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Abstract. In this paper we propose a hybrid approach for solving vehi-
cle routing problems. The main idea is to combine an Ant System (AS)
with a problem specific constructive heuristic, namely the well known
Savings algorithm. This differs from previous approaches, where the sub-
ordinate heuristic was the Nearest Neighbor algorithm initially proposed
for the TSP. We compare our approach with some other classic, powerful
meta-heuristics and show that our results are competitive.

1 Introduction

The European situation in freight transportation reflects the need for improved
efficiency, as the traffic volume increases much faster than the street network
grows. Thus, given the current efficiency, this will eventually lead to a breakdown
of the system. However, with rapidly increasing computational power intelligent
optimization methods can be developed and used to increase the efficiency in
freight transportation and circumvent the above mentioned problem.

The VRP involves the design of a set of minimum cost delivery routes, orig-
inating and terminating at a depot, which services a set of customers. Each
customer must be supplied exactly once by one vehicle route. The total demand
of any route must not exceed the vehicle capacity. The total length of any route
must not exceed a pre-specified bound. This problem is known to be NP-hard (cf.
[1]), such that exact methods like Dynamic Programming or Branch & Bound
work only for relatively small problems in reasonable time. Thus, a large number
of approximation methods have been proposed. Most of the recent approaches
are based on meta-heuristics like Tabu Search, Simulated Annealing and Ant
Systems.

The Ant System approach, belonging to a class of methods called Ant Colony
Optimization, is based on the behavior of real ants searching for food. Real
ants communicate with each other using an aromatic essence called pheromone,
which they leave on the paths they traverse. If ants sense pheromone in their
vicinity, they are likely to follow that pheromone, thus reinforcing this path. The
pheromone trails reflect the ’memory’ of the ant population. The quantity of the
pheromone deposited on paths depends on both, the length of the paths as well
as the quality of the food source found.
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The observation of this behavior has led to the development of Ant Sys-
tems by Colorni et al. (see e.g. [2]) in the early nineties. In artificial terms the
optimization method uses the trail following behavior described above in the
following way. Ants construct solutions by making a number of decisions prob-
abilistically. In the beginning there is no collective memory, and the ants can
only follow some local information. As some ants have constructed solutions,
pheromone information is built. In particular, the quantity of pheromone de-
posited by the artificial ants depends on the solution quality found by the ants.
This pheromone information guides other ants in their decision making, i.e. paths
with high pheromone concentration will attract more ants than paths with low
pheromone concentration. On the other hand, the pheromone deposited is not
permanent, but rather evaporates over time. Thus, over time, paths that are not
used will become less and less attractive, while those used frequently will attract
ever more ants.

This approach has been applied to a number of combinatorial optimization
problems, such as the Graph Coloring Problem [3], the Quadratic Assignment
Problem (e.g. [4]), the Travelling Salesman Problem (e.g. [5], [6]), the Vehicle
Routing Problem ([7], [8]) and the Vehicle Routing Problem with Time Win-
dows ([9]). Recently, a covergence proof for a generalized Ant System has been
developed by Gutjahr ([10]).

In the previous approaches for the VRP ([7], [8]) the construction of solutions
was based on a sequential tour building approach, which utilized a parametrized
savings criterion. The main idea of our new approach is to transfer the simul-
taneous tour construction mechanism proposed in [11] into a rank based Ant
System. Our computational findings show that a considerable improvement is
achieved through this new approach.

The remainder of this paper is organized as follows. In the next section we
briefly describe the Savings algorithm before we propose our new approach,
which we will refer to as SavingsAnts. After that we will report on computational
results with our SavingsAnts. In Section 4 we conclude with a discussion of our
findings.

2 Savings and Ant System Algorithms for VRPs

In this section we describe the Savings algorithm and the Ant Systems algorithm.
The basic structure of our Ant System algorithm is identical to the one proposed
in [8]. Thus, we will focus on our improvements to the original algorithm.

2.1 The Savings Algorithm

The Savings algorithm, proposed in [11], is the basis of most commercial soft-
ware tools for solving VRPs in industrial applications. It is initalized with the
assignment of each customer to a separate tour.
After that for each pair of customers i and j the following savings measure is
calculated:

s(i, j) = d(i, 0) + d(0, j) − d(i, j), (1)
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where d(i, j) denotes the distance between locations i and j and the index 0
denotes the depot. Thus, the values s(i, j) contain the savings of combining two
customers i and j on one tour as opposed to serving them on two different tours.

In the iterative phase, customers or partial tours are combined according
to these savings, starting with the largest savings, until no more combinations
are feasible. A combination is infeasible if it violates either the capacity or the
tourlength constraints.

The result of this algorithm is a (sub-)optimal set of tours through all cus-
tomers.

2.2 The Ant System Algorithm for the VRP

Bullnheimer et al. ([7], [8]) have first applied the Ant System to the VRP. Their
approach centers on the similarity of VRPs with TSPs, namely the fact that
for a given clustering of customers the problem reduces to several TSPs. Thus,
their Ant System is strongly influenced by the Ant System algorithms applied
to the TSP. On the contrary, our approach, to our best knowledge, is the first
combination of a heuristic algorithm for the VRP with an Ant System.

The Ant System algorithm mainly consists of the iteration of three steps:

– Generation of solutions by ants according to private and pheromone infor-
mation

– Application of a local search to the ants’ solutions
– Update of the pheromone information

In addition to that our approach features a fourth step, namely:

– Augmentation of the Attractiveness list, which stores the desirability of all
feasible combinations.

The implementation of these four steps is described below.

Generation of Solutions. As stated above, the solution generation technique
we implemented is the main contribution of this paper. So far, in Ant Systems
solutions for the VRP have been built using a Nearest Neighbor heuristic (see
e.g. [7], [8]). As opposed to that we use the Savings algorithm described above
to generate solutions. To that end we need to modify the deterministic version
of the algorithm. This modification is done in the following way.

Initially, we generate a sorted list of attractiveness values ξij in decreasing
order. These attractiveness values feature both the savings values as well as the
pheromone information.
Thus the list consists of the following values

ξij = [s(i, j)]β [τij ]α (2)

where τij denotes the pheromone concentration on the arc connecting customers
i and j, and α and β bias the relative influence of the pheromone trails and the
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savings values, respectively. The pheromone concentration τij contains informa-
tion about how good the combination of two customers i and j was in previous
iterations.

In each decision step of an ant, we consider the k best combinations still
available, where k is a parameter of the algorithm which we will refer to as
’neighborhood’ below.

Let Ωk denote the set of k neighbors, i.e. the k feasible combinations (i, j)
yielding the largest savings, considered in a given decision step, then the decision
rule is given by equation 3, where Pij is the probability of choosing to combine
customers i and j on one tour.

Pij =




ξij∑
(h,l)∈Ωk

ξhl
if ξij ∈ Ωk

0 otherwise.

(3)

The construction process is stopped when no more feasible combinations are
possible.

Local Search. Following [8] we apply the 2-opt algorithm (c.f. [12]) to all vehicle
routes built by the ants, before we update the pheromone information. The 2-
opt algorithm was developed for the traveling salesman problem and iteratively
exchanges two edges with 2 new edges until no further improvements are possible.

Pheromone Update. After all ants have constructed their solutions, the phero-
mone trails are updated on the basis of the solutions found by the ants. According
to the rank based scheme proposed in [6] and [8], the pheromone update is as
follows

τnew
ij = ρτold

ij +
σ−1∑
µ=1

∆τµ
ij + σ∆τ∗

ij (4)

where 0 ≤ ρ ≤ 1 is the trail persistance and σ is the number of elitists. Using
this scheme two kinds of trails are laid. First, the best solution found during
the process is updated as if σ ants had traversed it. The amount of pheromone
laid by the elitists is ∆τ∗

ij = 1/L∗, where L∗ is the objective value of the best
solution found so far. Second, the σ − 1 best ants of the iteration are allowed
to lay pheromone on the arcs they traversed. The quantity laid by these ants
depends on their rank µ as well as their solution quality Lµ, such that the µ-th
best ant lays ∆τµ

ij = (σ − µ)/Lµ. Arcs belonging to neither of those solutions
just lose pheromone at the rate (1− ρ), which constitutes the trail evaporation.

Augmentation of the Savings List. After the pheromone information has
been updated the attractiveness values ξij are augmented with the new phero-
mone information as in equation 2.

After the augmentation the attractiveness values are again sorted in decreas-
ing order. This mechanism is the second important contribution of our new
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approach. In the beginning the attractiveness values are sorted according to the
savings values, as the pheromone is equal on all arcs. As learning occurs, and
some arcs are reinforced through the update of the pheromone information, the
attractiveness values ξij change, as they become more and more biased by the
pheromone information. Thus, values that were initially high but turned out not
to be in good solutions will decrease, while combinations with initially low values
that appeared in good solutions will become more attractive. As the attractive-
ness values are re-sorted after each iteration, this leads to dynamic effects. In
particular, ’good’ arcs are reinforced twice. First, they receive more pheromone
than others, and second as their attractiveness increases they are considered
earlier in the constructive process.

3 Numerical Analysis

In this section we will present numerical results for our new approach and com-
pare them with results from previous Ant System approaches as well as different
meta-heuristics.

3.1 The Benchmark Problem Instances

The numerical analysis was performed on a set of benchmark problems described
in [13]. The set of benchmark problems consists of 14 instances containing be-
tween 50 and 199 customers and a depot. The first ten instances were generated
with the customers being randomly distributed in the plane, while instances 11-
14 feature clusters of customer locations. All instances are capacity constrained.
In addition to that, the instances 6-10 and 13-14 are also restricted with respect
to tour length. In these instances, all customers have identical service times δ.
Apart from the additional time constraints, instances 1-5 and 6-10 are identical.
The same is true for instances 11-12 and 13-14. Table 1 contains the data for
the 14 problem instances 1.

3.2 Parameter Settings

In order to keep the results comparable and to isolate the effects of our new
approach, we chose to basically use the same parameter values as proposed in
[8]. Thus, we used n artificial ants, α = β = 5 and σ = 6 elitist ants. We
only found that for our approach an evaporation rate ρ = 0.95 is preferable to
ρ = 0.75 as proposed in earlier works.

Apart from that we varied the number of iterations in order to be able to
estimate the performance of our algorithm for different run times. More specif-
ically we will provide results for �n/2�, n and 2 · n iterations together with the
corresponding computation times.2

1 The instances can be found at http://www.ms.ic.ac.uk/jeb/orlib/vrpinfo.html
2 The algorithms were implemented in Borland C and run on a Pentium 3 with
900MHz.
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Table 1. Characteristics of the benchmark problem instances

Random Problems
Instance n Q L δ best publ.

C1 50 160 ∞ 0 524.61 [14]
C2 75 140 ∞ 0 835.26 [14]
C3 100 200 ∞ 0 826.14 [14]
C4 150 200 ∞ 0 1028.42 [14]
C5 199 200 ∞ 0 1291.45 [15]
C6 50 160 200 10 555.43 [14]
C7 75 140 160 10 909.68 [14]
C8 100 200 230 10 865.94 [14]
C9 150 200 200 10 1162.55 [14]
C10 199 200 200 10 1395.85 [15]

Clustered Problems
Instance n Q L δ best publ.

C11 120 200 ∞ 0 1042.11 [14]
C12 100 200 ∞ 0 819.56 [14]
C13 120 200 720 50 1541.14 [14]
C14 100 200 1040 90 866.37 [14]

n ... number of customers
Q ... vehicle capacity
L ... maximum tour length
δ ... service time
best publ. ... best published solution

Apart from that, given our dynamic savings list, we performed runs with
different sizes of the neighborhood, i.e. with different numbers of alternatives
in each decision step of an ant. We provide results for neighborhood sizes of
k = �n/5�, k = �n/4�, k = �n/2� and k = n.

3.3 Experiments with the Size of the Neighborhood

In this section let us first provide some results we obtained using the different
neighborhood sizes. In Table 2 we show for all neighborhood sizes the deviations
(RPD) of both our best (best) and average (avg.) solutions (over 10 runs of all
14 problem instances) from the best known solutions after �n/2�, n and 2 · n
iterations. In addition to that we report the corresponding computation times
in seconds.

Table 2 mainly shows two different effects. First, we see that increasing the
size of the neighborhood generally increases the computation times. This is clear
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Table 2. Effects of neighborhood sizes and numbers of iterations on solution quality
and computation times.

number of iterations
neighborhood �n/2� n 2 · n

size RPD (in %) CPU RPD (in %) CPU RPD (in %) CPU
k best avg. sec. best avg. sec. best avg. sec.

�n/5� 0.93 1.63 134.37 0.8 1.44 268.73 0.8 1.42 537.46
�n/4� 1.12 1.77 134.31 0.7 1.41 268.62 0.7 1.41 537.24
�n/2� 2.09 2.76 183.26 0.83 1.42 366.51 0.83 1.41 733.03

n 3.21 4.31 260.38 1.04 1.63 520.75 0.96 1.54 1041.50

as an increased size of the neighborhood increases the computational effort for
decision making.

Second, the solution quality generally deteriorates with increased neighbor-
hood size. This effect is partially reversed between �n/5� and �n/4�. There we
see that the best solutions we found were obtained using k = �n/4�. However, we
also see that for small computation times k = �n/5� is preferable. This becomes
clear from the following observation. In the first iterations pheromone has very
little influence on decision making, thus the ants explore the search space. As
pheromone is built, the attractiveness list changes adaptively, favoring combi-
nations that were successful in previous iterations, i.e. led to good solutions. In
this phase exploration is slowly replaced with exploitation. After a number of
iterations the list will be sorted in such a way, that the combinations associated
with the n − m largest attractiveness values can all be chosen, i.e. these combi-
nations reflect the best found solution. At that point the algorithm reaches some
kind of ’natural’ convergence and the ants (almost) only exploit the pheromone
information. Thus, the algorithm gradually turns from exploration of the search
space in early iterations, to exploitation of the neighborhood of good solutions
in later iterations.

The exploration phase in the first iterations of the algorithm depends cru-
cially on the neighborhood size. A small neighborhood, while leading to good
solutions quickly, will allow only insufficient exploration of the search space and
the algorithm converges too early to a sub-optimal level.

This effect is reduced with increased size k of the neighborhood. However, the
other extreme, a neighborhood size of n leads to better exploration but inferior
solutions in the first iterations. While it may be able to find very good solutions
in the long run its computation times are prohibitive to make it an interesting
alternative.

Thus, the conclusion that can be drawn from this analysis is clear cut. The
best size of the neighborhood is k = �n/4�.
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3.4 Comparison between Our New Approach
and Existing Meta-heuristics

Now that we know the ’appropriate’ size of the neighborhood k = �n/4�, we
will compare the best results obtained with our new approach (denoted by Sav-
ingsAnts) after 2 · n iterations using this neighborhood size with the results of
the previous Ant System algorithm for the VRP as well as with Tabu Search
and Simulated Annealing algorithms. These algorithms are: the ant system al-
gorithm (AS) from [8], the parallel tabu search algorithm (PTS) from [16], the
TABUROUTE algorithm (TS) from [17] and the simulated annealing algorithm
(SA) from [18]. The results of this comparison are presented in Table 3.3 First,
we present the objective values obtained by the different algorithms for the 14
problems. The last two rows show for all algorithms the relative percentage de-
viation (RPD) over the best known solution. More specifically, the second to last
row gives the average RPD for the random problems (C1-C10), while the last
row shows the average RPD for the clustered problems (C11-C14).

Table 3. Comparison of five meta-heuristics

Instance PTS TS SA AS SavingsAnts

C1 524.61 524.61 528 524.61 524.61
C2 835.32 835.77 838.62 844.31 838.6
C3 827.53 829.45 829.18 832.32 838.38
C4 1044.35 1036.16 1058 1061.55 1040.86
C5 1334.55 1322.65 1376 1343.46 1307.78
C6 555.43 555.43 555.43 560.24 555.43
C7 909.68 913.23 909.68 916.21 913.01
C8 866.75 865.94 866.75 866.74 870.1
C9 1164.12 1177.76 1164.12 1195.99 1173.42
C10 1420.84 1418.51 1417.85 1451.64 1438.72
C11 1042.11 1073.47 1176 1065.21 1043.89
C12 819.56 819.56 826 819.56 819.56
C13 1550.17 1573.81 1545.98 1559.92 1548.14
C14 866.37 866.37 890 867.07 866.37

RPD (avg.)
C1-C10 0.71 0.70 1.26 1.76 0.92
C11-C14 0.15 1.28 4.17 0.88 0.16

3 In this table we do not show computation times. A comparison of computation
times is not reasonable as all the approaches were tested on different machines. So,
while our algorithm consumes by far the smallest computation times, it was also
run on the most powerful machine. However, from the execution times reported in
Table 2 we are confident, that our algorithm is more than competitive with respect
to computational effort.
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From Table 3 can be seen that our algorithm shows competitive behavior
when compared with the other meta-heuristics. The simulated annealing and
previous ant system algorithms are clearly outperformed by our new ant system
algorithm. On the other hand, only the parallel tabu search seems to be superior,
while the TABUROUTE algorithm shows comparable results. Our SavingsAnts
are particularly well suited for the clustered problems as the results for the test
instances C11-C14 show. The average percentage deviation of our SavingsAnts’
solutions from the best known solutions is only 0.16%.

The reason for the strong performance of the SavingsAnts for clustered prob-
lems can be stated as follows. The decision criterion favors the connection of
customers that are close to each other and far from the depot. In connection
with the simultaneous tour construction this is a good mechanism to identify
clusters (c.f. [13]) and to avoid unnecessary connections of customers from two
different clusters.

4 Conclusions and Future Research

In this paper we have shown the possible improvements to standard Ant System
approaches for VRPs through the use of a problem specific heuristic, namely
the Savings algorithm. The computational study performed shows the superior
performance of our new approach over the existing Ant System algorithm. In
particular, the average results of our approach improves the solution quality of
the previous Ant System significantly.

Furthermore, we show that our approach is competitive when compared with
other meta-heuristics such as Tabu Search and Simulated Annealing, in partic-
ular when applied to clustered problems.

Finally, the average deviation of less than 1.5% over the best known so-
lutions indicates the strength of the proposed algorithm. Moreover, given the
performance on the clustered problems this is particularly true for real world
problems, which generally exhibit a clustered structure.

Future work will focus on further improvements on the approach. In particu-
lar, we will apply our multi-colony approach, as proposed in [19], to the problem.
Apart from that we will focus on VRPs with additional features like multiple
depots, backhauls and time windows.
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