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Comparison of Low-complexity Controllers in Varying Time-delay Systems

Lasse M. ERIKSSON ∗ and Heikki N. KOIVO ∗

Abstract : Motivated by the recent developments in networked control systems and control over wireless, this paper
presents a comparison of five control algorithms that are based on PID, IMC and fuzzy gain scheduling techniques and
discusses their performance in varying time-delay systems. The low complexity of the proposed algorithms makes their
use attractive in resource-constrained environments such as wireless sensor and actuator networks. The control system
consists of a controller, a simple process and an output delay in the feedback loop. Three different delay models are
considered in this framework; constant, random, and correlated random delay. In addition to presenting modifications
to the control algorithms to better fit the varying time-delay systems a delay-robust tuning method is proposed, and the
performance of various controllers is evaluated using simulation. The results show the benefits of adapting the controller
parameters based on delay measurement if its amplitude is significant with respect to the time-constant of the process.
Nevertheless, the PID algorithm used in the study also performs well in all scenarios, and this is achieved by its careful
tuning.
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1. Introduction

Any practical control system suffers from delays. These can
stem from process dynamics, actuators or sampling. The de-
lays are often assumed either negligible or constant, but in some
cases the variance in delay times (jitter) plays a significant role.
If control is considered, a varying time-delay is a great chal-
lenge. Control of varying time-delay systems has been under
extensive research during the last decade because of interest
of using networks in control systems. In networked control
systems (NCS) the varying delays occur due to e.g. medium
access protocols with random backoff times and dynamic rout-
ing in the case of wireless networks. In addition, especially in
wireless networks time synchronization of sensors is not guar-
anteed, and from the controller point of view the effects of asyn-
chronism can be seen as varying sensing delays.

The control design of varying time-delay or networked con-
trol systems has been investigated e.g. in [1]–[5]. In general,
the NCS research has focused on complicated control archi-
tectures that require significant memory and computational re-
sources, which may be unavailable in wireless systems. The
proposed designs include LQG controllers for NCS with delays
less than sample time [4], delays longer than sample time [1],
and packet-dropping links (e.g.[6]). Stability considerations of
NCS are often formulated such that they can be solved with
linear matrix inequalities (LMI) as in [7]. The simplicity of
control design has rarely been addressed, although it is very
relevant in wireless networked control systems.

A simple solution to varying time-delay systems is to use
an event-based version of the standard proportional-integral-
derivative (PID) controller [8], though the stability analysis of
the closed-loop system becomes hard due to the time-variant
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controller. Another alternative is to rely on the time-based PID
controller, but detune it with appropriate methods that provide
robustness to the delays [9],[10]. In this case, the stability can
be guaranteed by the use of simple stability criteria such as [11].

The PID controller is the most common controller in in-
dustrial applications today. It is likely to be the most useful
controller also in wireless automation solutions. The aim of
this study is to compare the performance of a standard PID
controller in varying time-delay systems with four other low-
complexity controllers based on PID, internal model control
(IMC, [12]) and fuzzy gain scheduling (e.g.[13]) techniques.
The idea is to investigate in which conditions the delay-adaptive
controllers would improve the performance or robustness in
varying time-delay systems. This is important since adapting
to the delay requires online delay measurement, which is based
on time synchronization. We will also propose a simple con-
troller tuning method for varying time-delay systems and apply
it in the comparison.

After describing the control system and delay models in Sec-
tion 2, the control algorithms and tuning method are presented
in Section 3. The simulation results are presented in Section 4
and conclusions are offered in Section 5.

2. Control System

2.1 System Model

The following scenario of a varying time-delay system is
considered. A continuous-time process G is controlled with a
discrete-time controller C that receives delayed measurements
from the process output y. The system layout is presented in
Fig. 1. This corresponds to a NCS setting, where a process vari-
able is observed with (wireless) sensors that transmit their data
to the controller over a network, and the controller is attached to
the actuator. The transmission delays may vary due to several
reasons. Because of the network, use of sampling and discrete-
time controllers is well motivated. It is assumed that the pro-
cess output is sampled at a constant rate, the sample time being
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Fig. 1 The control system, where yr is the reference signal, e is the error
between the reference and the sampled and delayed process output
y and u is the control signal.

h. The measurements are delayed by τ(t)|t=kh before they are
delivered from sensor(s) to the controller. The scenario would
be somewhat different if the delay was a part of the process.
Then the delayed output would be sampled, but in both cases
the controller receives sampled and delayed measurements. For
the process, a first-order lag plus delay (FOLPD) model is as-
sumed, because often such a simple model is used to character-
ize a more complex system e.g. in the controller tuning phase
(e.g. in [14]). The process model is

G(s) =
g

T s + 1
e−τs, (1)

where T is the process time-constant, τ the constant process de-
lay and g the process gain. Although the process model is sim-
ple, it would be straightforward to apply the controller tuning
method presented in Section 3.5 for more complicated process
models.

For network delays, several delay models have been pro-
posed in the literature. For example, in [3], IP network delays
are modeled using a generalized exponential distribution

P(τ) =

⎧⎪⎪⎨⎪⎪⎩
1
φ

e−
τ−η
φ , if τ ≥ η

0, if τ < η
, (2)

where η is the minimum (positive) delay and φ2 is the variance.
In [4], network delays are assumed to be either independent
from sample to sample (random) or that their probability distri-
bution functions are governed by an underlying Markov chain
(state-dependent, but random). This study investigates proper-
ties of different control algorithms in varying time-delay sys-
tems. Two very general varying time-delay models are chosen
for the comparison: 1) Gaussian-distributed random delay and
2) correlated random delay. A constant delay is used as a point
of comparison. To be more precise, the delay models are

τ1(t) = τc

τ2(t) = x1(t), X1 ∼ N(μ, σ)

τ3(t) =
∫ t

0
e−qαx2(t − α)dα, X2 ∼ U(amin, amax)

0 ≤ τ1(t), τ2(t), τ3(t) ≤ τmax, (3)

where τc is a constant delay, x1 is a Gaussian random variable
x1 ∈ N(μ, σ) with mean μ and variance σ2, x2 is a uniformly
distributed random variable on [amin, amax], and q is a filtering
coefficient. The values of all delays are bounded between zero
and a maximum value, τmax. τ3(t) describes a delay, which is
partially random, but depends on its previous values. For ex-
ample, Internet delays have been shown to be correlated due to
queues in routers [15].

2.2 Performance Measures

In order to evaluate and compare the different control strate-
gies, the performance criterion must be set. This and the next

subsection discuss briefly the chosen criteria. The integral er-
ror functions are often used as measures of performance. The
most common ones are ITAE (Integral of Time-weighted Ab-
solute Error), IAE (Integral of Absolute Error), ISE (Integral
of Square Error) and ITSE (Integral of Time-weighted Square
Error). They are given, respectively, in (4) - (7) [16], where the
error signal e(t) = yr(t) − y(t), t ≥ 0.

JIT AE =

∫ ∞
0

t|e(t)|dt (4)

JIAE =

∫ ∞
0
|e(t)|dt (5)

JIS E =

∫ ∞
0

e2(t)dt (6)

JITS E =

∫ ∞
0

te2(t)dt (7)

The cost criteria are well known and it is easy to modify them
to derive more suitable versions for evaluating the performance.
It should be noted that the cost criteria above do not depend on
the controller output, i.e., the control signal, at all. Thus a novel
optimal control-like cost function is introduced that also applies
for trajectory control. This function is presented in (8), and it
will be referred as IERC (Integral of Weighted Sum of Square
Error and Required Control Signal Error) criterion.

JIERC =

∫ ∞
0

[
w1e2(t) + w2

(
yr(t) − gu(t)

)2]
dt (8)

The weights w1 and w2, for which w1 + w2 = 1, define how
much the error and the control signal use are considered in the
criterion. If w1 > w2, the control signal is considered less than
error and vice versa. The static gain g of the process scales
the control and the reference signal to the same level. Thus the
difference yr(t) − gu(t) equals zero, when the control signal is
on the level that is required to have the process output on the
reference signal level.

2.3 Robustness Measures

In the controller tuning phase robustness to varying time-
delays may be addressed by evaluating the stability of the
closed-loop system under delay uncertainty. It is possible to
tune the controllers such that certain delay-based stability cri-
teria are fulfilled. One such measure of robustness is the jitter
margin [11]. The jitter margin is the maximum amplitude of
any additional delay that the closed-loop system can tolerate
and for which stability is still guaranteed. The delay type or
variation is not constrained in any way in the criterion, which
together with a relatively simple form makes it very useful in
the control design.

The jitter margin is defined as follows. The continuous-time
SISO system in Fig. 2, left, is stable for any time-varying delay
defined by

Δ(v) = v
(
t − δ(t)

)
, 0 ≤ δ(t) ≤ δmax (9)

if ∣∣∣∣∣ G( jω)C( jω)
1 +G( jω)C( jω)

∣∣∣∣∣ < 1
δmaxω

, ∀ω ∈ [0,∞[. (10)

Here δmax is the jitter margin, i.e., the maximum value of the de-
lay δ(t), and Δ represents the delay uncertainty [11]. Note that
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Fig. 2 Controller (C) and plant (G) with an uncertain time-varying delay
(Δ) in the feedback loop. On the left, Δ is the controller output
uncertainty. On the right, Δ is the process output uncertainty.

the plant itself may contain some constant delays, which should
be included in G(s) in order not to make the stability criterion
very conservative. Hence Δ should only cover the varying part
of the delay as indicated in (9). Since the proof of the criterion
is based on the small gain theorem, the same criterion holds in
continuous-time also if the plant and controller switch their po-
sitions, see Fig. 2, right. The latter setting corresponds to the
case considered in this paper and in Fig. 1.

The jitter margin will be applied in Section 3.5 in determin-
ing suitable tuning parameters for the controllers. It should be
mentioned here that the jitter margin criteria have been derived
for pure continuous-time and pure discrete-time cases, but also
a combination criterion (continuous-time plant and discrete-
time controller) can be considered [11]. Nevertheless, in this
study, only the continuous-time criterion is used, because then
the controller sample time needs not be fixed in the tuning
phase. This is, for sure, an approximation, but using small
enough sample time in the controllers makes the error insignif-
icant.

3. Control Methods

3.1 The Compared Control Algorithms

If the control design of varying time-delay systems is consid-
ered, it is important to know whether the delay is measurable
online or not. If the delay at each measurement time instant is
known, it is possible to compensate for the delay, i.e., to adapt
the controller parameters on the basis of the delay value. If the
exact delays are not known, there may be some knowledge of
the delay distribution or the range where the delay varies. This
can be used in the control design.

The control methods can also be classified depending on
whether the controller is time-based or event-based. The time-
based controller has a predefined constant control interval, but
the event-based controller acts only upon receiving new infor-
mation. Event-based controllers have been proposed especially
for networked control systems [4],[8]. In NCS the sampling
can be done at a constant rate, but because of the networks the
measurement packets arrive asynchronously to the controller.
Event-based controller acts immediately and only upon receiv-
ing new packets, whereas the time-based controller always uses
the last received information and calculates the new control sig-
nal at each sample time.

The properties of five different control algorithms in vary-
ing time-delay systems will be compared. In the comparison,
there are two variations of the PID algorithm and two variations
of the IMC controller. The last controller is a combination of
fuzzy gain scheduling and PID controllers. The basic proper-
ties of the compared control algorithms are shown in Table 1,
where D-PID is a time-based discrete-time PID controller and

Table 1 The properties of the control algorithms.

Controller
name

Control
interval

Delay Control
method

D-PID Constant Unmeasured PID
D-IMC Constant Unmeasured IMC
D-PIDvar Varying Unmeasured1 PID
D-IMCvar Constant Measured2 IMC
Fuzzy Constant Measured2 Fuzzy + PID

1 Timestamps required, 2 synchronization and timestamps required.

D-PIDvar is an event-based version of D-PID. D-IMC is a time-
based discrete-time IMC controller. The other IMC controller
(D-IMCvar) is also time-based, but it uses the measured delay to
adapt the controller parameters at each sample. In addition, the
fuzzy gain scheduler determines the control signal on the basis
of the delay measurement. The rest of this section discusses the
different algorithms and controller tuning in detail.

3.2 PID Control

The PID controller is widely used in industry. In the mid
1990’s the PID controller was used in over 95 % of the control
loops in process control [16]. The good properties of the con-
troller can only be achieved if the controller is well tuned. The
tuning of PID controllers has been discussed in numerous pa-
pers and books, but nearly always in systems with constant de-
lays. Varying delays have not been addressed very often. Some
results exist, though, e.g. in [17] the tuning of the continuous-
time PID controller in state-dependent delay systems is dis-
cussed. A discrete-time PID controller tuning method that opti-
mizes the closed-loop performance and improves robustness to
varying delays is presented in [18]. PID tuning rules for varying
time-delay systems have been proposed in [9] and [10].

Generally, the continuous-time PID controller algorithm is
given in time domain as

u(t) = K
(
e(t) +

1
Ti

∫ t

0
e(α)dα + Td

de(t)
dt

)
(11)

with tuning parameters K (gain), Ti (integration time) and Td

(derivative time) [19]. If measurement noise is present in the
control system, the controller needs to filter the measurements.
Often the filter only acts on the derivative part resulting in the
following approximation in Laplace domain:

D(s) = KTd sE(s) ≈ Kd s
1 + Kd s/N

E(s). (12)

By varying the value of the filter constant N the high-frequency
gain of the derivative part can be limited, which decreases the
effect of the measurement noise. N is typically chosen from the
range of 3 to 20 [19]. However, if varying time-delays are con-
sidered, first-order filtering may result in small jitter margins
as indicated in [9], and second-order filters may become more
useful. Hence we choose to use the following PID algorithm

u(t) = Kp

(
byr(t) − y f (t)

)
+ Ki

∫ t

0

(
yr(α) − y f (α)

)
dα

+Kd

(
c

dyr(t)
dt
− dy f (t)

dt

)
, (13)

where the controller parameters Kp, Ki and Kd are related to
those in (11) by

Kp = K, Ki =
K
Ti
, Kd = KTd. (14)
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Here b and c are the set-point weights and y f (t) is the filtered
process variable for which

Y f (s) = G f (s)Y(s) =
1

(T f s + 1)2
Y(s). (15)

T f is the filter time-constant.
To be used in NCS, discrete-time approximations of the con-

trollers are needed. The proportional part of the PID controller
is static and requires no approximation, only sampling. The
backward difference method can be used in the approximation
of the integral and derivative parts. The discrete-time PID con-
troller algorithm approximating (13) is given in (16) - (19). In
addition, the discrete-time approximation of the filter (15) is
given in (20).

u(k) = p(k) + i(k) + d(k) (16)

p(k) = Kp

(
byr(k) − y f (k)

)
(17)

i(k) = i(k − 1) + Kih
(
yr(k) − y f (k)

)
(18)

d(k) =
Kd

h

(
cyr(k) − y f (k) − cyr(k − 1) + y f (k − 1)

)
(19)

y f (k) =
h2y(k) − T 2

f y f (k − 2)(
h + T f

)2 +
2T f y f (k − 1)

h + T f
(20)

The time-based (D-PID) and event-based (D-PIDvar) PID con-
trollers are both implemented on the basis of the same equations
(16) - (20), but in the latter case the sample time h is varying.
The sample time is determined from the timestamp difference
of the two most recent measurements when new measurement
arrives at the controller. The new control signal is applied im-
mediately on the process.

Figure 3 shows how the measurements are delivered from
sensors to the controller over the network. Sampling is done
at a constant rate, but because of the varying delay between
the sensor and controller the controller receives the packets ir-
regularly. The time-delay of a measurement made at time k is
denoted by τ(k).

The D-PIDvar controller calculates the new control signal
value only when new information (new measurement) becomes
available. Otherwise the controller keeps the last value of the
control signal and applies that to the process input. The con-
troller rejects old measurements if these are received. Con-
sider Fig. 3 and the time between k + 1 and k + 2. The
measurement made at k is delivered to the controller at time
k+ τ(k) > k+ 1+ τ(k+ 1). The measurement transmitted at k is
rejected by the controller, since a newer measurement (made at
k + 1) reaches the controller before the one made at k. In order
to do this the measurement packets need to provide informa-
tion on when the measurement was made, i.e., timestamps are
needed.

Fig. 3 Measurements in varying time-delay channel.

3.3 Internal Model Control

The IMC [12] method can be used if the process model is
known. Generally, the method is applicable only if the delays
of the system are constant. In this study, the IMC method is
also applied for varying time-delay systems.

Figure 4 presents the IMC principle. In the diagram, the pro-
cess G is controlled with an IMC controller Q, G̃ is the process
model, and disturbances are denoted with d. The model output
error y − ỹ is subtracted from the reference signal and fed into
the IMC controller which calculates the control signal.

The controller Q is calculated so that the process model is
first divided into two parts

G̃ = G̃+G̃−, (21)

where G̃+ includes all unstable zeros and delays of G̃. The rest
of the model is included in G̃−. The controller becomes

Q = G̃−1
− f , (22)

where the low-pass filter f is

f (s) =
1(

λs + 1
)n . (23)

The low-pass filter is required in order to have a causal con-
troller, and λ > 0 is the tuning parameter of the IMC method.
The value of λ has a significant effect on the performance and
robustness of the controlled system. There is a trade-off; a very
fast and simultaneously very robust tuning is generally difficult
to achieve. Especially in varying time-delay systems, where ro-
bustness to delay plays an important role, tuning of λ turns out
to be crucial.

When implementing the IMC controller, it is useful to recog-
nize the dependency between the IMC controller (Q in Fig. 4)
and the controller in the classical feedback loop (C in Fig. 1),
which is

C =
Q

1 − G̃Q
. (24)

If the controller (24) is used, the process delay must be ap-
proximated with a linear transfer function in order to be able
to calculate the controller. For instance, the first order Padé
approximation is applicable

e−τs ≈ −
τ
2 s + 1
τ
2 s + 1

. (25)

If the delay is known, as can be assumed if it is constant, the
use of the above approximation is straightforward. If the delay
varies, there are two possibilities: 1) if the exact delay of each
measurement is known, one can re-compute the controller at

Fig. 4 The IMC structure (modified from [12]).
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each sample time in the case of discrete-time controller, or 2)
if the delay distribution is known rather than exact delay times,
the expectation value of the delay can be used in (25).

Using (21) - (23) and the process model (1) with g = 1, the
IMC controller becomes

Q(s) = G̃−1
− (s) f (s) =

T s + 1(
λs + 1

)n . (26)

Using (24), the IMC controller can be given in the form of the
classical feedback loop as in Fig. 1, which results in

C(s) =
T s + 1(

λs + 1
)n − e−τs

. (27)

The controller (27) is not realizable, and hence the delay needs
to be approximated. Using (25) for the delay and n = 1 for the
filter order, we obtain

C(s) =
Tτs2 + (τ + 2T )s + 2
τλs2 + 2(τ + λ)s

. (28)

This is a continuous-time IMC controller. Its discrete-time
equivalent, D-IMC, is derived using the Tustin approximation.
This results in the following control law:

u(k) =
2λτ

(h + λ)τ + hλ
u(k − 1) +

(h − λ)τ + hλ
(h + λ)τ + hλ

u(k − 2)

+
(T + h/2)τ + hT + h2/2

(h + λ)τ + hλ
e(k) +

h2 − 2Tτ
(h + λ)τ + hλ

e(k − 1)

+
(T − h/2)τ − hT + h2/2

(h + λ)τ + hλ
e(k − 2). (29)

The D-IMC and D-IMCvar controllers, used in the compari-
son, calculate the control signals according to (29). The differ-
ence is that D-IMC has constant parameters and it uses the ex-
pectation value of the delay as the parameter τ while D-IMCvar

updates the delay parameter τ at each sample based on the delay
measurement.

3.4 Fuzzy Gain Scheduling

Gain scheduling can be used to adapt the controller gain(s)
on the basis of e.g. the process state or other scheduling
variable(s). In gain scheduling the controller parameters are
changed during control in a predefined way. The technique falls
into the category of adaptive control, and it can enlarge the op-
eration area of linear controllers into nonlinear systems [13].
Fuzzy logic can be used for deciding the controller gain(s)
based on measurements.

Fuzzy gain scheduling is used in this study for calculating the
weighting of five PID controllers on the basis of the delay value.
The PID controllers are tuned for different constant values of
the delay. The delay is measured online, and fuzzy logic is then
used for giving weights (between 0 and 1) on the outputs of
each controller. The total control signal is actually a weighted
sum of the outputs of the PID controllers.

All five input membership functions (MFs) of the fuzzy gain
scheduler are Gaussian. It is assumed that the delay has some
minimum (zero) and maximum values (τmax). The MFs are dis-
tributed evenly in the delay range. One of the MFs has its max-
imum value at zero and another MF has its maximum at τmax.
The other MFs lie between these two. The Sugeno method of
fuzzy inference is applied in the scheduler and the output MFs

are constant (on/off-type). The rule base is simple: if input be-
longs to the range of MF 1, then output 1 is on and others are
off. There are in total five similar rules, one for each input-
output pair.

Each PID controller in the fuzzy gain scheduler calculates
the control signal at every sample time. The controllers are
implemented otherwise as in (16) - (20), but the output of the
controllers is slightly adjusted. If uout

i is the output of the ith

PID controller and wf ,i the corresponding weight calculated by
fuzzy logic, the output of the total controller utotal is calculated
as

utotal(k) =
5∑

i=1

wf ,i(k)uout
i (k), (30)

uout
i (k) = ui(k) − ui(k − 1) + utotal(k − 1)

= Δui(k) + utotal(k − 1), (31)

where ui is the control signal calculated according to the PID
algorithm in ith controller. Each PID controller calculates how
much the control signal should change from the value they cal-
culated at the previous sample time, and that increment is added
to the value of the control signal that was previously applied to
the process. The total control signal is a weighted sum of the
control signals calculated by PIDs, and the weights are deter-
mined by the fuzzy gain scheduler.

3.5 Tuning of the Controllers

This section discusses the controller tuning in detail and pro-
poses a tuning method for varying time-delay systems. In the
tuning phase we aim at providing the controllers adequate jit-
ter margins so that the closed-loop system is maintained sta-
ble for all delays, constant or time-varying, of allowed ampli-
tudes. We will consider the first-order process controlled with
the proposed low-complexity controllers discussed in the pre-
vious sections. The performance comparison is done for the
FOLPD process in (1), whose time-constants vary from 0.2 to
6. The delay is bounded into the range 0 ≤ |τ(t)| ≤ 2 so that the
study considers both delay dominant (τ > T ), lag-dominated
(τ < T ) and balanced lag and delay (τ ≈ T ) processes.

The tuning procedure follows the guidelines presented in
[10], where PID tuning for varying time-delay systems is con-
sidered. Whereas in [10] the jitter margin of the control loops
is maximized while also maximizing the closed-loop perfor-
mance, here the desired jitter margin is known in advance, and
it is treated as a hard constraint in the controller performance
optimization. All controllers are tuned using constrained op-
timization and simulation techniques. The controller tuning
problem is posed as

Min f (x) =
∫ ∞

0

[
w1e2(t, x) + w2

(
yr(t) − gu(t, x)

)2]
dt

s.t. x > 0

δmax(x) > δ0, (32)

where the cost function f (x) is the IERC performance criterion
(8), x is the vector of the controller parameters (Kp, Ki and Kd in
PID case and λ in IMC case), and δ0 is the desired jitter margin.

The PID controller parameters Kp, Ki and Kd and IMC con-
troller parameter λ were found by solving the optimization
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problem (32) for a unit step reference with weights w1 = w2 =

0.5. The controllers were tuned for the process model (1) with
static gain g = 1, which was also used in the comparison. Dur-
ing the tuning procedure of PID and IMC controllers, the delay
was kept constant at τ = 1 s, which is the expectation value of
each of the delay functions used in the study. The same method
was also applied in the fuzzy controller’s tuning with certain
modifications that are discussed later in this section. Since the
process delay was assumed to be τ = 1 s and the maximum
delay is max(τ(t)) = 2 s, the required jitter margin is δ0 = 1 s.

The measurement filter time-constant T f of the PID con-
trollers was set to 0.1τ. Note that the choice T f = 0.1τ obeys
the AMIGO tuning rules [14] that have recently been proposed
for process control. The choice of T f has a significant effect
on the jitter margin as shown in [9], but since the AMIGO tun-
ing provides jitter margins δmax,AMIGO ≈ 0.7τ (see [9]), it is
likely that by detuning Kp, Ki and Kd the desired jitter margin
δ0 = τ = 1 s could be achieved without changing the value of
T f . The reason for not optimizing T f is that this parameter of-
ten depends on the level of measurement noise and it may be
set according to different objectives. By limiting the number
of variables to three instead of four also makes the optimiza-
tion procedure less time consuming. Besides, the tuning rule
T f = 0.1τ is already justified based on the investigation in [14].
For all the controllers sample time h = 0.05 s is used, which
is still acceptable even for the smallest T = 0.2. The relatively
large sample time is also justified from the networked control
systems’ point of view. Faster sampling increases traffic in the
network and causes longer delays. In addition, in wireless sen-
sor networks, h = 0.05 s is already a relatively short sample
time.

The parameter optimization was applied on the D-PID and
D-IMC controllers. The D-PIDvar and D-IMCvar controllers
did not need to be tuned separately, because the delay was kept
constant while tuning. With constant delay these controllers
are equal to D-PID and D-IMC, respectively, and the same con-
troller parameters are applicable. On the other hand, the opti-
mal tuning of these delay-based controllers would actually de-
pend on the delay realization, and thus optimization may not be
a suitable method in their tuning.

The five PID controllers of the fuzzy gain scheduler were
tuned for different values of constant delay and jitter margins.
The idea was to tune each PID controller for certain minimum
delay, which roughly corresponds to the membership function’s
minimum value, and for a desired jitter margin which is deter-
mined by the width of the membership function. These settings
for the optimization problem are presented in Table 2.

The PID controller tuning parameters Kp, Ki and Kd ob-
tained by solving the optimization problem (32) for process
time-constant values T ∈ [0.2 6] are shown in Fig. 5 (Kp), Fig.
6 (Ki) and Fig. 7 (Kd).

Solving (32) in the case of IMC controller (29) showed that

Table 2 PID controller settings for the fuzzy gain scheduler.

Controller Minimum delay (s) Jitter margin (s)
FuzzyPID1 0 0.3
FuzzyPID2 0.2 0.6
FuzzyPID3 0.7 0.6
FuzzyPID4 1.3 0.6
FuzzyPID5 1.7 0.3

Fig. 5 PID controller gain Kp vs. process time-constant.

Fig. 6 PID controller gain Ki vs. process time-constant.

Fig. 7 PID controller gain Kd vs. process time-constant.

the optimal tuning parameter λ∗ is linearly proportional to the
process time-constant, but it was also found to be bounded by
the jitter margin as

λ∗ =

⎧⎪⎪⎨⎪⎪⎩
T√

2
, T ≥ √2

δ0 + ε ≈ 1, T <
√

2
(33)

where ε > 0 is a small number. These results can be shown
to hold in the continuous-time case, although the tuning rules
were derived by optimization and simulation using a discrete-
time controller. Obviously, the latter tuning rule for λ in (33)
comes from the constraint regarding the jitter margin. This can
be verified by analyzing the jitter margin of an IMC-controlled
closed-loop system. To simplify the analysis, consider the pro-
cess model (1) and the IMC controller (27), i.e., an ideal IMC
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controller without delay approximation. With n = 1 the closed-
loop system becomes

Gcl =
G(s)C(s)

1 +G(s)C(s)
=

e−τs

λs + 1
(34)

which gives a jitter margin

δmax <

∣∣∣∣∣1 +G( jω)C( jω)
jωG( jω)C( jω)

∣∣∣∣∣ =
√
λ2 +

1
ω2
. (35)

It is clearly seen that the lower bound of the jitter margin is
obtained when ω → ∞, which gives the tuning rule λ∗ > δmax

or λ∗ = δ0 + ε.
The upper condition in (33) is obtained by minimizing the

IERC cost function with respect to λ. First, the output and con-
trol signals need to be calculated. Since the reference signal
used is a unit step, the output and control signals are given in
Laplace domain as

Y(s) =
e−τs

s(λs + 1)
, U(s) =

(T s + 1)e−τs

s(λs + 1)
. (36)

Based on the inverse Laplace transforms of (36), the IERC cost
criterion becomes

JIERC = w1

( ∫ τ
0

1dt +
∫ ∞
τ

e−
2
λ

(t−τ)dt
)

+w2

[ ∫ τ
0

1dt +
∫ ∞
τ

(
1 − T
λ

)2
e−

2
λ (t−τ)dt

]
. (37)

Assuming that both weights are equal, i.e., w = w1 = w2, the
cost function becomes

JIERC = w
(
2τ + λ − T +

T 2

2λ

)
. (38)

The optimal value of λ is obtained by minimizing (38) with re-
spect to λ, which results in the tuning rule in (33), i.e. λ∗ =
T/
√

2. Because of the constraint imposed by the jitter margin
requirement, λ always needs to be greater than the desired jitter
margin, and hence we obtain the boundaries for the two condi-
tions.

4. Simulation Results
All the controllers described in Section 3, the process (1) and

the delay models (3) were implemented in Simulink to test the
performance of the controllers in varying time-delay systems.
In the simulations, the reference signal consisted of 200 unit
steps from zero to one or from one to zero each lasting 30 s. The
total simulation time was 6000 s for each process time-constant
and controller combination. During the simulations the delays
varied between 0 and 2 seconds. The simulations were run with
Gaussian random delay (τ2(t) in (3)) with delay parameters μ =
1, σ2 = 0.3 and τmax = 2, and with correlated random delay
(τ3(t) in (3)) with parameters q = 0.1, amin = −1.3, amax = 1.5
and τmax = 2 resulting in a delay with E{τ3(t)} = 1.

The simulation was first run with a constant time-delay of
1 s to verify that the controllers produce similar results in the
nominal case. From the results it could be seen that both PID
controllers act exactly in the same way since the algorithms
are the same for constant delay. Additionally, both IMC algo-
rithms produce identical results, but the PID, IMC and fuzzy
gain scheduler results differ a little. The differences of the con-
trollers in the nominal case are depicted in Figs. 8 and 9, where

relative IERC and ISE cost functions are shown, respectively.
The cost function values are scaled such that for each time-
constant the controller with the lowest performance (i.e. maxi-
mum cost) equals one in the graphs, and the other controllers’
cost criteria are divided by the maximum cost giving values less
than one.

It is seen in Figs. 8 and 9 that the fuzzy gain scheduler gives
the largest IERC values for almost all time-constants, but on the
other hand, it gives simultaneously clearly the best ISE perfor-
mance. The good ISE performance is expected, since if the de-
lay is constantly one, the control signal at the fuzzy gain sched-
uler is almost entirely based on one PID controller (FuzzyPID3
in Table 2). This controller is tuned for a much narrower time-
delay range than the other compared control algorithms, so it is
expected to be more aggressive than the others. Hence the ISE
performance is better, but good tracking performance naturally
comes with greater use of control signal. Thus the IERC cost
increases as the control signal is also considered in the crite-
rion. Although not shown here, also the relative IAE, ITAE and
ITSE criteria were calculated. For the constant delay case IAE
resembles the relative ISE graph with some minor differences.
The relative IAE and ITAE graphs are exactly the same, and the
same applies for ISE and ITSE, because the time-weighting in
the criteria is cancelled when the relative values are calculated.

Figures 10 and 11 show the relative IERC and ISE cost func-
tion values for the Gaussian random delay case. Also here the

Fig. 8 Relative IERC cost function values in the constant delay case with
τ1(t) = 1 s.

Fig. 9 Relative ISE cost function values in the constant delay case with
τ1(t) = 1 s.
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fuzzy gain scheduler performs the worst for most processes, if
the IERC criterion is considered. The reasons for this behav-
ior are similar as in the constant delay case. Now all the five
PID controllers affect the control signal, and they are all tuned
for a much narrower delay band than the other control algo-
rithms. Hence the gains of the controllers are relatively larger,
which results in greater use of the control signal. As the delay is
random, the switching between the controllers is fast, and this
might lead to a noisy control signal and thus the IERC criterion
becomes large. The tracking performance (ISE) is comparable
with other controllers for T < 3 s, but for larger time-constants
also this performance measure is modest.

Of the other controllers, the regular time-based PID con-
troller D-PID seems to perform well with respect to both cri-
teria, whereas its event-based version clearly looses in perfor-
mance. It can be seen that the simplest controllers (D-PID and
D-IMC) generally perform best with respect to the IERC cri-
terion, for which the controllers were optimized in the tuning
phase. Also the ISE criterion suggests that the standard PID
and IMC controllers perform roughly as well as the ones with
delay-adaptability, although some gains are achieved especially
with the delay-adaptive IMC controller (D-IMCvar).

The results are quite different for the correlated random de-
lay case. The performance criteria are shown in Figs. 12 and
13. Here the benefits of using slightly more complicated algo-
rithms are seen. As the delay variation is slower than in the

Fig. 10 Relative IERC cost function values for the Gaussian random de-
lay τ2(t).

Fig. 11 Relative ISE cost function values for the Gaussian random delay
τ2(t).

purely random delay case, the controllers can better adapt to
the delay and this has a positive effect on the performance. In
IERC-sense, the delay-adaptive IMC controller is the best for
most of the time-constants, whereas the fuzzy gain scheduler
gives the best ISE-values. It is also seen that for larger time-
constants the advantages gained by adapting to the delay de-
crease as the performance of controllers converges to roughly
the same values. This is expected as the delay amplitude to
time-constant ratio becomes small, and the variance of delay
becomes less significant.

5. Conclusions

This paper discussed the problem of controlling varying
time-delay systems with low-complexity controllers motivated
by the increasing interest in networked control, especially con-
trol over wireless. Altogether five different controllers were
proposed to solve the control problem. The discrete-time PID,
IMC and fuzzy gain scheduling controllers were formulated for
varying time-delay systems and guidelines were given regard-
ing delay-robust tuning of the controllers. The performance of
the controllers was compared with a range of processes with
different time-constants. One constant and two general varying
time-delay models were used in the comparison.

The simulation results suggest that in the purely random
delay case the delay-adaptive controllers might not guarantee
better performance for the system, and the conventional PID

Fig. 12 Relative IERC cost function values for the correlated random de-
lay τ3(t).

Fig. 13 Relative ISE cost function values for the correlated random delay
τ3(t).
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or IMC controllers are feasible. But if the delay is corre-
lated, which is a relevant case in NCS, improvements in per-
formance can be achieved with slightly more complicated con-
trollers such as the delay-adaptive IMC controller and delay-
based fuzzy gain scheduling. The ratio between the delay
amplitude and the process time-constant affects how much is
gained in performance when using the advanced controllers. If
the delay and the process time-constant are of the same size,
great improvements can be achieved with the delay-adaptive
controllers. If the delay amplitude is insignificantly small with
respect to the time-constant, the controllers perform in a similar
way and the advantage of taking the varying delay into account
in the control algorithm diminishes. The delay-adaptive control
algorithms require measuring of the delay, which might some-
times be problematic. Often, the delay can at least be estimated
online. Only linear process models were considered in the pa-
per, but most likely fuzzy gain scheduling would perform best
for nonlinear processes.

The comparison shows that the varying control interval is not
a sufficient modification to the PID controller in varying time-
delay systems. Despite of the fact that the controller can act im-
mediately upon receiving new information, it is still tuned for
certain constant delay (here 1 s). Comparing the measurements’
time difference of arrival at the controller only gives the relative
delay between the two measurements and not the total delay,
which has passed since the measurement was taken. Varying
the control interval and using otherwise exactly the same con-
trol algorithm does not lead to gains in performance. In addi-
tion, such a modification makes the analysis of the controller
more difficult than that of the regular PID, and there is no easy
way to guarantee the stability of such time-variant controller.
On the contrary, delay-robust tuning of a time-based PID con-
troller may be easily solved using the proposed method, which
results in good performance in varying time-delay systems.

The effect of the controller sample time was not considered
in this study. In the tuning phase it could be omitted by using
the continuous-time stability criterion for delay-robustness and
a small sample time to make the approximations hold. It is,
however, acknowledged that the sample time and the varying
time-delay are interconnected and their ratio affects the control
performance, but the deeper investigation of this is left for fu-
ture work.
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