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Abstract— Swing leg retraction, the backward rotation of
the swing leg prior to heel-strike, is known to have several
advantages in legged locomotion. To achieve this motion, a hip
torque is required at the end of the swing phase to brake
the forward rotation of the leg and/or accelerate its backward
motion. In walking, pre-emptive push-off of the stance leg
also occurs at the end of the swing, so its relative timing
with late-swing retracting torque influences gait energetics. To
find the best relative timing between the stance leg’s push-
off force and the swing leg retraction torque, we calculate
their work-based energetics in a simple bipedal model using
impulsive approximations and with the aid of the so-called
overlap parameter that quantifies the relative order and the
percentage overlap of the push-off and retraction impulses.
By minimizing the energetic cost of the gait, we found that
it is energetically favorable to start with the push-off force,
and postpone braking the leg swing until completely after the
push-off (impulsive force/torque). The implication for the more
realistic non-impulsive cases is to apply the retraction torque
at the very end of the push-off before heel-strike. We show that
the results are valid for many other bipedal models, for both
periodic and aperiodic gaits, and regardless of the actuator
efficiencies for positive and negative work.

I. INTRODUCTION

Although legged robots might be significantly different

from their biological counterparts, both groups are subject

to the same mechanics principles governing their motions.

Therefore, the insights achieved from the analysis of human

and animal locomotion, especially the gait characteristics that

are common in many organisms, may help us enhance the

performance of legged robots.

A. Swing leg retraction: a common gait characteristic in

biological legged locomotion

When walking or running, humans rotate their swing leg

forward (protraction) during most of the swing phase, and

just before the swing foot hits the ground they apply a hip

torque to brake and even reverse the rotation of the swing

leg [1]. This late-swing rotation reversal, known as swing

leg retraction, is also observed in different gaits of numerous

terrestrial animals [2]. In fast gaits, e.g. running, galloping, or

trotting, swing leg retraction can be easily seen. In walking,

because of the short duration of retraction (about 20% of the

gait period in humans) and small leg angular velocities at

the end of the swing, the changes in leg orientation caused

by retraction are not large enough to be easily seen by eyes

or even on videos. However, swing leg retraction in walking

can be clearly seen when hip angle motions are quantified.
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B. The advantages of swing leg retraction

Why is leg retraction a common characteristic among

different gaits of many legged organisms? Previous studies

using theoretical models and physical robots have revealed

several benefits of swing leg retraction.

Seyfarth et. al. [3] showed that swing leg retraction im-

proves running stability by substantially increasing the range

of parameters (e.g. average speed, apex height) for which

stable periodic running is possible. For a simple bipedal

model walking passively down a shallow slope, Wisse et. al.

[4] showed that all gaits without a retraction phase are con-

sistently unstable, whereas a mild retraction speed improves

the stability by reducing the size of the eigenvalues of the

Jacobian matrix of the Poincare map. Furthermore, smaller

eigenvalues due to a mild retraction speed can also result

in a faster transient response, implying faster recovery from

small disturbances [5]. For larger disturbances, Hobbelen and

Wisse [5] found that the magnitude of a random step-height

disturbance that causes a walking model fall is greatest at

mild retraction speeds. A similar result is verified by Karssen

et. al. [6] for a simple running model.

The latter study also shows that swing leg retraction can

potentially reduce the overall energy expenditure of running,

the risk of slippage at heel-strike, and the tangential (normal

to the leg) ground reaction force at heel-strike. Another

benefit of active swing leg retraction is to improve the state

estimation by moving the foot more vertical at heel-strike,

increasing the accuracy of the predicted time of heel-strike in

presence of terrain irregularities or model uncertainties [7].

C. When to apply hip torque to retract the swing leg?

Most of the advantages of swing leg retraction are

achieved or maximized at certain ranges or values of re-

traction speed [6]. Therefore, hip torque is required at the

end of the swing phase to brake the leg swing and/or

regulate its reversed rotation at an optimal speed. In walking,

the pre-emptive push-off, which is a key part of energy

effective walking, also takes place at the end of swing phase

(single stance). In a multi-body mechanism forces and/or

torques at different joints are mechanically coupled, so their

relative timing potentially influences the gait energetics. For

example, the energetic cost of the step-to-step transition

in walking (transition from one stance leg to the other)

changes substantially when the order of impulses on leading

and trailing legs is changed from (a) heel-strike followed

by push-off to (b) push-off then heel-strike [8]. Therefore,

the question arises what is the best (energetically optimum)

relative timing of the pre-emptive push-off force and the

retraction hip torque to achieve a given swing leg retraction
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speed prior to heel-strike? Should the retraction torque be

just after, just before, or synchronous with the pre-emptive

push-off force?

D. An overview of the solution strategy

We study the problem of optimal relative timing of the

push-off force and the retraction torque using different me-

chanical models probed with exact analytic methods. We

start with a very simple model to investigate the underlying

principles, and then generalize the results to more elaborate

and realistic models. The procedure is as follows: First, we

approximate the retraction torque and the push-off force

as impulsive torque and force quantified by their impulse.

Next, the influence of the retraction and push-off impulses

on the joint velocities are determined. Then, the energetics

of each impulse is calculated using a work-based energetic

cost model and through the so-called ‘overlap parameter’

[8] that quantifies the order and percentage overlap of the

retraction torque and the push-off force. Finally, given the

push-off and retraction impulses, the optimal relative timing

of push-off and swing retraction is calculated by minimizing

the net energetic cost of walking. The result is valid for both

periodic and aperiodic gaits.

II. THE SIMPLE BIPEDAL MODEL

The first model used in this paper is shown in Fig. 1.

It consists of two identical rigid legs, each with length ℓ
and mass m. The leg mass is arbitrarily distributed with no

restrictions on its inertia or the location of its center of mass.

This biped is powered with two actuators: (i) a prismatic

actuator on the stance leg (not shown in Fig. 1), applying the

extensional force F along the leg, and (ii) a revolute actuator

at the hip, applying the torque τ between the legs. In general,

these actuators can have many arbitrary force/torque profiles

(as long as walking is feasible), where each combination

results in a different energetic cost. However, the energy

optimality requirement restricts our choice.

A. Energy minimizing actuation profiles

To identify the optimal profiles for leg force and hip torque

in our model, consider the following observations from both

human experimental data and previously done numerical

optimizations.

• Nonlinear numerical optimizations with simpler or even

more elaborate models [9], [10], [11] have shown that

for an energy efficient walking gait the stance leg

should be extended (push-off) before the swing leg hits

the ground (heel-strike). When walking, humans start

extending their trailing leg’s ankle and knee joints at

the end of single stance [12]. The peak activity of the

resultant push-off force is very close to heel-strike.

• The energy minimizing hip torque has a bang-coast-

bang profile, with peak activities at the beginning and

end of the swing [11]. Experimental data from human

walking show that during swing the leg motion is almost

passive except at the start and the end of the swing phase

hip joint H

θ

−φ

τ

F

ℓ

leg center of

mass G

Fig. 1. The simple bipedal model consists of two rigid legs of length ℓ
and mass m. The leg mass has an arbitrary distribution with no restriction
on the location of its center of mass. The prismatic actuator on the stance
leg (not shown in the figure) can apply the extensional force F along the
leg and the revolute actuator at the hip can apply torque τ between the legs.

where the hip muscles have burst activities to accelerate

and decelerate/retract the swing leg [12].

• For a given task, application of the force/torque in a

shorter period of time with a larger magnitude, as an

impulsive force/torque, tends to minimize the mechan-

ical work [9], [11].

Based on these observations, for a work-based energetic cost

the energy optimal walking gait is identified as the one with

(i) a burst extensional push-off force applied just prior to

heel-strike by the stance leg’s prismatic actuator, and (ii) two

burst hip torques applied at the beginning of swing (just after

the toe-off) and again at the end of the swing (just before

heel-strike). The first burst torque is intended to accelerate

the swing leg to achieve the desired swing frequency and step

length, and the second (referred to as the retraction torque)

is aimed to brake and/or reverse the leg swing.

B. Simplification to impulses

Because the burst push-off force and the burst retraction

torque are applied over a short period of time, the biped

configuration changes a little, or not at all, during their

application, whereas velocity changes are more noticeable.

For the sake of simplicity, we approximate the burst push-off

force and the burst retraction torque as theoretical impulsive

(infinitesimal duration with infinite magnitude) force and

torque that cause discontinuous velocity jumps in an exactly

fixed biped configuration. Although this approximation is

unrealistic, the insights achieved from the analysis of the

resulting simplified models are an important step in im-

proving our understanding of effective legged locomotion.

For example, the impulsive models have been previously

used to explore the energetic benefits of pre-emptive push-

off in bipedal walking [8], [13] and the foot sequencing in

animal gaits [8], and the energetic consequence of step-to-

step transitions in human walking [14].

Fig. 2a shows the biped at the end of swing phase (single

stance) when the impulsive push-off force and the impulsive

retraction torque are applied on the biped during an infinites-

imal period just before heel-strike. The impulsive push-off
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F1 F2

Impulsive Push-Off and

Impulsive Swing Retraction

Just Before Heel-Strike

φ=2α
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P

(a)
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Heel-Strike
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φ=2α

θ=−α

(b)

Fig. 2. The biped configuration and the impulsive actuations at the end
of swing. The leg transitioning from swing to stance is thick red. a) At the
end of single stance, when φ=2α, an impulsive force is applied along the
stance leg by the leg prismatic actuator (not shown in the figure), and an
impulsive retracting (contracting the hip angle) torque is applied by the hip
actuator. P and R are the impulse intensity (time integral) of these force
and torque. b) The swing foot (F2) touches the ground immediately after
push-off impulse P and retraction impulse R are completed.

force and the impulsive retraction torque are quantified by

their net impulse denoted by P and R. If we denote the

time instant just before both impulsive actions by t−pr and the

time instant just before heel-strike (just after both impulsive

actions are completed) by t−h , the push-off impulse P and

the retraction impulse R are given by

P =

∫ t−
h

t−pr

F (t) dt (1)

R = −

∫ t−
h

t−pr

τ(t) dt. (2)

We assume that the sign of the push-off force and the

retraction torque does not change during their application.

Therefore, based on our convention in Fig. 1 for the positive

directions, the push-off force F is always positive, and

the retraction torque τ is always negative. Hence, P > 0
and R> 0. Although the impulsive push-off and retraction

actions take place at the same biped configuration (Fig. 2a),

we treat P and R as isolated in time (one after the other)

or as having some (specified) overlap with each other (to be

discussed later in detail). We will show in section IV that

the relative timing of these two impulses can change the

energetics of the gait.

Immediately after both impulsive actions are completed

the swing foot hits the ground (Fig. 2b). Our analysis in this

paper does not depend on whether heel-strike is assumed to

be impulsive or non-impulsive.

III. DETAILS OF THE DYNAMICS

Our focus in this section is on the final moment of the

swing phase, when the impulsive push-off force and the

impulsive retraction torque are applied on the biped just

before heel-strike. We use t−p and t+p to denote the time

instants just before and just after the impulsive push-off P ,

and t−r and t+r to denote the time instants just before and

just after the impulsive retraction R. Because these impulsive

actions take place during the infinitesimal interval (t−pr, t
−

h ),

we have t−pr= min(t−p , t
−
r ), and t−h = max(t+r , t

+
p ).

During the impulsive actions the stance foot is free to

move along the leg, but not orthogonal to the leg, respecting

the prismatic-actuator model. Due to the impulsive push-off

P , the stance leg’s extension rate is positive after the push-

off, i.e. ℓ̇ > 0. To keep the prismatic assumption that the

tangential (orthogonal to the leg) foot velocity after push-off

is zero, an induced tangential constraint impulse is applied

on the foot at the time of push-off.

Although the magnitude of the push-off force is infinite,

the biped does not take off from the ground if a new foot

contact is made by the leading leg just after the impulsive

push-off and retraction, i.e. at t−h . This is possible if the re-

traction impulse R is large enough to push the leg backwards

so that the leading foot is moving downwards at t−
h

.

A. Joint velocities just before heel-strike

To find the joint velocities at t−h (just after both impulsive

actions) in terms of the kinematic variables at t−pr and the

impulse magnitudes P and R, we integrate the biped’s

equations of motion (EoM) over the infinitesimal interval

(t−pr, t
−

h ). Throughout the impulsive push-off and retraction

the model dynamics follow the EoM in single stance (Fig.

1) which can be obtained from (i) linear momentum balance

equation of the whole mechanism along the stance leg, (ii)

angular momentum balance (AMB) equation of the swing

leg about the hip joint, and (iii) AMB equation of the whole

mechanism about the stance foot. After rearrangement, these

three equations can be written in the following standard form:

M(q) q̈+ h(q, q̇) =





F
τ
0



 , (3)

where the vector q(t)= [ ℓ(t), φ(t), θ(t) ]T determines the

biped configuration, M is the symmetric mass matrix, the

vector h includes the Coriolis, centrifugal and gravity terms,

and the hip torque τ and the stance leg force F have

impulsive profiles in t−pr6 t6 t−h with impulse magnitudes

given by (1) and (2). Because velocities are always bounded

by assumption, and the configuration vector q remains un-

changed between t−pr and t−h , integrating both sides of (3)

over the infinitesimal interval (t−pr, t
−

h ) results in

Mt−pr
·

(

q̇t−
h
− q̇t−pr

)

=





P

−R

0



 , (4)

where q̇t−pr = q̇(t−pr), q̇t−
h

= q̇(t−
h
), and Mt−pr

=M(qt−pr).
Therefore, given the push-off impulse P and the retraction

impulse R, the velocities just before heel-strike are given by

q̇t−
h

= q̇t−pr +M−1

t−pr





P

−R

0



 . (5)

Our main interest here is how the joint velocities are

influenced by the push-off and retraction impulses. Thus,
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we expand and simplify (5) as below, where for the sake

of simplicity the leg extension rate ℓ̇ and the hip angular

velocity φ̇ are denoted by v, and ω, correspondingly.
[

vt−
h

ωt−
h

]

=

[

0

ωt−pr

]

+

[

Jv/P Jv/R

Jω/P Jω/R

][

P

R

]

(6)

In this equation, the 2×2 impulse-influence matrix is ob-

tained from M−1

t−pr
after dropping its last row and last column

and inverting the sign of its second column. The properties

of this velocity map will be discussed in section III-C.

B. Joint velocities during the impulsive actions

In section IV we are going to calculate the work done

by the impulsive push-off force and the impulsive retraction

torque, so we need to find how the joint velocities change

during their application period. The velocity mapping in (6)

does not provide all the information required, because it

gives the joint velocities only at t−h , when both the impulsive

actions are completed, whereas we need to find the joint

velocities in all intermediate time instants from the beginning

to the end of the applied force/torque. For example, to

calculate the work done by the retraction impulse R, we need

to calculate the hip angular velocity ω(t) for all t inside the

infinitesimal interval (t−r , t
+
r ).

To find the joint velocities during the application of

the push-off impulse P and the retraction impulse R, we

adopt the concept of partial impulses from [8], and define

the partial push-off impulse P̃(t) and the partial retraction

impulse R̃(t) as

P̃(t) =

∫ t

t−pr

F (t′) dt′ = p(t)P , (7)

R̃(t) = −

∫ t

t−pr

τ(t′) dt′ = r(t)R, (8)

where the integration upper limit t satisfies t−pr 6 t6 t−h ,

and the time-dependent parameters p and r express the

degree of impulse completeness and satisfy 06p6 1 and

06 r6 1. For example, at t−p , when the impulsive push-off

force is going to start, we have p(t−p )= 0= P̃ , and at t+p ,

when the impulsive push-off force has completed, we have

p(t+p )= 1 and P̃ =P . Fig. 3 shows the partial push-off and

retraction impulses as the partial area under the force/torque

curves in an arbitrary scenario. In this figure the infinitesimal

intervals (t−r , t
+
r ) and (t−p , t

+
p ) are exaggerated for clarity of

illustration.

Now, following the method we used to derive the velocity

map (6), we integrate the EoM in (3) over the infinitesimal

interval (t−pr, t) to get the intermediate joint velocities as
[

v(t)

ω(t)

]

=

[

0

ωt−pr

]

+

[

Jv/P Jv/R

Jω/P Jω/R

][

P̃(t)

R̃(t)

]

(9)

The 2×2 impulse-influence matrix in the above equation

is the same as that in (6). Thus, if P̃ =P and R̃=R, or

equivalently t= t−h , both velocity maps in (6) and (9) become

equal.

t

t

R̃(t′) = r(t′)R

P̃(t′) = p(t′)P

F (t)

t′

t−r t+r

t−p t+p

−τ(t)

Fig. 3. The partial retraction impulse R̃ and the partial push-off impulse

P̃ as the partial area under the force/torque curves for the arbitrary profiles
of the impulsive retraction torque and the impulsive push-off force. The
timing between the two impulses is also arbitrary. The length of the periods
over which the push-off force and the retraction torque are applied is
infinitesimal, but is exaggerated here for clarity of illustration.

C. Properties of the push-off-retraction velocity map

1) The joint velocities just before heel-strike are inde-

pendent of the relative timing of the impulsive push-off

and retraction. Given the step angle α, the push-off impulse

P∗, the retraction impulse R∗, and the initial hip angular

velocity ωt−pr (before both impulses), no matter when the

impulsive push-off force is applied relative to the impulsive

retraction torque (i.e. completely before, completely after,

or with any arbitrary overlap), the final joint velocities

just before heel-strike are always the same, calculated by

substituting P =P∗ and R=R∗ in (6).

2) The relative timing of the impulsive push-off force

and retraction torque changes the instantaneous joint

velocities during their application. Given the step angle

α, the push-off impulse P∗, the retraction impulse R∗, and

the initial hip angular velocity ωt−pr (before both impulses), if

the impulsive push-off force is applied completely before the

impulsive retraction torque (i.e. t+p = t−r ), the joint velocities

just before and just after push-off are calculated by evaluating

(9) with (i) P̃ = R̃=0, and (ii) P̃ =P∗, R̃=0, respectively.

For instance, for the leg extension rate, these substitutions

give vt−p =0 and vt+p =Jv/P P∗. Now, if the impulsive

push-off force is applied completely after the impulsive

retraction torque, the joint velocities just before and just

after push-off are calculated respectively by evaluating (9)

with (i) R̃=R∗, P̃ =0, and (ii) P̃ =P∗, R̃=R∗. For

instance, with these substitutions we get vt−p =Jv/RR∗ and

vt+p = Jv/P P∗ +Jv/RR∗. Comparing these results shows

that unlike the final joint velocities just before heel-strike,

the joint velocities during the impulsive push-off force and

the impulsive retraction torque do change with the relative

timing of push-off and retraction. This has consequences for

the work done by each impulse, which will be discussed in

the next section.
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3) Both the push-off and retraction impulses increase

the stance leg’s extension rate and decrease the hip

joint’s angular velocity. The push-off force increases the

leg extension rate v, and the retraction torque tends to

decrease/reverse the hip angular velocity ω (contracting the

leg splay angle). Therefore, Jv/P > 0 and Jω/R< 0. Also,

the push-off impulse P accelerates the hip along the stance

leg, applying a clockwise (negative) torque on the swing

leg which, in turn, tends to decrease/reverse ω. This fact

together with the symmetry of the mass matrix M imply

Jv/R=−Jω/P > 0. Thus, during the application of push-

off force and retraction torque the leg extension rate v(t),
given by (9), is always positive and increasing, while the hip

angular velocity ω(t) is continuously decreasing, with only

one possible zero-crossing. These properties will be used in

the following sections to find the optimal relative timing of

push-off and retraction.

IV. ENERGETIC COST OF PUSH-OFF AND RETRACTION

We use a work-based energetic cost in which the cost

of doing mechanical work by an actuator is equal to the

energy consumed by that actuator during the action. This, in

turn, depends on the efficiency of the corresponding actuator.

In general, an actuator can have different efficiencies for

doing positive and negative work. In most actuators negative

mechanical work on the actuator output acts as an energy

source that partially or entirely compensates for the actuator’s

internal losses (e.g. resistive, frictional). In this case less

energy needs to be supplied to the actuator compared to the

case when the same amount of positive work is done by the

actuator (the input energy to the actuator should cover both

the output mechanical work and the losses). Therefore, the

efficiency of negative work is normally more than that of

positive work. For example, in human muscles the average

positive and negative work efficiencies are respectively 25%

and -120% [8], [15].

Based on the above discussion, the total energetic cost

associated with doing W+ positive work and W− negative

work (W−< 0) by an actuator is defined as:

E = e1W
+
− e2W

−, (10)

where the positive coefficients e1 and e2 are, respectively,

the average energetic cost of unit positive and negative work

(1/e1 and 1/e2 are the corresponding average efficiencies).

A. Work of the push-off and retraction impulses

Our analysis in this paper is based on the assump-

tion that the sign of the push-off force and the retraction

torque does not change during their application, i.e. for all

t−pr 6 t6 t−h , the push-off force F (t)> 0, and the retraction

torque −τ(t)> 0. On the other hand, during push-off and

retraction the leg extension rate v(t) is always positive and

increasing, while the hip angular velocity ω(t) is always

decreasing and can have at most one zero-crossing (see

section III-C). Therefore, the push-off force does only pos-

itive work (accelerating the center of mass), whereas the

retraction torque can do both positive and negative work.

If at the beginning of the retraction torque the hip angle

is decreasing, i.e. ωt−r < 0, the retraction torque does only

positive work (accelerating the swing leg). However, when

ωt−r > 0, the retraction torque starts with doing negative work

(decelerating the swing leg), and then switches to positive

work (accelerating the swing leg) when ω becomes negative.

When the impulsive push-off force and retraction torque

are isolated, the net work done by each impulse is given by

the change in total kinetic energy of the system throughout

the application of the corresponding force/torque. However,

when the push-off force and the retraction torque overlap,

the change in kinetic energy of the system does not give the

work done by each impulsive action but the net work done

by both. In these cases a technique introduced by Ruina et.

al. [8] can be used to calculate the work done by each of the

overlapping impulsive push-off force and retraction torque.

The details are explained below.

Given the retraction impulse R, we can calculate the net

work done by the impulsive retraction torque as

WR =

∫ t+r

t−r

ω(t) τ(t) dt = −

∫ R

0

ω(t) dR̃, (11)

where the second equality is obtained using dR̃=−τ(t) dt
from the definition of the partial retraction impulse in (8).

Now, given the hip angular velocity ωt−pr at the beginning of

impulsive actions, the net retraction work WR in (11) can

be simplified by substituting for ω(t) from (9):

WR = −

∫ R

0

(

ωt−pr + Jω/R R̃+ Jω/P P̃

)

dR̃

= −

∫ 1

0

(

ωt−pr + Jω/R rR+ Jω/P pP
)

R dr

= −ωt−pr R−
1

2
Jω/RR

2
− s Jω/P RP , (12)

where

s =

∫ 1

0

p dr. (13)

The parameter s satisfies 06 s6 1, and quantifies the

percentage overlap between the impulsive push-off force

and retraction torque. In Fig. 4b the overlap parameter s
corresponds to the area under the cross-plots of p vs. r
for different episodes of the impulsive push-off force and

retraction torque shown in Fig. 4a. When s=0, the impulsive

retraction torque occurs completely before the impulsive

push-off force, whereas s=1 corresponds to the case where

the impulsive retraction torque starts completely after the

impulsive push-off force. In both of these cases the push-

off and retraction impulses are isolated. Two impulses are

‘synchronous’ if they are proportional (episode iv), resulting

in p= r and s=0.5.

Following the same method used in (11) and (12), the net

work done by a given push-off impulse P is calculated as

WP =
1

2
Jv/P P

2 + (1− s)Jv/RRP , (14)

where s is given by (13).
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Fig. 4. Visualization of the overlap parameter s. (a) As the impulsive
push-off force F moves relative to the impulsive retraction torque τ , the
overlap parameter s changes from 0 to 1. (b) The overlap parameter s
can be considered as the area under the cross-plot of p vs. r. Different
paths in (b) correspond to different episodes in (a). Impulsive F and τ are
‘synchronous’ if they are proportional, and thus s=0.5.

For the push-off force the positive work and the net work

WP are always equal. If the hip angular velocity ω has no

zero-crossing during the retraction torque, then WR in (12)

gives the positive or negative work done by R, otherwise

the individual positive and negative work of the retraction

torque should be calculated separately (see the Appendix).

V. OPTIMAL ORDER OF THE PUSH-OFF FORCE AND THE

RETRACTION TORQUE

Given the push-off impulse P , the retraction impulse R,

the initial hip angular velocity ωt−pr before both the impulsive

actions, and the unit positive and negative work costs e1
and e2, the optimal overlap between the impulsive push-

off force and the impulsive retraction torque, quantified by

s∗, is the one that minimizes the energy expenditure of the

gait. Because the joint velocities just before heel-strike (at

t−h ) and thereafter are independent of the overlap parameter

s, the mechanical work done during the rest of the gait is

not influenced by the relative timing of the impulsive push-

off force and retraction torque. Therefore, the optimal s is

determined by the net energetic cost of the two impulses, i.e.

EP + ER =EPR, where EP and ER are given by (10).

Based on the work done by a given retraction impulse R,

we can have the following three possible cases:

1) The impulsive retraction torque does only neg-

ative work (braking the leg swing): In this case

EPR = e1WP − e2WR, where WR and WP are given by

(12) and (14). The fact that Jv/R=−Jω/P > 0 (section III-

C) results in ∂EPR/∂s =−(e1+ e2)Jv/R P R 6 0. Thus,

the energetic cost EPR monotonically decreases with the

overlap parameter s, except for the trivial case R=0. Energy

expenditure is minimized when s is maximized, i.e. s∗ =1,

which is the case when the impulsive retraction torque is

applied completely after the impulsive push-off force. Note

that in this case the individual retraction work in (12) and

the push-off work in (14) are also minimized.

2) The impulsive retraction torque does only posi-

tive work (accelerating the swing leg): For this case

EPR = e1 (WP +WR), where WR and WP are given by

(12) and (14). Because Jv/R=−Jω/P , the individual varia-

tions of the push-off and retraction work due to change in s
cancel each other, and the energetic cost does not depend on

the overlap parameter s. However, the condition that the re-

traction torque does only positive work, while the hip angular

velocity is always decreasing, implies that ω is negative at the

start of the retraction torque, i.e. ωt−r =ωt−pr+ pt−r P Jω/P 6 0,

or equivalently pt−r >−ωt−pr/(Jω/P P). Because Jω/P < 0, if

we have ωt−pr 6 0, the impulsive push-off force and retraction

torque can be applied with any relative timing (i.e. pt−r > 0 or

06 s∗ 6 1). However, when ωt−pr> 0 we must have pt−r > 0,

implying that the impulsive push-off force should start first

to reverse the hip angular velocity before the impulsive

retraction torque. Note that in this case the push-off force

does not have to be completed before the retraction torque.

3) The impulsive retraction torque does both positive

and negative work: Here, the retraction torque starts with

doing negative work, and according to case 1 above, to

simultaneously minimize the individual push-off work and

negative retraction work, the impulsive retraction torque must

be applied completely after the impulsive push-off force.

In this case, according to case 2 above, the increase in

the positive retraction work will be cancelled by the partial

decrease in the push-off work. Thus, in this case the optimal

overlap parameter is s∗ =1. In the Appendix this result is

obtained using a more direct method.

Summarizing all three cases above, if the hip angular

velocity just before the late-swing impulsive actions is neg-

ative, i.e. ωt−pr6 0, the relative timing of the given push-off

impulse P and the retraction impulse R has no influence

on the energetic cost. However, when ωt−pr> 0, the minimum

cost is achieved when the impulsive push-off force starts

first. In this case if the push-off impulse P is big enough

to reverse the hip angular velocity without the retraction

impulse, the impulsive retraction torque can start during the

push-off force after the zero-crossing of ω, otherwise the

impulsive retraction torque should be applied completely

after the impulsive push-off force to minimize the cost.

VI. DISCUSSION AND THE FUTURE WORK

We have used a simple bipedal model to find the en-

ergetically efficient relative timing of push-off and swing
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retraction in walking. The push-off force and the retraction

torque are approximated as the impulsive force and torque.

We showed that the optimal relative timing is the one that

simultaneously minimizes the individual push-off work and

the negative retraction work by applying the push-off force

before the retraction torque. Interestingly, this result is valid

for both periodic and aperiodic gaits and regardless of the of

the actuator efficiencies for positive and negative work (e1
and e2 constants).

The resulting optimal relative timing is achieved based

on the fact that Jω/P =−Jv/R< 0. The equality relation

here is guaranteed by the symmetry of the mass matrix, and

the inequality comes from the fact that the push-off force

tends to retract the swing leg. Interestingly, these conditions

are satisfied for even more complex models, implying that

the same optimal relative timing of impulsive push-off and

retraction holds for a large range of bipedal models. For

example, consider the more realistic models in Fig. 5. In

these models the retraction impulse R is applied by the swing

hip actuator (both models have two hip actuators acting

between the torso and the corresponding leg) and pushes

the swing leg toward the stance leg (decreasing the swing

hip angle φ). In the model with straight legs the push-off

impulse P is directly applied by the prismatic actuator along

the stance leg, whereas in the model with articulated legs the

equivalent push-off impulse is provided by the knee impulse

K and the ankle impulse A that extend the corresponding

joint angles. Following the procedure we used in (3)-(9),

the push-off-retraction velocity maps in these models can be

related to the mass matrix. Thus, the symmetry of the mass

matrix guarantees Jφ̇/P =−Jl̇/R for the straight-leg biped,

and Jφ̇/K=−Jψ̇/R and Jφ̇/A =−Jθ̇/R for the articulated-

leg biped. On the other hand, in both models the (equivalent)

push-off impulse accelerates the hip forward, which in a

normal configuration (upright torso) tends to decrease the

swing hip angle φ. This Implies Jφ̇/P < 0 for the straight-

leg model and Jφ̇/K< 0 and Jφ̇/A< 0 for the articulated-leg

model. Therefore, the optimality conditions are satisfied for

both of these models, so the same optimal relative timing of

push-off and retraction holds for both.

Although we have used impulsive functions to simplify

the analysis, arguably the results are still applicable to

many practical cases in which the (optimal) gait includes

burst forces/torques. Although realistic forces/torques have

bounded magnitudes and are applied over an extended period

of time, the duration of the burst forces/torque is relatively

short, so the biped configuration does not change much

during the application of the burst force/torque. Therefore,

these burst forces/torques effectively change the velocities

while the biped configuration is approximately constant,

similar to the effect of theoretically impulsive actions.

The analysis in the previous section shows that for given

push-off and retraction impulses, the minimum cost is ob-

tained when the overlap parameter s is maximized. In the

case of impulsive forces/torques this can be achieved when

the retraction torque is completely isolated and applied be-

tween the push-off and heel-strike (s=1). However, for prac-

φ

l

R

P

(a)

φ

ψ

θ

R

K

A

(b)

Fig. 5. Two bipedal models with torso. There are two hip actuators, each
acting between the torso and the corresponding thigh. The swing retraction
torque, quantified by the impulse R, decreases φ and pushes the swing leg
toward the stance leg. (a) The straight-leg model: the push-off impulse P is
provided by a prismatic actuator along the stance leg. (b) The articulated-
leg model: push-off is provided by the knee and ankle torques, quantified
by their impulses K and A, which tend to extend the corresponding angles
(consequently extending the leg).

tical non-impulsive cases, this isolation of the actions will

degrade the gait efficiency by inserting a non-infinitesimal

delay between the push-off and heel-strike (for efficient

walking push-off should be applied just before heel-strike

[12]). Maximizing the overall energy efficiency in practical

cases can be achieved by postponing the retracting hip torque

completely until the end of the push-off before heel-strike.

Verification of this strategy in human walking and in practical

robots is part of our future work.

Previous analytical studies of walking do not take leg

mass into account, and thus do not show the mechanism

through which swing leg retraction influences gait energetics.

The analysis here opens a new perspective on the study of

optimum retraction impulse for maximum efficiency.

VII. CONCLUSION

To achieve or maximize different benefits of swing leg

retraction, a hip torque is required before heel-strike to brake

the leg swing and/or accelerate its backward rotation to some

optimal speed. In walking, the retracting hip torque and

the pre-emptive push-off appear at the same phase of the

gait cycle. Thus, due to mechanical coupling, their relative

timing influences the gait energetics even if the resulting

pre-heel-strike velocities are fixed. We use an analytical

approach to study the optimal relative timing of the retracting

torque and the push-off force. The analysis is done using a

simple bipedal model, and then generalized to more complex

models. Impulsive forces/torques are used to simplify the

analysis. Given the push-off and retraction impulses and

the hip angular velocity just before the impulsive actions,

we minimized the net energetic cost of the gait, and found

that the optimal relative timing is the one that eliminates

or minimizes the negative retraction work. In other words,

if the hip joint is extending at the end of swing, it is

energetically optimal not to apply the retraction torque until
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Fig. 6. The partial overlap parameter s0. The path i and ii determine the
upper and lower bounds of the total overlap parameter s, respectively.

the hip extension is stopped by the push-off force, and if the

push-off impulse is not big enough to reverse the hip angular

velocity by itself, then the optimal sequence is to apply the

impulsive braking hip torque completely after the impulsive

push-off force. These results are valid for both periodic and

aperiodic gaits and regardless of the actuator efficiencies for

positive and negative work.

APPENDIX

A. The work of the retraction impulse R when it does both

positive and negative work

Assume that the only zero-crossing of the hip angular

velocity ω occurs at t= t0. Then, there exist r0 = r(t0) and

p0 = p(t0) where 06 r0 6 1 and 06 p0 6 1, and

ω(t0) = ωt−pr + r0 Jω/RR+ p0 Jω/P P = 0. (15)

The retraction impulse R does only negative work before

t0 (ω is decreasing between t−pr and t−h ). To calculate this

negative work, denoted by WR1, we just need to change the

upper bound of the integrations in (11) and (12) from t+r to

t0, from R to r0R, and from r=1 to r= r0. The result is

WR1 = −ωt−pr r0 R−
1

2
Jω/R r

2
0 R

2
− s0 Jω/P RP , (16)

where

s0 =

∫ r0

0

p dr, (17)

quantifies the overlap between R and P before t0. Fig. 6

shows the area in r-p plane that corresponds to s0 for an

arbitrary scenario. From this figure and also from (17) it is

clear that in all cases 06 s0 6 r0 p0.

Finally, using WR from (12), the positive retraction work

done after t0 is given by

WR2 =WR −WR1. (18)

B. The optimal overlap parameter s∗ when a given retrac-

tion impulse R does both positive and negative work

The partial overlap parameter s0 limits the total overlap

parameter s by constraining it between the following lower

and upper bounds, corresponding respectively to the paths i

and ii in Fig. 6.

s0 + (1 − r0) p0 6 s 6 s0 + 1− r0 (19)

Using the negative and positive retraction work in (16) and

(18) and the push-off work in (14), the net energetic cost of

P and R is given by EPR = e1 (WP +WR2)− e2WR1. It

is a simple practice to verify that EPR in this case is not a

direct function of s. Now, because Jω/P < 0 we get

∂EPR

∂s0
= (e1 + e2)Jω/P RP 6 0. (20)

Thus, EPR decreases with increasing s0, and becomes

minimum when s0 takes its allowed maximum, i.e.

s∗0 = p0 r0. (21)

On the other hand,

∂EPR

∂r0
= − (e1 + e2) p0 Jω/P RP > 0 (22)

implying that at the optimal point, r0 should be minimum.

Now, according to (15) the minimum r0 is achieved when

p0 =1. Finally, substituting the latter and (21) into (19)

results in s∗ =1.
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