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Abstract

Del Pia and Michini recently improved the upper bound of kd due to Klein-
schmidt and Onn for the largest possible diameter of the convex hull of a set
of points in dimension d whose coordinates are integers between 0 and k. We
introduce Euler polytopes which include a family of lattice polytopes with diam-
eter (k + 1)d/2, and thus reduce the gap between the lower and upper bounds.
In addition, we highlight connections between Euler polytopes and a parame-
ter studied in convex matroid optimization and strengthen the lower and upper
bounds for this parameter.

Keywords: Euler polytopes, convex matroid optimization, zonotopes, diameter of
lattice polytopes

1 Introduction

The convex hull of integer-valued points is called a lattice polytope and, if all the
vertices are drawn from {0, 1, . . . , k}d, it is refereed to as a lattice (d, k)-polytope.
For simplicity, we only consider full dimensional lattice (d, k)-polytopes. Let δ(d, k)
be the maximum possible edge-diameter over all lattice (d, k)-polytopes. Naddef [11]
showed in 1989 that δ(d, 1) = d, Kleinschmidt and Onn [9] generalized this result in
1992 showing that δ(d, k) ≤ kd, before Del Pia and Michini [3] recently strengthened
the upper bound to δ(d, k) ≤ kd − dd/2e and showed that δ(d, 2) = b3d/2c. Del Pia
and Michini conclude their paper noting that the current lower bound for δ(d, k) is
of order k2/3d and ask whether the gap between the lower and upper bounds could
be closed, or at least reduced. The order k2/3d lower bound for δ(d, k) is a direct
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consequence of the determination of δ(2, k) which was investigated independently in
the early nineties by Thiele [13], Balog and Bárány [2], and Acketa and Žunić [1]. In
Section 2, we introduce a family of zonotopes which includes lattice polytopes whose
diameter achieves δ(2, k) in dimension 2 and achieves (k + 1)d/2 for infinitely many
d for each odd k. A lower bound of kd/2 − k2/4 for δ(d, k) is derived for any d and
k, reducing the gap between the lower and upper bounds for δ(d, k). We call Euler
polytopes the introduced family of zonotopes due to the link with the Euler totient
function described in Section 2.2. The Euler polytopes are also of interest for convex
matroid optimization and, along with another family of lattice polytopes having a
large number of vertices, we strengthen the established upper and lower bounds for a
parameter used in convex matroid optimization in Section 3.

2 Lattice polytopes with large diameter

2.1 A family of lattice polytopes arising as zonotopes

Given a finite X ⊂ Rd, let
∑
X =

∑
{x : x ∈ X} with

∑
∅ = 0, and let zone(G) =

conv(
∑
X : X ⊆ G) denote the zonotope generated by G. For x ∈ Zd, let gcd(x)

be the largest integer dividing all entries of x, and let � be the lexicographic order
on Rd with x � y if the first nonzero entry of x − y is positive. For q = ∞ or a
positive integer, and d, p positive integers, we consider the zonotope generated by the
set Gq(d, p) = {x ∈ Zd : ‖x‖q ≤ p , gcd(x) = 1 , x � 0}. The considered zonotope
is denoted by Zq(d, p), and called an Euler polytope due to the link with the Euler
totient function highlighted in Proposition 2.4.

Definition 2.1 (Euler Polytopes).
The Euler polytope Zq(d, p) of norm q, dimension d, and order p, is the zonotope:

Zq(d, p) = zone({x ∈ Zd : ‖x‖q ≤ p , gcd(x) = 1 , x � 0}).

To illustrate Definition 2.1, we list a few example of Euler polytopes:

Figure 1: Z1(2, 2)
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(i) G1(2, 2) = {(0, 1), (1, 0), (1, 1), (1,−1)} and Z1(2, 2) is the octagon whose vertices
are {(0, 0), (0, 1), (1, 2), (2, 2), (3, 1), (3, 0), (2,−1), (1−1)}, and, up to translation,
a lattice (2, 3)-polytope, see Figure 1.

(ii) Z∞(3, 1) has 13 generators and is, up to translation, a lattice (3, 9)-polytope, and
thus has diameter 13 and 96 vertices. Note that Z∞(3, 1) is the truncated small
rhombicuboctahedron, see Figure 2 for an illustration available on wikipedia [15],
and is the Minkowski sum of a cube, a truncated octahedron, and a rhombic
dodecahedron, see for instance Eppstein’s webpage [4].

Figure 2: Z∞(3, 1) is homothetic to the truncated small rhombicuboctahedron

(iii) Z1(d, 1) has d generators and is, up to translation, the d-dimensional {0, 1}-cube;
and thus has diameter d and 2d vertices.

We recall in Proposition 2.2 some properties of zonotopes and refer to the books
of Fukuda [5], Grünbaum [7], and Ziegler [16] for polytopes and, in particular, for
zonotopes.

Proposition 2.2. Let δ(P ) and f0(P ) denote respectively the diameter and the number
of vertices of a polytope P , and let m(Z) denotes the number of generators of a zonotope
Z. The diameter of a zonotope Z satisfies δ(Z) ≤ m(Z), and this inequality is satisfied
with equality if no pair of generators of Z are linearly dependent. The number of
vertices of a zonotope Z satisfies f0(Z) ≤ 2

∑i=d−1
i=0

(
d−1
i

)
.

Note that since no pair of generators of Zq(d, p) are collinear, Proposition 2.2 implies
that δ(Zq(d, p)) = m(Zq(d, p)).
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Observation 2.3. Let Z be a zonotope generated by integer-valued generators mj :
j = 1, . . . ,m(Z). The zonotope Z is, up to translation, a lattice (d, k)-polytope with

k ≤ max
i=1,2,...,d

j=m(Z)∑
j=1

|mj
i |.

To illustrate the introduced Euler zonotopes, Table 1 provides the number of vertices
of Z1(d, p) followed by its diameter δ(Z1(d, p)) and the k of this, up to translation,
lattice (d, k)-polytope which were computed for small d and p. For instance, the entry
48(9, 5) for (d, p) = (3, 2) in Table 1 indicates that Z1(3, 2) has 48 vertices, diameter 9,
and is, up to translation, a lattice (3, 5)-polytope. Note that Z1(3, 2) is the truncated
cuboctahedron – which is also called great rhombicuboctahedron – see Figure 3 for an
illustration available on wikipedia [14], and is the Minkowski sum of an octahedron
and a cuboctahedron, see for instance Eppstein’s webpage [4].

p
Z1(d, p) 1 2 3 4

d
2 4 (2,1) 8 (4,3) 16 (8,9) 24 (12,17)
3 8 (3,1) 48 (9,5) 336 (25,21) 1248 (49,53)
4 16 (4,1) 384 (16,7) 15360 (56,37) 203904 (136,117)

Table 1: Number of vertices (diameter, integer range) of Z1(d, p)

Figure 3: Z1(3, 2) is homothetic to the truncated cuboctahedron
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2.2 Tighter bounds for diameter of lattice polytopes

Finding lattice polygons with the largest diameter; that is, to determine δ(2, k), was
investigated independently in the early nineties by Thiele [13], Balog and Bárány [2],
and Acketa and Žunić [1]. This question can be also found in Ziegler’s book [16] as
Exercise 4.15. This result is summarized in Proposition 2.4 which states that, up
to translation, Z1(2, p) is a lattice (2, k)-polytope with k =

∑n=p
n=1 nφ(n) where φ(n)

denotes the Euler totient function counting positive integers less of equal to n and
relatively prime with n. Note that φ(1)is set to 1. In addition, Proposition 2.4 states
that δ(2, k) = δ(Z1(2, p)).

Proposition 2.4. The zonotope Z1(2, p) is, up to translation, a lattice (2, k)-polytope
with k =

∑n=p
n=1 nφ(n) where φ(n) denotes the Euler totient function. In addition, the

diameter of Z1(2, p) is 2
∑n=p

n=1 φ(n) and satisfies δ(Z1(2, p)) = δ(2, k). Thus, δ(2, k) =
6(k/2π)2/3 +O(k1/3 log k).

Note that a lattice polygon is in bijection with a set of integer-valued vectors adding
to zero and such that no pair of vectors are positive multiple of each other. Such
set of vectors forms a (2, k)-polytope with 2k being the maximum between the sum
of the norms of the first coordinates of the vectors and the sum of the norms of the
second coordinates of the vectors. Then, for k =

∑n=p
n=1 nφ(n), one can show that

δ(2, k) is achieved uniquely by a translation of Z1(2, p). For k 6=
∑n=p

n=1 nφ(n), δ(2, k)
is achieved by the zonotope generated by the union of G1(2, p) and an appropriate
subset of G1(2, p + 1) \ G1(2, p) for an appropriate p. For the order of

∑
nφ(n) and∑

φ(n) we refer to [8]. The first values of δ(2, k) are given in Table 2.

p of Z1(2, p) 1 2 3 4
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

δ(2, k) 2 3 4 4 5 6 6 7 8 8 8 9 10 10 10 11 12

Table 2: Relation between Z1(2, p) and δ(2, k)

While Proposition 2.4 states that Z1(2, p) maximizes the diameter among lattice poly-
gons, Theorem 2.6, which is implied by Lemma 2.5, shows that Z1(d, 2) yields a
strengthening of the lower bound for δ(d, k).

Lemma 2.5. The zonotope Z1(d, 2) is, up to translation, a lattice (d, 2d− 1)-polytope
with diameter d2. Thus, δ(d, 2d− 1) ≥ d2 for any d.

Proof. We first note that the number of generators of Z1(d, 2) is d2. The generators
of Z1(d, 2) are {−1, 0, 1}-valued : d permutations of (1, 0, . . . , 0),

(
d
2

)
permutations

of (1, 1, 0, . . . , 0), and
(
d
2

)
permutations of (1,−1, 0, . . . , 0). Thus, by proposition 2.2,
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δ(Z1(d, 2)) = d2. As the sum of the the norm of the i-th coordinate of the d2 generators
of Z1(d, 2) is 2d − 1, Z1(d, 2) is, up to translation, a lattice (d, 2d − 1)-polytope by
Observation 2.3.

Theorem 2.6. For positive integers d and k,

(i) δ(d, k) ≥ (k + 1)d/2 for odd k and d a multiple of (k + 1)/2,

(ii) δ(d, k) > (k + 1)d/2− (k + 1)2/4 for odd k,

(iii) δ(d, k) > kd/2− k2/4.

Proof. Given two polytopes P 1 ⊂ Rd1 and P 2 ⊂ Rd2 , the cartesian product of P 1 and
P 2 is the polytope P 1×P 2 = {(x, y) ∈ Rd1+d2 : x ∈ P 1, y ∈ P 2}. One can observe that
P 1×P 2 is a (d1+d2) dimensional polypope with diameter δ(P 1×P 2) = δ(P 1)+δ(P 2).
In particular, the cartesian product of Z1(d, 2) by itself α times is a lattice (αd, 2d−1)-
polytope with diameter αd2. Thus, δ(αd, 2d − 1) ≥ αd2 for any positive integers α
and d; which implies item (i) by setting 2d − 1 = k. Since δ(d, k) is nondecreasing
with d and bd/αc ≤ d/α for any positive integer α, setting α = (k + 1)/2 yields
δ(d, k) ≥ δ(b2d/(k + 1)c(k + 1)/2, k) for odd k. Applying item (i) gives δ(d, k) ≥
b2d/(k + 1)c(k + 1)2/4 for odd k. Applying bd/αc > d/α − 1 with α = (k + 1)/2
yields item (ii). For even k, applying item (ii) for k−1 and δ(d, k) ≥ δ(d, k−1), gives
δ(d, k) ≥ b2d/kck2/4 for even k. Applying bd/αc > d/α− 1 with α = k/2 yields item
(iii) and completes the proof.

Note that considering cartesian products of polygons achieving δ(2, k) can slightly
strengthen Theorem 2.6 but without improving the leading term kd/2.

As noted in the comments following Proposition 2.4, δ(2, k) is achieved by zono-
topes. Similarly, the other known values of δ(d, k); that is, δ(1, k) = 1, δ(d, 1) = d,
δ(d, 2) = b3d/2c, and δ(3, 3) = 6, are also achieved by zonotopes. In addition, re-
mark that among all zonotopes which are lattice (d, 2d − 1)-polytopes, a translation
of Z1(d, 2) maximizes the number of linearity independent generators. These observa-
tions motivate Conjecture 2.7.

Conjecture 2.7. The largest diameter δ(d, k) among all lattice (d, k)-polytopes is
achieved by a zonotope; δ(d, 2d − 1) = d2 and is uniquely achieved, up to translation,
by Z1(d, 2); and δ(d, k) ≤ b(k + 1)d/2c for any d and k.

3 Lattice polytopes with many vertices

3.1 Convex matroid optimization and Euler zonotopes

Call S ⊂ {0, 1}n a matroid if it is the set of the indicators of bases of a matroid over
{1, . . . , n}. For a d × n matrix W , let WS = {Wx : x ∈ S}, and let conv(WS) =
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W conv(S) be the projection to Rd of conv(S) by W . Given a convex function
f : Rd → R, convex matroid optimization deals with maximizing the composite
function f(Wx) over S; that is, max {f(Wx) : x ∈ S}, and is concerned with the
conv(WS); that is, the projection of the set of the feasible points. The maximization
problem can also be interpreted as a problem of multicriteria optimization, where each
row of W gives a linear criterion Wix and f compromises these criteria. Thus, W is
called the criteria matrix or weight matrix. The projection polytope conv(WS) and
its vertices play a key role in solving the maximization problem as, for any convex
function f , there is an optimal solution x whose projection y = Wx is a vertex of
conv(WS). In particular, the enumeration of all vertices of conv(WS) enables to com-
pute the optimal objective value by picking that vertex attaining the optimal value
f(y) = f(Wx). Thus, it suffices that f is presented by a comparison oracle that,
queried on vectors y, z ∈ Rd, asserts whether or not f(y) < f(z). Coarse criteria
matrices; that is, W whose entries are small or in {0, 1, . . . , p}, are of particular inter-
est. In multicriteria combinatorial optimization, this case corresponds to the weight
Wi,j attributed to element j of the ground set {1, . . . , n} under criterion i being a
small or in {0, 1, . . . , p} for all i, j. In the reminder of Section 3, we only consider
{0, 1, . . . , p}-valued W . We refer to Melamed and Onn [10], and references therein, for
convex integer optimization and, in particular, for convex matroid optimization.

The normal cone of a polytope P ⊂ Rn at its vertex v is the relatively open cone
of the linear functions h ∈ Rn uniquely maximized over P at v. A polytope P is a
refinement of a polytope Q if the normal cone of P at every vertex of P is contained
in the normal cone of Q at some vertex of Q.

Proposition 3.1. For positive integers d, p, n, a matroid S ⊂ {0, 1}n, and a d × n
criteria matrix W with entries in {0, 1, . . . , p}, Z∞(d, p) is a refinement of conv(WS).
Thus, the maximum number m(d, p) of vertices of conv(WS) is independent of n, S,
and W . In addition, m(d, p) is at most the number of vertices of Z∞(d, p).

Proof. For a matroid S ⊂ {0, 1}n, any edge of conv(S) is parallel to the difference
1i − 1j between a pair of unit vectors in Rn, see [10, 12]. Therefore, any edge of
the projection conv(WS) by W is parallel to the difference W i −W j between a pair
of columns of W which belongs to {0,±1, · · · ± p}d. Hence, the zonotope generated
by G = {x ∈ Zd : ‖x‖∞ ≤ p} is a refinement of conv(WS), see [6, 12]. Note that
G∞(d, p) is a maximal subset of G without pair of linearly dependent elements. Thus,
Z∞(d, p) is homothetic to zone(G) and hence a refinement of conv(WS). Therefore,
the maximum number of vertices of conv(WS) is independent of n, S, and W . This
number is denoted by m(d, p) and is at most the number of vertices of Z∞(d, p).

While Proposition 3.1 shows that the number of vertices of the zonotope generated by
G∞(d, p) provides an upper bound for m(d, p), Proposition 3.2 shows that the number
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of vertices of the zonotope Z+
∞(d, p) generated by the nonnegative elements of G∞(d, p)

provides a lower bound for m(d, p).

LetG+
q (d, p) = Gq(d, p)∩Zd

+ where Z+ = {0, 1, . . . }, and let Z+
q (d, p) = zone(G+

q (d, p)).
For instance, G+

∞(2, 2) = {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)} and Z+
∞(2, 2) is the decagon

whose vertices are {(0, 0), (0, 1), (1, 0), (1, 3), (2, 4), (3, 1), (4, 2), 4, 5), (5, 4), (5, 5)}, see
Figure 4.

Figure 4: Z+
∞(2, 2)

Proposition 3.2. For positive integers d and p, there exist a positive integer n, a
matroid S ⊂ {0, 1}n, and a d × n criteria matrix W with entries in {0, 1, . . . , p}
such that conv(WS) = Z+

∞(d, p). Thus, the maximum number m(d, p) of vertices of
conv(WS) is at least the number of vertices of Z+

∞(d, p).

Proof. Let m denotes the number of vertices of Z+
∞(d, p), and let W be the d × 2m

matrix whose first m columns are the elements of G+
∞(d, p), say, ordered lexicographi-

cally, and last m columns consist of zeros. Let S be the (set of indicators of bases of
the) uniform matroid Um

2m – that is, S consists of all vectors in {0, 1}2m with exactly
m zeros and m ones. One can easily check that WS = {

∑
X : X ⊆ Z+

∞(d, p)} and
thus, conv(WS) = zone(G+

∞(d, p)) = Z+
∞(d, p).

Theorem 3.3, which simply combines Propositions 3.1 and 3.2, highlights the roles
played by Euler zonotopes to bound m(d, p).

Theorem 3.3. For positive integers d, p, n, a matroid S ⊂ {0, 1}n, and a d×n criteria
matrix W with entries in {0, 1, . . . , p}, the maximum number m(d, p) of vertices of
conv(WS) satisfies f0(Z

+
∞(d, p)) ≤ m(d, p) ≤ f0(Z∞(d, p)).

Tables 3 and 4 provide the number of vertices of Z+
∞(d, p), respectively Z∞(d, p),

followed by the diameter and the k of these, up to translation, lattice (d, k)-polytopes
for small d and p. For instance, the entry 96 (13, 9) for (d, p) = (3, 1) in Table 4
indicates that Z∞(3, 1) has 96 vertices, diameter 13, and is, up to translation, a lattice
(3, 9)-polytope.
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p
Z+
∞(d, p) 1 2 3 4

d

2 6(3,2) 10 (5,5) 18 (9,14) 26(13,26)
3 32 (7,4) 212 (19,19) 1418 (49,76) 4916 (91,184)
4 370 (15,8) 27778 (65,65) (225,344) (529,1064)

Table 3: Number of vertices (diameter, integer range) of Z+
∞(d, p)

p
Z∞(d, p) 1 2 3 4

d

2 8 (4,3) 16 (8,9) 32 (16,27) 48 (24,51)
3 96 (13,9) 1248 (49,57) 10944 (145,249) 43680 (289,633)
4 5376 (40,27) (272,321) (1120,1923) (2928,6459)

Table 4: Number of vertices (diameter, integer range) of Z∞(d, p)

Observation 3.4. The zonotope Z∞(d, 1) has (3d− 1)/2 generators including (3d−1−
1)/2 generators which belong to the hyperplane {x ∈ Rd : x1 = 0} and form Z∞(d −
1, 1). In addition, Z∞(d, 1) is, up to translation, a lattice (d, 3d−1)-polytope with di-
ameter (3d − 1)/2.

Proof. The generators of Z∞(d, 1) form all {−1, 0, 1}-valued d-tuples except (0, . . . .0),
and without the remaining half starting with −1, thus m(Z∞(d, 1)) = (3d − 1)/2
generators and, by Proposition 2.2, δ(Z∞(d, 1)) = (3d − 1)/2. On can easily check
that removing the first zero of the generators of Z∞(d, 1) starting with zero yields
exactly the (3d−1 − 1)/2 generators of Z∞(d − 1, 1). As the sum of the the norm of
the i-th coordinate of the (3d − 1)/2 generators of Z∞(d, 1) is 3d−1, Z∞(d, 1) is, up to
translation, a lattice (d, 3d−1)-polytope by Observation 2.3.

Note that Z∞(d, 1) is homothetic to the zonotope called Z(d) in [10] where, com-
bining Proposition 3.1, Observation 3.4, and Proposition 2.2, the upper bound of

2
∑i=d−1

i=0

(
(3d−3)/2

i

)
for m(d, 1) is given. Theorem 3.5 slightly strengthens the upper

bound for m(d, 1) by exploring the structure of the generators of Z∞(d, 1).

Theorem 3.5. For d ≥ 3, m(d, 1) ≤ 2
∑i=d−1

i=0

(
(3d−3)/2

i

)
− 2
(
(3d−1−3)/2

d−1

)
.

Proof. Sincem(d, 1) ≤ f0(Z∞(d, 1)), it is enough to show that f0(Z∞(d, 1)) ≤ f̄(d, (3d−
1)/2) − 2

(
(3d−1−3)/2

d−1

)
for d ≥ 3 where f̄(d,m) =

∑i=d−1
i=0

(
m−1
i

)
. By duality, the num-

ber f0(Z) of vertices of a zonotope Z is equal to the number fd−1(A) of cells of the
associate hyperplane arrangement A where each generator mj of Z corresponds to
an hyperplane hj of A, see [5, 16]. The upper bound of f̄(d,m) for f0(Z) given in
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Proposition 2.2 is based on the inequality fd−1(A) ≤ fd−1(A \ hj) + fd−1(A ∩ hj)
for any hyperplane hj of A where A \ hj denotes the arrangement obtained by re-
moving hj from A, and A ∩ hj denotes the arrangement obtained by intersecting
A with hj. Recursively applying this inequality to the arrangement A∞(d, 1) as-
sociated to Z∞(d, 1) till the remaining (3d−1 − 1)/2 hyperplanes form a (d − 1)-
dimensional arrangement equivalent toA∞(d−1, 1) yields: fd−1(A∞(d, 1)) ≤ f̄(d, (3d−
1)/2) −

(
f̄(d, (3d−1 − 1)/2)− f̄(d− 1, (3d−1 − 1)/2)

)
which completes the proof since

fd−1(A∞(d, 1)) = f0(Z∞(d, 1)) and f̄(d,m) − f̄(d − 1,m) = 2
(
m−1
d

)
. In other words,

the proof is based on the inductive build-up of Z∞(d, 1) starting with the (3d−1− 3)/2
generators with zero as first coordinate, and noticing that these (3d−1−3)/2 generators
belong to a lower dimensional space.

3.2 A family of lattice polytopes arising as matroid polytopes

We consider a family of lattice polytopes introduced in [10] and defined as M(d, r, s) =
conv(W s

dS
s2d

r ) where W is the {0, 1}-valued d× s2d matrix whose s2d columns consist
of s copies of the 2d elements of {0, 1}d, and S is the (set of indicators of bases of
the) uniform matroid U r

s2d
of rank r and order s2d; that is, S consists of all vectors in

{0, 1}s2d with exactly r ones. We recall in Observation 3.6 some examples of M(d, r, s)
noted in [10].

Observation 3.6.

(i) f0(M(d, r, s ≥ r)) = 2d as M(d, r, s ≥ r) is the {0, . . . , s}d-cube,

(ii) f0(M(d, 2, 1)) = d2d−1 as M(d, 2, 1) is the truncated {0, 1, 2}d-cube,

(iii) f0(M(d, s + 1, s ≥ 2)) = d2d as M(d, s + 1, s ≥ 2) is the truncated {0, . . . , s}d-
cube.

To illustrate the introduced family of matroid polytopes, Tables 5 and 6 provide the
number of vertices of M(d, r, s) followed by its diameter δ(M(d, r, s)) and the k of this
lattice (d, k)-polytope which were computed for small d, r and s. For instance, the
entry 48(9, 5) for (d, r, s) = (3, 5, 2) in Table 5 indicates that M(3, 5, 2) has 48 vertices,
diameter 9, and is a lattice (3, 5)-polytope. Note that M(3, 5, 2) is homothetic to the
truncated cuboctahedron represented in Figure 3, and thus a translation of Z1(3, 2).
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r − s
M(3, r, s) 1 2 3 4 5 6

s

1 12 (3,2) 24 (5,3) 14 (4,4) 24 (5,4) 12 (3,4) 8 (3,4)
2 24 (6,3) 12 (3,4) 48 (9,5) 24 (5,6) 48 (9,7) 14 (4,8)
3 24 (6,4) 24 (6,5) 12 (3,6) 48 (9,7) 48 (9,8) 24 (5,9)
4 24 (6,5) 24 (6,6) 24 (6,7) 12 (3,8) 48 (9,9) 48 (9,10)
5 24 (6,6) 24 (6,7) 24 (6,8) 24 (6,9) 12 (3,10) 48 (9,11)

Table 5: Number of vertices (diameter, integer range) of M(3, r, s)

r − s
M(4, r, s) 1 2 3 4 . . . 9

s
1 32 (4,2) 96(7,3) 88(6,4) 208 (8,5) . . . 256(10,8)
2 64 (8,3) 32 (4,4) 192 (12,5) 96 (7,6) . . . 672 (17,11)

Table 6: Number of vertices (diameter, integer range) of M(4, r, s)

Theorem 3.7 summarizes Theorems 3.3 and 3.5, and item (iii) of Observation 3.6.

Theorem 3.7. The following inequalities hold for d ≥ 3:

max{d2d, f0(Z
+
∞(d, 1))} ≤ m(d, 1) ≤ f0(Z∞(d, 1)) ≤ 2

i=d−1∑
i=0

(
(3d − 3)/2

i

)
−2

(
(3d−1 − 3)/2

d− 1

)
As noted in [10], m(2, 1) = 8 as f0(M(2, 3, 2)) = f0(Z∞(2, 1)) = 8. Finding (d, r, s)
such that M(d, r, s) has more that max{d2d, f0(Z

+
∞(d, 1))} vertices would strengthen

the lower bound for m(d, 1) as reported in Observation 3.8.

Observation 3.8.

(i) 48 ≤ m(3, 1) ≤ 96 as f0(M(3, 5, 2)) = 48 and f0(Z∞(3, 1)) = 96,

(ii) 672 ≤ m(4, 1) ≤ 5 376 as f0(M(4, 11, 2)) = 672 and f0(Z∞(4, 1)) = 5 376,
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[2] Antal Balog and Imre Bárány. On the convex hull of the integer points in a disc.
In Proceedings of the Seventh Annual Symposium on Computational Geometry,
pages 162–165, New York, USA, 1991. ACM.

[3] Alberto Del Pia and Carla Michini. On the diameter of lattice polytopes. ArXiv
e-prints, December 2015.

[4] David Eppstein. Zonohedra and zonotopes. https://www.ics.uci.edu/

~eppstein/junkyard/ukraine/ukraine.html.

[5] Komei Fukuda. Lecture notes: Polyhedral computation. http://www-oldurls.

inf.ethz.ch/personal/fukudak/lect/pclect/notes2015/, 2015.

[6] Peter Gritzmann and Bernd Sturmfels. Minkowski addition of polytopes: com-
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