5, best models are indicated in bold. The best
linear model, shown in Figure 7 is the one involving EFFORT as a linear function of
netFILES, excluding Eclipse (R2 value of 0.797).

These results suggest that it may be helpful to have a separate set of models for
FLOSS systems with particular characteristics (e.g., very large systems, such as those
greater than 5 MLOC, or systems based on different variants of the FLOSS processes –
company-led as opposed to community-led projects, – or particular technology, since
Eclipse was the only Java-based system in the sample).
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Table 4. Linear regression results - parameters a, b and R2 values
EFFORT DUR - duration
a,b,R2 a,b,R2

including Eclipse
KLOC 0.086, 29.909, 0.339 -, - , 0.012
FILES 0.0039, 119.58, 0.390 -, -, 0.001

netKLOC 0.076, 110.39, 0.326 - , - , 0.048
netFILES 0.0035, 156.61, 0.313 - , - , 8.8E-05

excluding Eclipse
KLOC 0.1327, -53.323, 0.387 0.0015, 6.1233, 0.153
FILES 0.0093, 3123, 0.66 - , - , 0.06

netKLOC 0.1699, 14.247, 0.499 0.0032, 5.4474, 0.525
netFILES 0.0139, 51.455, 0.797 - , - , 0.094

Table 5. Linear regression results -results for DEV metric
DEV[100] DEV[80]

a,b,R2 a,b,R2

including Eclipse
KLOC 0.027, 88.54, 0.101 0.0095, 29.57, 0.133
FILES 0.0017, 103.97, 0.219 0.0006, 35.14, 0.285

netKLOC 0.0287, 106.56, 0.139 0.0105, 35.38, 0.196
netFILES 0.0016, 119.2, 0.185 0.006, 40.07, 0.258

excluding Eclipse
KLOC - , - , 0.088 - , - , 0.07
FILES 0.004, 62.831, 0.391 0.0012, 24.787, 0.367

netKLOC 0.0626, 71.879, 0.196 0.0183, 27.401, 0.185
netFILES 0.0143, -19.009, 0.565 0.002, 25.998, 0.506

Contrary to what was expected, the removal of jumps in the monthly growth of
the studied systems did not lead to visible improvements in the goodness-of-fit of the
linear models. The best models involved EFFORT vs size but still with a low R2 value
of around 0.3. The worst models were obtained for DUR. As shown in Figure 3, the
studied FLOSS projects do not seem to have achieved its current size at similar rates.

3.4 Calculating the ‘cost’ of 1 MLOC in FLOSS

In order to address our research question given in the title of this paper and, more
precisely, in Section 2, we present some simple calculations, based on the best models
identified in the previous section. Since our best model is based on file counts, we need
to convert 1 MLOC into number of files. For the 11 FLOSS studied, the file size varied
between 50 and 284 lines of code, with an overall average of 125 lines of code per file.
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Using this average9, we assume that 1 MLOC will be equivalent to some 8,000 code
files. Taking this value and using our best model, the model ‘EFFORT vs netFILES
excluding Eclipse’, we obtain an estimate of 162.6 contributor years. Applying the
model ‘DUR vs netKLOC excluding Eclipse’, we calculate an estimate duration of 8.6
years. Dividing 162.6 by 8.6 gives a core team size of 18.8 contributors. Alternatively,
if we use the model ‘DEV [80] vs netFILES’ excluding Eclipse, we obtain a team size
of 41.9 core developers. Dividing 162.6 by 41.9 gives an estimated duration of 3.8
years. The two values of DEV and DUR can be seen, respectively, as lower and up-
per bounds of the estimate. These values differ from COCOMO 81 estimates. For a 1
MLOC project, COCOMO 81 predicts the need for 283 contributor-years (higher than
FLOSS estimates), with 62 developers (also higher than FLOSS) working during 4.6
years (within range, towards lower end). Our simple models are in line with section 3.2,

9 This is a simple calculation for illustration. In general, average values of software metrics
should either be used with care or not used because data distributions may be highly skewed
and in that case averages will not be meaningful [5].
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suggesting that FLOSS projects require less total effort and a smaller number of devel-
opers (core contributors) than closed-source. Our primitive analysis also suggests that
closed-source would perform comparatively better for duration than FLOSS.

4 Related work

In recent years, researchers have increasingly extracted data from FLOSS artefacts,
code repositories, defect databases and mailing lists in order to find interesting facts
(e.g., [17] [20]). To our knowledge, there have been no previous similar studies of large
FLOSS software, attempting to quantify the relationships between size, effort, duration
and team size. In a position paper, Amor et al. [1] have discussed the problem of effort
estimation in a FLOSS project and how classical estimation models may be improved
to be applicable to FLOSS projects. Liguo Yu [23] presented an indirect approach to
estimate maintenance effort in FLOSS, based on data from NASA SEL closed-source
and on Linux. He indirectly measured effort by looking at the number of lines of code
(and modules) added, deleted and modified. His work focused on the amount of effort
for individual maintenance tasks and, for this reason, is not directly comparable to ours,
which focused on total effort at system level. Koch [11] [13] studied the impact of tool
usage on the efficiency of 30 FLOSS projects from SourceForge.net finding, in
most of the cases, an intriguing negative relationship. In a different paper, the same
author [12] reported on the testing of two hypotheses involving different types of
effort models, including COCOMO, in a sample of more than 8,000 projects from
SouceForge.net. Differences in approach and the fact that the vast majority of projects
in this study were small (involving less than 10 developers), make this study difficult
to compare to ours, which focused on larger projects.

The majority of software estimation research has been conducted for closed-source
software and initial development(e.g., [18]). One frequently cited software estimation
model, based on closed-source software, is COCOMO [3]. We have compared CO-
COMO 81 - the earliest and simplest version – to our FLOSS data, and found that it is
not appropriate to model the productivity of our subset of large FLOSS projects. Much
more research needs to be done (e.g., repeat the comparison using COCOMO II [4] and
other more recent models), but our initial finding suggests that FLOSS-specific mod-
els are advisable. This is not surprising if one considers the particular characteristics
of FLOSS (e.g., [19]).

The proportion of linear, superlinear and sublinear growth trends (cf. Table 3)
is generally in agreement with some previous empirical studies of FLOSS growth
trends [9]. The predominance of linear and superlinear trends might be questioning
the assumed role of accumulated complexity [15] [16] as a growth constraining fac-
tor. An alternative hypothesis to be studied is that linearly and superlinearly growing
projects are effective at controlling complexity.

As far as we know, our work is the first that explore the impact of removing outliers
or jumps in the monthly growth trends. In future work this type of outlier detection
needs to be done more systematically than our simple visual detection.
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5 Threats to Validity

Our empirical study is subject to many threats to validity. A list of threats that are likely
to apply in general to empirical studies of FLOSS is given in [8]. In general, one can
identify three set of threats: threats to construct, internal and external validity.

5.1 Construct validity

Our estimation of effort is far from perfect. Accurately measuring effort in open source
projects is difficult. We have counted the number of active committers (i.e., developers
who have checked in code into the repositories in a given month) and assumed that
each contributed with a ’contributor-month’. Many developers are part-time volunteers
and others may be paid employees of sponsoring companies working part-time or full-
time on a given FLOSS project. It is known that in some cases, code is committed to
the repository by a gate keeper, not by the actual developer. This may also bias the
effort measures. One way to improve measuring effort would be to conduct a survey
of FLOSS contributors to know better their work patterns and use this knowledge to
adjust our measurements. Surveys, however, may require considerable research time
and resources, including the willingness of FLOSS contributors to participate. Our
effort measurement may be more accurate for FLOSS projects like Eclipse, where a
portion of contributors are full-time employees of a sponsoring company (in this case,
IBM).

Our measures of size (KLOC and FILES) may include automatic generated code
that may have biased the results: the system will be bigger than it should have been
if all the code were generated and evolved manually. The measured repositories may
include external libraries with or without any modification. Code may be ported in
FLOSS communities from one project to another biasing productivity measures. We
were not able to quantify how many lines of code have been ported, as opposed to
generated from scratch. In addition to this, our FILES measure includes all files in the
repository. We plan, in the future, to measure the amount of code files only and check
whether the modelling results improve. Cloning, or code duplication within the same
project [2], is also a phenomenon present in open source. Code cloning may increase
productivity but may have the opposite effect as simultaneously evolving many clones
may slow down progress.

5.2 External and internal validity

The sample of projects that we studied is very small when compared with the total
number of open source projects. A popular open source hosting website, sourceforge.
net, lists currently more than 300,000 projects. However, only a small fraction of the
total number of open source projects can be considered successful [6]. Even smaller is
the number of projects that have reached 1 MLOC. The sample we studied is not truly
random. We selected projects that were feasible to analyse, based on their availability
in the FLOSSMetrics10 project database.
10 flossmetrics.org
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The tools we used in this study to extract and analyse the data may contain defects
that may have affected the results. We collected, analysed and plotted the data using
spreadsheet software which, despite our best efforts, is also error-prone. Unfortunately
we did not have enough time for an independent data extraction and analysis but we
hope that other researchers will replicate and extend this work in the future. We were
not aware of any other possible threats to internal validity apart from the measurement
issues already mentioned.

6 Further work

This research could be continued in a number of ways. For example, our FILES
measurement considers all files in the repository (e.g., code, configuration, data, web
pages). It is likely that better results will be achieved by considering code files only.
Better results may be also be achievable by using robust regression [14]. Modelling
techniques different to regression have been tried in classical (i.e., closed-source or
proprietary) cost estimation (e.g., [18]) and these could also be applied to FLOSS data.
We also would like to exclude any automatically generated files since they will bias
the results (e.g., productivity may appear higher than it is). Another further topic is the
experimentation with different approaches to extract the outliers in growth trends. In
Figure 1 (right) one can identify ‘jumps’ that were not apparent when looking at the
unfiltered data (left). One question is how to define formally what is a growth outlier,
identify its nature and how frequent they happen in FLOSS evolution. It wouldn’t be
surprising if the presence of jumps is typical for FLOSS processes, where external
code is ‘borrowed’ and re-used.

By measuring the amount and type of refactoring work (e.g., [22]), code transfor-
mations that preserve functionality and decrease complexity, in FLOSS projects and
combining this data with effort measures, we may be able to understand better the im-
pact of accumulated complexity and why the size of some projects has been growing
linearly or superlinearly.

In order to improve this research (e.g., increase the validity of the findings), one
should analyse an additional number of FLOSS projects. The linear models we used
are simple and do not reflect any theory about FLOSS. Theories based on a deeper
understanding of FLOSS (e.g., [19]) and new metrics (e.g., [10]) may lead to more
accurate and helpful effort models.

7 Conclusions

Getting people to develop (via evolution) software systems of one million lines of
code (1 MLOC) or more, at no cost, as a hobby or leisure activity, is an impressive
achievement of a number of FLOSS communities. Rather than studying motivational
factors, in this paper, we took a strictly quantitative point of view by gathering data on
elevent large FLOSS systems and studying relationship between size, on the one hand,
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and effort, duration and team size. Productivity, for large FLOSS systems like these is
a topic which does not seem to have been empirically studied.

The comparison between data from 11 FLOSS projects and an early version of CO-
COMO [3] suggested that FLOSS might be more effective than closed-source projects.
It also suggested that FLOSS-based effort estimation models are needed. Our best
model to date, using simple linear regression, leaves still much room for improvement
(R2 = 0.79). Better models may be obtained by exploring theory-based models, im-
proving the measurement approach, adding more FLOSS systems to the sample and
using more advanced techniques than linear regression.

One of the most interesting findings of our study was that, when removing suspi-
ciously large jumps in the growth trend of FLOSS projects over time (i.e., calculating
the net size), simple regression trends can model this ‘net’ growth very well. In agree-
ment with previous studies [9], these trend models revealed either linear, sublinear or
superlinear growth (depending on the system studied). These regular growth trends
could be a surprise to FLOSS community leaders and stakeholders and may motivate
them to quantitatively examine the evolution of their projects.

We showed how our best models could be used to estimate effort, duration and
team size for the development (via evolution) of a 1 MLOC system. Since FLOSS
projects seek mainly to attract volunteers and not to hire paid professionals, the current
practical use of effort models will be very limited. In the future, however, this type of
measurements and models may find their way into helping FLOSS communities to
achieve their goals in a more satisfactory manner, probably in a yet unforeseen way.
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