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Abstract: In this paper the asymptotic stability of equilibria and periodic points of the following higher 
order rational difference equation  
 

௡ାଵݔ ൌ
௡ି௞ݔߙ

ߚ ൅ ௡ିଵݔ௡ݔߛ … ௡ି௞ݔ
, ݇ ൒ 1, ݊ ൌ 0,1, … 

 
is studied where the parameters ߙ, ,ߚ ,௞ିݔ are positive real numbers, and the initial conditions ߛ … ,  ଴ݔ
are given arbitrary real numbers. The forbidden set of this equation is found and then, the order reduction 
method is used to facilitate the analysis of its asymptotic dynamics.  

 
Key words: Difference equation; Equilibrium point; Periodic point; Convergence; semiconjugacy. 
 

INTRODUCTION 
 
Difference equations may appear as solutions of various phenomena or as a discretized system of delay or 

non-delay differential equations. They are very important in both theory and applications; for applications in 
biology see (Brauer et al., 2001), in economics see (Ishiyama et al., 2005) and (Matti, 1996), in medical sciences 
see (Moye, et al., 2000), and in military sciences see (Epstein, 1985). The main goal in the study of difference 
equations is to understand the asymptotic behavior of solutions rather than trying to find an explicit formula for 
solutions. This basically is not only because the explicit solutions are hard to find but also the explicit solutions 
may still represent a complex dynamics and they yet may require a qualitative analysis to understand their 
dynamics.  

The ratio of any two polynomials of a recursive sequence is called a rational difference equation. Rational 
difference equations are important as practical classes of difference equations. Most of the works in the literature 
of rational difference equations have treated the first and second order difference equations. For second order 
rational difference equations we refer the reader to the monograph of Kullenovic and Ladas, 2002. In this paper 
we study the dynamics of the following ሺ݇ ൅ 1ሻ-order rational difference equation  

 
௡ାଵݔ ൌ ఈ௫೙షೖ

ఉାఊ௫೙௫೙షభ…௫೙షೖ
,   ݊ ൌ 0,1, …                                                                        (1) 

 
where ݇ ൒ 1 and the parameters ߙ, ,ߚ ,௞ିݔ are positive. We allow the initial conditions ߛ ,௞ାଵିݔ …  ଴ to takeݔ
any arbitrary value out of the forbidden set of equation (1). Let ܫ be some interval of positive real numbers and 
݂: ௞ାଵܫ ՜ ,௞ିݔbe a continuously differentiable function. Then for every initial conditions ሺ ܫ ,௞ାଵିݔ … , ଴ሻݔ א
 ௞ାଵ, the difference equationܫ

 
௡ାଵݔ ൌ ݂ሺݔ௡, ,௡ିଵݔ … , ݊   ,௡ି௞ሻݔ ൌ 0,1, …                                                                   (2) 

 
has a unique solution ሼݔ௡ሽ௡ୀି௞

∞ . The point ݔ א ܫ  is called an equilibrium of equation (2) (or simply an 
equilibrium of ݂ ) if ݂ሺݔ, ,ݔ … , ሻݔ ൌ ݔ , i.e., ݔ௡ ൌ ݔ  for all ݊ ൒ 0  (such a solution is also called a trivial 
solution). The point ሺܿଵ, … , ܿ௞ାଵሻ is called a ሺ݇ ൅ 1ሻ-cycle if ݔሺ௞ାଵሻ௡ି௜ ൌ ܿ௞ାଵି௜ for all ݅ ൌ 0,1, … , ݇. In this 
case we say that ሼݔ௡ሽ is periodic with period ሺ݇ ൅ 1ሻ. The linearized equation associated with equation (2) about 
the equilibrium ݔ is  

 

௡ାଵݖ ൌ ෍
߲݂
௜ݑ߲

௞

௜ୀ଴

ሺݔ, …  ,௡ି௜ݖሻݔ

 
and its corresponding characteristic equation is defined by  
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௞ାଵߣ െ ∑ డ௙

డ௨೔

௞
௜ୀ଴ ሺݔ, … ௞ି௜ߣሻݔ ൌ 0.                                                                           (3) 

 
An equilibrium ݔ of equation(2) is called locally stable if for every ߳ ൐ 0, there exists ߜ ൐ 0 such that for 

the solution ሼݔ௡ሽ௡ୀି௞
∞  of equation (2) with |ିݔ௞ െ |ݔ ൅ ௞ାଵିݔ| െ |ݔ ൅ ڮ ൅ ଴ݔ| െ |ݔ ൏ ௡ݔ| we have ߜ െ |ݔ ൏ ߳ 

for all ݊ ൒ 1. Furthermore, if there exists ߛ ൐ 0 such that for the solution ሼݔ௡ሽ௡ୀି௞
∞  of equation (2) with 

௞ିݔ| െ |ݔ ൅ ௞ାଵିݔ| െ |ݔ ൅ ڮ ൅ ଴ݔ| െ |ݔ ൏ ∞we have lim௡՜ ߛ ௡ݔ ൌ  is called locally asymptotically ݔ then ,ݔ
stable. Linearized stability theorem indicates that if all roots of equation (3) lie inside the open unit disk |ߣ| ൏ 1, 
then the equilibrium ݔ of equation (2) is locally asymptotically stable. If at least one of the roots of equation (3) 
has modulus greater than one, then the equilibrium ݔ of equation (2) is unstable, see e.g., (Kocic, et al., 1993).  

ݔ  is called a global attractor on an interval ܫ  if for every solution ሼݔ௡ሽ௡ୀି௞
∞  of equation (2) with 

,௞ିݔ ,௞ାଵିݔ … , ଴ݔ א ∞we have lim௡՜ ,ܫ ௡ݔ ൌ ݔ . When ݔ  is locally stable and a global attractor, we call it 
globally asymptotically stable. The forbidden set of equation (2) is the set of all (k+1)-tuples ሺ ଵ݂, ଶ݂, … ௞݂ାଵሻ, 
where they can not be taken as the initial conditions for an infinite well-defined sequence ሼݔ௡ሽ on its domain. In 
other words, the forbidden set of equation (2) is the set of all initial conditions such that arbitrary iterations of the 
right hand side of equation (2) are not well-defined.  

The following definitions, lemma, corollary, and theorems are needed to study the global behavior of 
solutions of equation (1).  
 
Definition 1: 

(for original ideas see (Elaydi, 2000) or (Sedaghat, 2003))  Consider equation (2) and assume that ܦ ك ܴ௞ାଵ 
is nonempty. 
1. Suppose that ሺݔଵ, … ௞ାଵሻݔ א ܴ௞ାଵ. Then צ ݔ ൌצ max ሼ ,ଵݔ … ,  ݔ Also, if .ݔ ௞ାଵሽ denotes the sup-norm ofݔ

is the equilibrium of ݂ then ܺ ൌ ሺݔ, … , ሻݔ א ܴ௞ାଵ is an equilibrium of its vectorization that is 
  

௙ܸሺݔଵ, … ௞ାଵሻݔ ൌ ሺ݂ሺݔଵ, … ,௞ାଵሻݔ ,ଵݔ … ,  .௞ሻݔ
 

2. If there is a non-constant function ܪ א ,ܦሺܥ ܴሻ such that ܪ ל ௙ܸ ൌ ߶ ל ߶ for some ܦ on ܪ א ,ሻܦሺܪሺܥ ܴሻ 
then ௙ܸ is also called a ሺܦ, ,ܪ ߶ሻ-semiconjugate of ܴ௞ାଵ. The mapping ܪ is called a link map and ߶ is 
called the factor map. For each ݐ א ሻݐଵሺିܪ ሻ, the level setܦሺܪ ת ௧ܪ abbreviated as ,ܦ

ିଵ is called a fiber of 
  .ܦ in ܪ

3. A continuous mapping ݄: ܦ ՜ ܴ is said to be bending at a point ݔ א  ܦ is not an isolated point in ݔ if ܦ
and ݔ ӏא ሾ݄ିଵሺ݄ሺݔሻሻሿל ת  .ܵ denotes the interior of לܵ where ,ܦ

4. An equilibrium ݔ of equation (2) is exponentially stable under ݂ relative to some nontrivial interval ܫ 
containing ݔ  if there is ߛ א ሺ0,1ሻ such that for every solution ሼݔ௡ሽ of equation (2) with initial values 
,௞ିݔ … , ଴ݔ א ݊ we have for all ܫ ൒ 1 that |ݔ௡ െ |ݔ ൏ ܿ ௡ whereߛܿ ൌ ܿሺݔ଴, …   .݊ ௞ሻ is independent ofିݔ

5. An equilibrium ݔ of a map ݂: ܴ ՜ ܴ is semistable (from the right) if for any ߳ ൐ 0 there exists ߜ ൐ 0 such 
that if 0 ൏ ଴ݔ െ ݔ ൏ ଴ሻݔthen |݂௡ሺ ߜ െ |ݔ ൏ ߳ for all ݊ ൒ 1. If in addition, lim௡՜∞ ݂௡ ሺݔ଴ሻ ൌ  whenever ݔ
0 ൏ ଴ݔ െ ݔ ൏ ߛ  for some ߛ ൐ 0 , then ݔ  is said to be semiasymptotically stable (from the right). 
Semistability (semiasymptotic stability) from the left is defined analogously. 

 
Theorem 1.1: 

(see (Sedaghat, 2003)). Let ௙ܸ is a ሺܦ, ,ܪ ߶ሻ-semiconjugate map and ݔ א   .is an equilibrium of ௙ܸ ܦ
ݐ .1 ൌ   .߶ ሻ is an equilibrium ofݔሺܪ
2. (Boundedness). Assume that |ܪሺݔሻ| ՜ ∞ as צ ݔ ՜צ ∞. If the sequence ሼ߶௡ሺݐ଴ሻሽ is bounded for some 

଴ݐ א ሻ, then the sequence ሼܦሺܪ ௙ܸ
௡ሺݔ଴ሻሽ with ݔ଴ א ௧బܪ

ିଵ is bounded.  

3. (Stability and instability). Assume that ܪ is bending at ݔ. If we set ݐ ൌ   ሻ thenݔሺܪ
(a) If ݔ is stable (asymptotically stable) under ௙ܸ, then ݐ is a stable (asymptotically stable) equilibrium of 
߶.  
(b)  If ݐ is unstable under ߶, then ݔ is unstable under ௙ܸ.  

4. (Attractivity of invariant fibers). Let ݐ א  If .ܫ be an isolated equilibrium of ߶ which attracts all points in ܫ
଴ݔ א ܦ ת ሻ and ሼܫଵሺିܪ ௙ܸ

௡ሺݔ଴ሻሽ is bounded, then ሼ ௙ܸ
௡ሺݔ଴ሻሽ converges to the invariant fiber ିܪଵሺݐሻ.  

 
2. The Forbidden Set: 

Consider equation (1). If ߙ ൌ 0, the solution is trivial. If ߛ ൌ 0  then equation (1) reduces to a linear 
equation. If ߚ ൌ 0 then the solution is periodic with period ݇ ൅ 1. Thus, we assume that all the parameters are 

nonzero. A change of variables ݔ௡ ൌ ටఉ

ఈ

ೖశభ
௡ݕ ௡ followed by the changeݕ ൌ   ௡ reduces equation (1) toݔ
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௡ାଵݔ ൌ ௖௫೙షೖ

ଵା௫೙௫೙షభ…௫೙షೖ
,   ݊ ൌ 0,1, …                                                                          (4) 

 

where ܿ ൌ ఈ

ఉ
ටఉ

ఈ

ೖశభ
. Hence, , we consider equation (4) instead of equation (1), hereafter. Now we are ready to 

obtain the forbidden set of equation (4).  
 

Theorem 2.1: 
Consider equation (4). Assume that ܨ is the forbidden set for this equation. Then 
  

ܨ ൌ ራሼ

∞

௠ୀ଴

ሺ ଵ݂, ଶ݂, … , ௞݂ାଵሻ: ଵ݂ ଶ݂ … ௞݂ାଵ ൌ
െ1

∑ ܿ௜௠
௜ୀ଴

ሽ 

 
Proof. Assume the initial conditions ିݔ௞, ,௞ାଵିݔ …   ଴ satisfyݔ
 

௞ାଵିݔ௞ିݔ … ଴ݔ ൌ
െ1

∑ ܿ௜௠
௜ୀ଴

 

 
for some ݉ א ܰ ׫ ሼ0ሽ. Then equation (4) implies that  
 

଴ݔଵݔ … ଵି௞ݔ ൌ
ଵିݔ଴ݔܿ … ௞ିݔଵି௞ݔ

1 ൅ ଴ݔ … ௞ିݔ
ൌ

ܿ ൬ െ1
∑ ܿ௜௠

௜ୀ଴
൰

1 െ ∑ ܿ௜௠
௜ୀ଴

ൌ
െ1

∑ ܿ௜௠ିଵ
௜ୀ଴

. 

 
Therefore, we obtain from equation (4) that  
 

ଵݔଶݔ … ଶି௞ݔ ൌ
଴ݔଵݔܿ … ଵି௞ݔଶି௞ݔ

1 ൅ ଵݔ … ଵି௞ݔ
ൌ

ܿ ൬ െ1
∑ ܿ௜௠ିଵ

௜ୀ଴
൰

1 െ ∑ ܿ௜௠ିଵ
௜ୀ଴

ൌ
െ1

∑ ܿ௜௠ିଶ
௜ୀ଴

. 

 
Continuing in this fashion by induction we obtain that  
 

௠ିଵݔ௠ݔ … ௠ି௞ݔ ൌ
െ1

∑ ܿ௜௠ି௠
௜ୀ଴

ൌ െ1. 

 
As a result the iteration process stops at ݔ௠ାଵ. Conversely, assume iteration process stops at some point 

௡బିଵݔ௡బݔ ,.௡బାଵ, i.eݔ … ௡బି௞ݔ ൌ െ1. Then equation (4) implies that  
 

௡బିଶݔ௡బିଵݔ … ௡బି௞ିଵݔ ൌ
െ1

1 ൅ ܿ
. 

 
Again using this fact and equation (4) we obtain that  
 

௡బିଷݔ௡బିଶݔ … ௡బି௞ିଶݔ ൌ
െ1

1 ൅ ܿ ൅ ܿଶ. 

 
Continuing in this manner we get  

ଵିݔ଴ݔ … ௞ିݔ ൌ
െ1

∑ ܿ௜௡బ
௜ୀ଴

 

 
or equivalently ሺିݔ௞, ,௞ାଵିݔ … ଴ሻݔ א   .This completes our inductive proof .ܨ
 

3. Linearized Stability: 
The first step to understand of the dynamics is to find the equilibria and find their stability type. In this section 

we investigate the local asymptotic stability of the equilibria of equation (4). Simple calculations show that origin 
is always an equilibrium for equation (4) and if ܿ ൐ 1 then it has a second equilibrium ݔ ൌ √ܿ െ 1ೖశభ . The 
following theorem deals with the local asymptotic stability of the equilibria. Note that throughout the rest of this 
paper, the initial conditions are assumed to be taken out of the forbidden set ܨ. 
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Theorem 3.1: 
Consider equation (4). Then,  

(a)  origin is locally asymptotically stable for ܿ ൏ 1, while it is unstable when ܿ ൐ 1.  
(b)  For the case of ܿ ൐ 1, the positive equilibrium ݔ ൌ √ܿ െ 1ೖశభ

 is stable.  
 

Proof. For part (a), the linearized equation associated with equation (4) about origin is ݖ௡ାଵ െ ௡ି௞ݖܿ ൌ
0, ݊ ൒ 0. Therefore, the corresponding characteristic equation is ߣ௞ାଵ െ ܿ ൌ 0, i.e., ߣ ൌ √ܿೖశభ . Since the origin is 
locally asymptotically stable if ܿ ൏ 1 and is unstable if ܿ ൐ 1.  

(b) Simple calculations show that the linearized equation associated with equation (4) about the positive 
equilibrium ݔ ൌ √ܿ െ 1ೖశమ

 is  
 

௡ାଵݖ ൅
ܿ െ 1

ܿ
௡ݖ ൅

ܿ െ 1
ܿ

௡ିଵݖ ൅ ڮ ൅
ܿ െ 1

ܿ
௡ି௞ାଵݖ െ

1
ܿ

௡ି௞ݖ ൌ 0,   ݊ ൌ 0,1, … 

 
Therefore the corresponding characteristic equation is  
 

௞ାଵߣ ൅ ௖ିଵ

௖
௞ߣ ൅ ڮ ൅ ௖ିଵ

௖
ߣ െ ଵ

௖
ൌ 0,                                                                         (5) 

 
Some algebra show that equation (5) is equivalent to 
 

ሺఒೖశభିଵሻሺఒିଵ/௖ሻ

ఒିଵ
ൌ ߣ   ,0 ് 1,                                                                                  (6) 

  
Therefore, ߣ ൌ 1/ܿ is one of the roots of equation (6). Since ܿ ൏ 1, by local asymptotic stability Theorem 

we conclude that the positive equilibrium ݔ ൌ √ܿ െ 1ೖశభ
 is unstable. The proof is complete. 

 
Remark 1: 

The above theorem is sufficient to completely describe the local dynamics of the equilibrium for the case 
ܿ ൏ 1. However, for the case ܿ ൑ 1, more investigation are needed. For ܿ ൌ 1 the characteristic equation about 
origin has modulus equal to one, the linearization fails to analyze the asymptotic stability of origin. Thus, it may 
have a complex dynamics near this point. On the other hand consider equation (6) and assume that ܿ ൐ 1. 
Equation (6) has a real root ߣ ൌ 1/ܿ with modulus less than one but this equation has ݇ ൅ 1 roots in the 
following form 

  

௠ߣ ൌ cos ൬
ߨ2݉
݇ ൅ 1

൰ ൅ ݅ sin ൬
ߨ2݉
݇ ൅ 1

൰ ,   ݉ ൌ 0,1, … , ݇, 

 
all with modulus equal to one. So, if ܿ ൐ 1 then linearization tells us nothing about the stability of the positive 
equilibrium. In the next section we discuss these cases in details.  

 
3. Semiconjugate Factorization: 

The main purpose of this section is to analyze the local dynamics near equilibria for the cases ܿ ൒ 1 as well 
as of the global asymptotic dynamics of the equation (4). Although the previous section, using linearization, 
showed that the origin is locally asymptotically stable for ܿ ൏ 1. Yet the global nature of asymptotic stability can 
not be inferred from linearization. Also, we saw that for ܿ ൐ 1 the linearized equation about the positive 
equilibrium has several roots; all with modulus equal to unity. As a result, more powerful methods are necessary 
in order to analyze the dynamics of equation (4). In this section, we apply semiconjugacy analysis to examine the 
global nature of equation (4). The idea is to reduce the order of a higher order difference equation such that the 
analysis of the reduced system is feasible. Then, this is helpful when this analysis can facilitate the understanding 
of the dynamics for the original difference equation. 

 
Let ݂ሺݔଵ, ,ଶݔ … , ௞ାଵሻݔ ൌ ௖௫ೖశభ

ଵା௫భ௫మ…௫ೖశభ
. Consider the vectorization of ݂ i.e.,  

 

௙ܸሺݔଵ, ,ଶݔ … , ௞ାଵሻݔ ൌ ൬
௞ାଵݔܿ

1 ൅ ଶݔଵݔ … ௞ାଵݔ
, ,ଵݔ … ,  .௞൰ݔ

 
Set ܪሺݔଵ, ,ଶݔ … , ௞ାଵሻݔ ൌ ଶݔଵݔ …   ௞ାଵ and note thatݔ
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ሺܪ ௙ܸሺݔଵ, ,ଶݔ … , ௞ାଵሻሻݔ ൌ
ଶݔଵݔܿ … ௞ାଵݔ

1 ൅ ଶݔଵݔ … ௞ାଵݔ
ൌ

,ଵݔሺܪܿ ,ଶݔ … , ௞ାଵሻݔ
1 ൅ ,ଵݔሺܪ ,ଶݔ … , ௞ାଵሻݔ

, 

 
So the map ܪ makes ௙ܸ a ሺܦ, ,ܪ ߶ሻ-semiconjugate map with ܦ being the nonnegative orthant of ܴ௞ାଵ, 

i.e., ܦ ൌ ሾ0,∞ሻ௞ାଵ, and the map  
 

߶ሺݐሻ ൌ
ݐܿ

1 ൅ ݐ
, 

 
serving as the factor map on ሾ0,∞ሻ. Therefore, equation (4) is a semiconjugae factorization of the well-known 

Ricatti difference equation ݐ௡ାଵ ൌ ߶ሺݐ௡ሻ ൌ ௖௧೙

ଵା௧೙
. In the sequence, we consider three cases as follow:  

 
Case I: 

0 ൏ ܿ ൏ 1; In this case we claim that  
 

0 ൑ ௡ାଵݔ ൑ ۀ௡/௞ାଵڿܿ max ሼ ,௞ିݔ ,௞ାଵିݔ … , ݊   ,଴ሽݔ ൒ െ݇, 
 

where ۀ݊ڿ is the greatest integer which is less than or equal to ݊. To prove the above claim note that it is true for 
all െ݇ ൑ ݊ ൑ െ1. Assume that it is true for all integers less than or equal to some integer ݊ሺ݊ ൐ െ1ሻ. Then 
  

௡ାଵݔ ൌ
௡ି௞ݔܿ

1 ൅ ௡ିଵݔ௡ݔ … ௡ି௞ݔ
 

൑  ௡ି௞ݔܿ

൑ ڿܿ
௡ି௞
௞ାଵۀାଵ max ሼ ,௞ିݔ ,௞ାଵିݔ … ,  ଴ሽݔ

ൌ ௡ାଵڿܿ
௞ାଵۀ max ሼ ,௞ିݔ ,௞ାଵିݔ … ,  ,଴ሽݔ

 
and this completes our inductive proof. Therefore, in this case every positive solution of equation (4) converges 
exponentially to origin.  

 
Case II: 

ܿ ൐ 1; In this case the factor map ߶ has a positive equilibrium ݐ ൌ ܿ െ 1. Recall that in a Ricatti equation 
the positive equilibrium is globally asymptotically stable (see (Kulenovic et al., 2002 )). Hence, ݐ is globally 
asymptotically stable equilibrium of ߶. Also, since the sequence ሼ߶ሺݐ଴ሻሽ௡ୀ଴

∞ , ଴ݐ א ሺ0,∞ሻ is bounded (this is 
evident by the global asymptotic stability of ݐ), Theorem 1.1(ii) implies that the sequence ሼ ௙ܸ

௡ሺݔ଴ሻሽ௡ୀ଴
∞ , ଴ݔ א

ሺ0,∞ሻ௞ାଵ is bounded. Thereby, we conclude from Theorem 1.1(iv) that the sequence ሼ ௙ܸ
௡ሺݔ଴ሻሽ௡ୀ଴

∞  converges to 

the invariant fiber ܪ௧
ିଵ  since the sequence ሼ߶ሺݐ଴ሻሽ௡ୀ଴

∞  converges to ݐ . Now, consider the fiber ܪ௧
ିଵ . If 

ሺݔଵ, ,ଶݔ … ௞ାଵሻݔ א ௧ܪ
ିଵ then some simple algebra show that  

 

௙ܸ
௞ାଵሺݔଵ, ,ଶݔ … , ௞ାଵሻݔ ൌ ሺݔଵ, ,ଶݔ … ,  ,௞ାଵሻݔ

 
Therefore, every member of ܪ௧

ିଵ  is a ሺ݇ ൅ 1ሻ-cycle of ௙ܸ ; in other words, it is a periodic orbit of 
equation (4) of period ሺ݇ ൅ 1ሻ. Then, in this case every solution of equation (4) converges to a ሺ݇ ൅ 1ሻ-cycle.  

 
Case III: 

ܿ ൌ 1; In this case origin is the unique equilibrium of equation (4) and ߶. Some calculations show that  
 

߶′ሺ0ሻ ൌ 1,   ߶′′ሺ0ሻ ൌ െ2, 
 
Therefore by Theorem 1.2 origin is semiasymptotic stable equilibrium of ߶ form the right, i.e., origin attracts 

the sequence ሼ߶௡ሺݐ଴ሻሽ for all ݐ଴ א ሺ0,∞ሻ. So, by an analysis precisely similar to that of used in the previous case 
we conclude, by Theorem 1.1(iv), that the the fiber ܪ଴

ିଵ attracts every solution of equation (4) since origin 
attracts every solution of the sequence ሼ߶௡ሺݐ଴ሻሽ. Now, assume that ሺݔଵ, ,ଶݔ … , ௞ାଵሻݔ א ଴ܪ

ିଵ. Then  
 

ଶݔଵݔ … ௞ାଵݔ ൌ 0, 
 

and therefore, every solution of equation (4) either converges to origin or to a point in one of ሺ݇ ൅ 1ሻ coordinate 
planes in ܴ௞ାଵ, i.e., the following set 
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ܵ ൌ ሼሺݔଵ, ,ଶݔ … , 1 ׌ |௞ାଵሻݔ ൑ ݅ ൑ ݇ ൅ ו 1 ௜ݔ  ൌ 0 ሽ.                                                        (7) 
 

elements of the attracting set ܵ (note that ܵ ൌ׫ ௜ܵ, where ௜ܵ are the coordinate planes) are ሺ݇ ൅ 1ሻ-cycles of 
equation (4). To prove this consider ሺݔଵ, … , ,௜ݔ 0, ,௜ାଵݔ … , ௞ାଵሻݔ א ܵ. Then, it is easy to verify that  

 

௙ܸ
௞ାଵሺݔଵ, … , ,௜ݔ 0, ,௜ାଵݔ … , ௞ାଵሻݔ ൌ ሺݔଵ, … , ,௜ݔ 0, ,௜ାଵݔ … ,  ௞ାଵሻ.                                              (8)ݔ

 
Consequently, every solution of equation (4) either converges to the origin or to a periodic orbit of period 

ሺ݇ ൅ 1ሻ, that is in a coordinate plane of ܴ௞ାଵ. We now summarize the above arguments into the following 
theorem that is one of the main results of this paper.  

 
Theorem 4.1: 

(Basic convergence Theorem)  Assume Equation (4) is given. Then,  
(i)  For 0 ൏ ܿ ൏ 1, every positive orbit of equation (4) converges exponentially to origin. This implies that the 

equation has no other periodic orbit except the trivial fixed point (i.e., origin).  
(ii)  When ܿ ൒ 1, any cycle of the equation (4) is a ሺ݇ ൅ 1ሻ-cycle and the set of all ሺ݇ ൅ 1ሻ-cycles is given by 

equation (7). Furthermore  
1. For ܿ ൌ 1, every positive orbit of equation (4) either converges to origin or to a ሺ݇ ൅ 1ሻ-cycle.  
2. When ܿ ൐ 1, every positive solution of equation (4) converges to a ሺ݇ ൅ 1ሻ-cycle.  
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