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Abstract

In this paper, we prove an existence and uniqueness result for a bi-layer shallow water model
in depth-mean velocity formulation. Some smoothness results for the solution are also obtained.
In a previous work we proved the same results for a one-layer problem. Now the difficulty arises
from the terms coupling the two layers. In order to obtain the energy estimate, we use a special
basis which allows us to bound these terms.
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1. Introduction

The problem that gave rise to our study is the modelling of the dynamics of water
masses in the Alboran Sea and the Strait of Gibraltar (the western-most part of the
Mediterranean Sea). In this sea, two layers of water can be distinguished: the surface
Atlantic water penetrating into the Mediterranean through the Strait of Gibraltar, and
the deeper, denser Mediterranean water flowing into the Atlantic. The observation of
this simplified picture shows that, if a bi-dimensional model is going to be used to
simulate the flow in this region, it is necessary to consider, at least, a two-layer model.

Here, a model is proposed that considers sea water as composed of two immiscible
layers of different constant densities. In such a model, waves appear not only on the
surface but also at the interface between the layers. It will be assumed that phenomena
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to be modelled have wavelengths large enough to make an appropriate shallow water
approximation in each layer. Therefore, the partial differential equations system to be
studied is a coupled system of shallow water equations.

1.1. Positioning the problem

Let Q be a fixed bounded, smooth, and simply connected open domain of R? with
boundary I'. Physically, © is the domain corresponding to the surface of the sea as-
sumed to be at rest. We denote by x = (x1,x;) a point in Q and by »n the exterior unit
normal vector to Q on I'. Let Q be equal to Q x (0,7) and X =T x (0,T).

If v=(v,v2) is a vector function from Q into R? and q is a scalar function from
Q into R, we define the operators «, Curl and curl as follows:

dq
—0 aixz 0y on
= C 1 = 1 = —— = —
a(v) ( o ), url ¢ _@ R curl v . .
axl

We consider a system composed by two layers of superposed fluids with densities
p1 and py (p2 < p1). In what follows, index 1 makes reference to the deeper layer and
index 2 to the upper layer of the fluid. Let 4; and A, be the respective coefficients of
viscosity for each layer and g the acceleration of gravity. We denote by u; and u, the
velocity vector fields defined in Q and by 4; and 4, the thickness of the lower and
upper layer, respectively.

The problem we study is the following [8]:

0 1
% — A1 Auy + EVuf + curl uyo(uy) + gVhy + Q%V}lz =0 in Q,
1

u-n=0 on X,
curlu; =0 on 2,
wu(t=0)=uo in Q,
Oh

aTl + div(u1h) =0 in O,
hi@=0)=h in Q,
672 — AAuy + Evug + curl up0(uz) + gVhy + gVhy =0 in 0,
U -n= 0 on 2,
curlu, =0 on X,
w(t=0)= Uz 0 in Q,
Oh

aTZ + div(uzhy) =0 in O,
h(t=0)= hz,() in Q,

where uj o, uzo and hy o, hyo are the initial conditions for velocities and depths,
respectively. In order to simplify this, we consider homogeneous momentum equations
and homogeneous boundary conditions.
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1.2. Weak formulation

We will denote by (.,.) the scalar product of L2(2) and L*(2)* and by ||.||n» the
usual norm in the spaces W™ P(Q) and W"™P(Q)>.
Let V be the space

V={uec*(Q) divu € L*(Q),curlu € L*(Q),u-n=0 on I'}.

This is a Banach space with the norm ||u||? = [jul|?, + ||divu||2, + |lcurlu|,. The
following results concerning ¥ [4] will be used:

If Q is smooth enough, V is algebraically and topologically included in the space
{ue H'(Q)*,u-n=0 on I'}.

If Q is simply connected, the previous norm is equivalent to that given by |ju||2 =
[|div ul|2, + [|curlu||%,, and the bilinear form

a(u,v) = (div u,div v) + (curl u, curl v)

is elliptic. !

Let us consider problem (£) under the following weak formulation:

Find (u;, /) and (ua,hy) in [L®(0, T; L*(Q)*) N L2(0,T; V)] x [L>=(0, T; L1(2)) N
L*(Q)] such that h; >0, h, > 0 and

0 1
<(3Mt1’v) + Ara(uy,v) — E(u%,div v) + (curl uyo(uy), v)

—g(hy, div o) — g%(hz,divv) -0 VoeV,

1

1
(auz ) + Azra(us,v) — E(ug,divv) + (curl up0(u2), v)

771)
ot
€2 —g(hy,divo) — g(hy,dive)=0 Yo eV,
% +le(u1hl):0 in LI(O: Ty W—l,p(Q))’ p <27
% +div(uhy) =0 in L'(0,T; W~ "7(Q)), p <2,
w(t=0)=u €V, w(t=0)=uo €V,

h(t=0)=ho>0¢c LQ), hy(t =0)=hy o > 0 € LX(Q).

The following orthogonal decomposition of L?(2)? in a sum of gradient vectors and
curl vectors holds [4,9]:

[}(Q)* = VH'(Q) @ Curl H}(Q).
This decomposition will be used to look for #; and u, in ¥ under the form

up=up1 +ug1 =Vpr+Curlq, uy=u,s+ug=Vpr+ Curlg,

! Notice that Au = Vdivu — Curl curl u for explaining the choice of ¥ and a.
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with p;, q; and p,, ¢, solutions of the scalar problems

Apy=divu; in Q, —Ag) =curlu; in Q,
0

—pl:uyn:O on I, g1=0 onTl

on

and

Apy=divuy in O, —~Agqy =curlu;, in Q,
0

ﬂ:uz-nzo on I, g=0 onlT.
on

The functions p; can be chosen such that [, p; =0. We must also remember that
curlu,; =0 and divu,; =0, i =1,2.

We are going to prove the existence and uniqueness of the solution of problem (7")
and some smoothness results. Those results have been already proved in the single-layer
case [3]. In the two-layer model, we find the same difficulties together with a new one
due to the appearance of coupling terms between the layers.

In order to simplify the notations, we only consider the simply connected case. The
additional difficulty appearing in the multiply connected domain is solved taking into
account a dissipation condition at the bottom [10]. In this case, some new functions
must be added to the decomposition: the functions curl» with » solutions of the fol-
lowing m problems:

—Ar;=0 in Q, =1 on I} ri=0 only, j#Ii,

where i = 1,...,m and j =0,...,m. We have assumed that I has a finite number
of connected components I';, i =0,...,m, I'y indicating the boundary of the infinite
connected component of the complementary of Q in R2.

2. An existence theorem
In this section, we present a global existence result with controlled data.
2.1. Theorem

2.1.1. Preliminaries
Let C be the best constant associated with Gagliardo—Nirenberg’s inequality:

lullzs < Cllullzllully  Vue V.
Let C’ be the injection constant of {® € W"!(Q): [,© =0} into L*(Q):
1Ol < VO, VYO W (Q): / O =0.
Q

We consider the N-function
B(x) =" — 1

and the associated Orlicz space Lg(€2), which is a Banach space with the Orlicz norm,
denoted by |||z,
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The Sobolev space H'(Q) is embedded in Ly(2) [1]. Let k be the injection constant:

I1pll, < klpllm  VpeH(Q).

It is not possible to give an analytical expression for ¥, the complementary N-
function to @. But it can be shown? that ¥ is equivalent to ¥, with

U(x) =xy/log" x.

Let |.|z, and |||z, be the Orlicz norms in the Orlicz spaces Ly(Q) and Lj(Q),

respectively. The equivalence relation between the N-functions ¥ and W implies the
equivalence between the norms ||.||z, and [|.|[z, and allows us to identify the spaces
Ly(Q) and L(Q). Let &’ be the best constant such that

IAllz, < KAl Vh € Ly(Q) = Lg(2).
Finally, denote by k" the best constant such that

Iplm <KV pllz VpeH'(@): / p=0.

Now we can define

K =kk'k".

2.1.2. Conditions of the theorem
Let 4 and u be positive numbers such that

3 p
> = —. 1
9> 34493 (1)
We define
C? 4+ 2C"
CA = +7
4/
and
(171,02 , 02
= Ci = h h LAy A ,
2 meas(Q) 1= meas(Q)H 10||L1 H Lol + o1 H 2,0||L1
2.0l , gT
2meas(Q) 2= mea (Q)H 20||L1(|| 10||L1 + || 2 OHLI
Let us assume that the eddy viscosities 4; and 4, satisfy
1 1
Al >Cl+gp2 A2>C2+g— (2)
p1 21 2u

2 By proving that limy— o P(x)/¥(x) = 1.
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Then
1
Bi=d—C — g2~
p12u
and
1

By=4,-C—yg oM
u
are strictly positive.
We assume that the data are small in the following sense:
2
1 .
Z [2””[,0”%2 + (g +Ai)/ hi,olog hio + gmeas(Q) — Aih; o log h; o meas(Q)
Q

i=1

16C; 3)

2
V/C2 ¥ 16B;C; — C)

+Cf +/ pi(0)hio + ZKZ} < Hmli% <
Q =1,

where 0 € (0,1) and /; represent the averaged water elevation at the initial instant,
i=1,2.

Theorem 1. Let Q be a simply connected bounded smooth open domain of R*. Let
o€V, hio€ L2(Q) such that hio > 0, i = 1,2, satisfying the following conditions:

g
rzoller < 527 (4)
v/ C?+16B;C; — C
;i - . 5
luioll2 < ac, (5)

If the previous hypothesis on the data is satisfied, then the weak problem (V") has
a solution {(uy, hy),(uz, hy)} that satisfies the following estimate:

H”lniw(o,r;Lz(Q)Z) + ||”2||iw(0,T;L2(Q)2) + 51t1p/9h1 log iy + Sl:P/QhZ log 7,

+ ([ ||i2(O,T;V) + ||u2||i2(0,T;V) + I ||12‘2(Q) + ||h2||22(Q) <C (6)
where C > 0 depends on the initial data.

As in the one-layer case, the proof of this theorem is split into several steps: first
we give some a priori estimates, then we build a sequence of approximated solutions
that satisfy these estimates, and, finally, we pass to the limit into the continuity and
momentum equations as in [11]. In this case, the main difficulty is to obtain an a priori
estimate because of the coupled terms.

2.2. A priori estimates

Lemma 1. If {(u1, ), (u2, k) } is a classical solution of problem (V") and if relations
(1)(5) are satisfied, then we have

hy >0, hy >0, (7)
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/hlz/hl,o, /hZZ/hz,o, (®)
Q Q Q Q
2

g 1 1
- ?meas(Q) < Z”“lniw(o,r;y(gy) + Z||u2||12,°°(0,T;L2(.Q)2)

+(g—2K2Hh1,o||L1)sup/h1 log™ iy —gsup/hl log™ Iy
t Jo ¢ Ja
+(g—2K2Hh2,o||L1)sup/h2 log® hg—gsup/hz log™ hy
: Jo ¢ Jo
—— — G2 a2
1 S Uiz, z@p) = CallUillzee o, ;20) | 1112200, 7:7)
+(B= S Gl a2
27 iz, r:2@p) = CallU2lizeo 0,7 20) ) 14211200, 7:0)
3 1 3, pp
+ <g 4/192> ||h1||1%2(Q)+ <g Z/L*QEE ||h2||%2(Q)
2 1 o
< Z *||Hi,0||i2 +(g +Ai)/hi,010ghi,0 — A;h; o log h; o meas(£2)
=12 Q

+Cl + / pi(0)hi +2K2] . )
Q
¢ 2
By — 5““1 ||Loo(0,T;L2(Q)2) - C/lHul HLoo(o,T;LZ(Q)Z) >0,
c 2
B, — 5||”2||Lw(o,T;L2(Q)2) — Cillua||zo 0,7.12¢0) > O- (10)
Proof. Inequalities (7) are easily deduced from the identity:
hi(Xi(0),1) = hi(xo, 0) @~ Jo St s, (1)
where X;(¢) is the solution of the problem
dX;
q = i), 0,

Xi(0) = xo,

fori=1,2.

Relations (8) are obtained by integration over 2 of the respective continuity
equations.

The main difficulties that appear in obtaining estimate (9) arise from the fact that
divu; # 0. Due to this, the nonlinear terms and the pressure terms do not vanish
in the energy inequalities, as is the case of the incompressible Navier—Stokes
equations [7].

In order to estimate the nonlinear terms (u?,div ;) we must build a stability space
[11], using Gagliardo—Nirenberg’s inequality.
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The estimate of the terms (A;,divu;) is overcome with an additional estimate of
hilogh; in L'(Q) [11].

The two previous difficulties also appear in the case of a single layer [2]. But there is
a third one that does not appear in the one-layer system. This is related to the presence
of the terms (/,divuy) and (hy,divuy): an estimation of &; in L?>(Q) is required to
handle these.

To obtain these estimates we adapt the techniques used in [3]. The difficulty in this
case comes from the fact that the L2-estimates for 4; and the existence of a solution
must be obtained at the same time, while in [3], the L?-estimate is obtained once the
existence and boundedness of the solution is known.

The first step is to obtain the energy inequalities, by taking v=wu; in (¥"); and v=u,
in (”/)22

1d 1 . , .

5 gl + v} = S divan) = gChdivan) — g2 (ho.divn) =0, (12)
t 2 P1

1d 1 . . .

5 g el + Aol = S5, diven) — glh,diven) — g(h, divin) =0. (13)

To estimate the nonlinear terms (u?,divu;) and (u3,divuy), we use Gagliardo—

Nirenberg’s inequality
(uf,divey) < flugl|Zslluclly < Cllugl|ellelfr, i=1,2.

Next, we estimate the terms (%1,divu;) and (4,,divuy) by formally writing
iy
hi ’
Using the continuity equations and (8) we have
Oh;
Ot

—(hi,divu;) = (Vh,u;) = ( Mihi) = (Vlog hj,u;h;) = —(log h;, div(u;h;)).

. d d
*(hi,dlv u,-) = (10g hi, > = &(hl 10g hi - hi, 1) = a(hl log hi> l), = 1,2

Then, adding (12) and (13), and integrating in (0,¢), we get

1 1
sl + 3lhalf +a [ milogh +g [ miogh,
C
+ (Al - 2||M1I|L°o<o,T;L2(Q>2>> e ]|Z2¢0,1:0
C
+ (4= Sl ) el
1 2 1 2
< EHMI,OHLZ + §||”2,0||L2 +9g [ hiologhio+g [ hyologhso
Q Q

T T
+g% |(h2,divu1)|+g/ |(hy, div ). (14)
0 0

The second step consists in obtaining estimates for 7, and h, in L?>(Q). To do
this, we consider the L?-projection of equations (#); and (#); on the gradient vectors
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147
field [3]:

1
/ ((’Zdtl 3 2 4+ curluo(uy ) + gVhy + g=—= Vh2> VPdx =0,
o

g 1
/ ( Outz Auy + 2Vu2+curluzoc(uz)+th2+th ) VPdx =0,
Q
where P € H'(Q).

Setting uy = u, 1 + ug and uy = u, o + uy 2, We have

0 1
/ ( ”gt" = AiAupy + 5V + curlug () + gV +922th> VPdx =
o 1

0 1
/ ( L;‘t”z — A2 Auys + EVu% + curlugr0(u2) + gVhy + th1> VPdx =
Q

Here, we have considered that the projections on the space VH'(Q) of du,;/0t and
Curlcurlu,; are zero. Recalling that divu,; = Ap;, we arrive at

0 1

V( 61;1 AAp1+2u1+@1+gh1+g h2>:0,
(3p2 1

\Y 5 AAp2+2u2+@z+gh2+gh1

where V@, and V@, are the respective projections for the L2(2)? scalar product of

curlug jo(uy) and curluy r0(uz) on the space VH'(Q). Then
0 1

;l —AAp + 2u1 + @) +gh +g hz G,

op2

F — A Apy + Eug + O+ ghy +gh =05,

(15)

(16)
where {; and {, are functions that only depend on time
Now we define, for € [0, T], the function

1, 0<t<T-9,
55(1)2{

T—t

Multiplying (15) by &shy and (16) by Esh, and integrating over O, we obtain

1
g/fah%*Al/Aplééhl +*/M%fah1 +g&/f¢sh1hz
0 0 2 Jo p1Jo
0
Z/C1€5h1 - %55%-/0155%,
0 o 01 0
1
g/ ééh%—Az/Apzf(shz-i-i/u%féhz‘*‘g/ Eshihy
o

/ Goéshs — pzfahz / Oashs.
0 [¢)

(17)

(18)
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The L?-estimates for 4; and /, will be performed by estimating the terms in these
equations and then, passing to the limit when 6 — 0. First, notice that |, 0 Eshihy = 0
because Ay, hy > 0.

Then, the second terms on the left-hand side are treated by using

d
*/h,Apl:*/h,leM,:*/h,lOgh,
Q Q dr Jg

as follows

T
d
—Ai/APiféhiZ—Ai/ fa/hidivuiZAi/ «f()—/h log A;
0 0 Q 0 d
T T
d
:A,-/ —/éahiloghi—Ai/ 5"/}: log i
o dt Jg 0
A4, (T
:—Ai/hi,ologhi,0+§l/ /h,logh,
Q 7-sJQ

Using the convexity inequality

hilogh; = hilogh; + (log h; + 1)(h; — hy)

and (8), we have
/h,- logh; > h;log hymeas(Q) = h; o log h; o meas(Q). (19)
Q
Then

4; (T 4 M — .
—l/ /hi logh; > = hiolog h; o meas(Q) = A;h; ¢ log h; o meas(L),
0 Jr—sJo o Jres

and

_Ai/ ApiEsh; = _Ai/ hiologhig+ Aihiglog hgmeas(Q), i=1,2.
0 Q

The term % fQ u?Esh; is split as follows:

1 1 . 1
E/u%ééhizi/u;,[ééhi‘f'/”p,iuq,igéhi+§/u§,ié(5hh (20)
0 o 0 0

fori=1,2.

To estimate the first terms on the right-hand side we look for an expression for (;
and {, integrating (15) and (16) over Q. We use fQ pi=0and [,Ap;=[,divu;=0
and choose O; such that [, ®; =0, i=1,2. We arrive at

2 P2 1, P2
= [(= mo+ g2 ) =—08 [ = h Bho),
- meas(Q)/Q<2”l+g L, 2) meas(Q) /Q<2”l+g g 2*0)

1 1, 1 1,
0 meas(Q)/Q<2u2+g 2+yg 1) meas(Q)/Q<2u2+g 20+ 9 1,o>
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Then
/Ciﬁéhi < GilluillZa,7.) + Cis
0
with C; and C/ as previously defined, i = 1,2.

We consider next the second terms on the right-hand side. We first integrate by
parts:

o,
- Gren= [ G+ [ pgcen

0&s / Oh,;
/Qp( )hio /QP ot pro ot

and then, we use the continuity equation

op; 0 .
- p foh —/ Pi(o)hi,0+/ pi?hi_/piéédlv(uihi)
o 0

0
:/Pi(o)hi,0+/ piéhi+/vpi€6uihi~

Finally, the decomposition u; = u,; + u,; is used
opi 0&5
_ 0 67126(5]1[ = A p,'(O)h,‘,() +/ Pi—— T h + / up,l-f(;hi + /Qup,,»uq,,-f(sh,-, (21)

fori=1,2.
The difficulty is to bound the term

forfsin= [ % fom

For this, we must use the theory involving N-functions and Orlicz spaces [5,6]:
Using the extension of the Holder inequality for Orlicz spaces we have

/ pity < | pillza il
Q

Then
/ pibi < kK| pillan i,
Q

And the norm |||z, verifies

IAillz, < 1+/ U(hy).
Q

Then we have

/ ihi kkk”||Vp,||Lz<1+ Q\ff(h,))

<K||uiL2< +/ \/10g h)
Q




150 M.L. Muiioz-Ruiz et al. | Nonlinear Analysis: Real World Applications 4 (2003) 139-171

= Klllis + Kl | V/hiy/htog”
Q
1 1 2
< §|\u,-||§z + 2K + §||u,-H§z +2K? (/ Vhir/hilog* h,~> .
Q

Using the Holder inequality

1/2 1/2
l’li\/ hi lOgJr h,' < </ h,) (/ hl’ 1OgJr h,)
/Q \/> Q Q

we can write

/p, ; ||u,||L2+2K2+2K2||h,0||L1/h,»logvz,-.
Q

Recalling that 0&5/0t =0 over (0,7 — d) and 0&s/0t =—1/6 over (T —9,T), we can
conclude that

¢
/ 5]7: 1 < Hullle(OTLZ(Q)Z +2K2+2K2||h,0||L1sup/hilog+h,-.
o

To estimate the terms

/uiiééhi and /Mp,iuq,iféhi
0 0

in (21) we take into account the presence of (20) on the left-hand side of the equations.
Then we must bound

1 / 5 1 / 5
= u ,jééhi - = u ,jio"hi
2 0 p 2 0 S

To do this, we use Gagliardo—Nirenberg’s inequality

1 1 1

3 o= [ e <y [ e
1 ,1/ , 1 /7 4
3 (5 [em+ oz [
2(2 o T 2L )y TR

Y cz ("
< et g | el

The estimate of the terms on the right-hand side of (17) and (18) concludes with
the estimate of — fQ O;Esh;

/@gh <;“/ L T||@||2
- ol X & G5 oy illz2?
o S, 2

) C/Z
<? /g#+—f Vo

2 22

/@w+—f|mmmwwm

<Zégﬁ+2lonm@mm.
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Then, (17) and (18) yield respectively,

3 -
(9 - 4/»> / Eshi < A, / hi,0loghyo — Arhy,o log hy o meas(£2)
0 Q
+ Cillu HiZ(O,T;V) +C + / p1(0)h10
Q

1
+ Z”U] ||i°°(0,T;L2(Q)2) -+ 2K2 + 2K2Hh1’0||l‘lsup/ hl 10g+ hl
t Q

+ Cillu ||%W(O,T;L2(Q)2)||”1 ||i2(o,T;V) (22)

and

3. _
<g - 4A> / Ehy < Aa / ha,0log hy o — Azha 0 log hy o meas(£2)
0 Q
+ CZHUZHiZ(o,T;V) +G+ / P2(0)ha,0
o

1
+ Z”uz“im(O’T;LZ(Q)z) + 2K2 + 2K2|‘h2’0||L1 sup/ hz 10g7L h2
t Q

+ G |luz ||i°°(0,T;L2(Q)2)||”2 ”iZ(O,T;V)' (23)

The next step is adding Eq. (14) to Eqs. (22) and (23). Before this, we take the
supremum in the terms of the left-hand side of (14) and make ¢ tend to zero in (22)
and (23).

Note that we can split the term fQ h;log h; into

/h[lOgh[:/hi10g+h[—/h,‘lOg_ h,‘.
Q Q Q

To take the supremum on the left-hand side of (14) we need a lower bound for the
nonnegative term —g fQ hilog™ h;. This is obtained by using the convexity inequality
1
h,‘ 10g h,‘ = ——,
e

that implies

—g/ h,‘ logf h,‘ = g/ h,’ logh,»
Q {xeQ:hi(x,t)<1}

> —Imeas({x € Q: hi(x,1) < 1}) > — I meas(Q).
e e
Thus, we have

2g 1 1
—;meas(Q) < ZH”l ||124°°(0,T;L2(Q)2) + ZHMZHIZPO(O,T;LZ(Q)Z)

+(g—2K2Hh1,0||L1)sup/h1 log™ iy —gsup/hl log™ hy
¢ Jo © Jo

+(g—2K2Hh2,0||L1)sup/h2 log™ hz—gsup/hz log™ hy
t Ja r Ja
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C
+ (tr-C1= Sl lmraom—CilbalBe o) il

C
+ (Az—Cz—Z ||“2HL°°(0,T;L2(Q)2)—CA (|2 ”%OO(O,T;LZ(Q)ZD (|2 ||%2(0,T;V)

3 3,
+ (g - 4/1> 11 Z20) + (9 N 4A> el

2
1 .
<> |5 llucollf: + (g + 4i) [ hiologhio — Aihiglog hig meas(2)
— (2 Q

T T
+Cl+ / p,-<0)hi,o+21<2} +o2 / (s, div 1) g / (i, div ).
Q 1Jo 0

Using that
Pz P2
|(h2>d1V ur)| < ||h2||L2(Q) + Gp || 1HL2(O T3V)
and
T 1
o [ ndivin)| < g5l + o3z luelio
we obtain

g 1 1
—?meas(Q) < ZHul”%m(O,T;LZ(Q)z) + ZH”Q”%‘X’(O,T;LZ(Q)Z)
+(g72K2||h1’0HL1)sup/ hylog" iy fgsup/ hylog™ hy
t Jo t Ja
+(g—2K2||h2,0HL1)sup/h2 log® hz—gsup/hz log™
t Jo t Ja
B _C _C 2 2
+\ B 2 H”1||L°°(0,T;L2(Q)2) ?.HulHLOC(O,T;LZ(Q)Z) ||ul||L2(0,T;V)
B C _C 2 2
+{ 52 ) luz |00 0, 7: 12(02)) z|\”2HLoo(o,T;L2(Q)2) H”zHLZ(o,T;V)

3 u P2 ﬂ
+ (g i 92) 111220y + ( ’1 900 I ]z:0)

1 -
<> |5 luiollZ + (g9 + 40) | higloghip — Aihiglog i meas(Q)
L2 Q

e / pi<0)h,»,o+zz<2]
Q

5]



M. L. Muiioz-Ruiz et al. | Nonlinear Analysis: Real World Applications 4 (2003) 139-171 153

Now, to obtain estimates for u; and 4; we only® need to prove the positivity of
C 2 .
B; — EHuiHL‘X’(O,T;LZ(Q)Z) = Gilluillzo.r:2000) 1= 1.2

This can be done using the small data hypothesis:
Let us assume that u; and u, are continuous from [0, 7] into L*(Q2)%. As

VC?*+16B;C;, — C
4C, ’

[uiollz2 <

there exists ¢’ such that

VCI+16B,C; — C .
+ 4 in [0,7),

4C,

(D)2 <

for i =1,2. Suppose that

v/ C?2+16B,C, — C

4c;

[y ()2 =

and

v/ C?2+16B,C;, — C

e ’

[u2(t)lz2 <

for instance. Then, (9) implies

2
<\/C2+16BICA—C> 2

1 g
16C, < ; [2||ui,0||Lz+(g+Ai)/th,o10ghi,o+emeas(9)

iy log g meas(2) + Cl+ / pi<0)hi,o+zz<2] ,
Q

which contradicts (3). The same contradiction holds if

v/ C?2+16B,C, — C
= '
s e
and
2 C_
(@)l < \/C?+16B,C; C'

4C,
Therefore, (10) is proved.

3 Notice that condition (1) implies

3 P21
>-A+g—=,
774 gPl 2

because p; > ps.
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2.3. Approximated solutions

Let us introduce a basis for V' denoted by {vi,...,v,,...}, whose elements belong to
H*(Q)?. Let V, be the set of linear combinations of the # first elements of the basis.

We consider the problem: )
Find (u1,/1.,) and (up, han) in [L(0,T; L*(Q)*) N L*(0,T; V)] x €'(Q) such
that:

o
—g(hyp divy) — g%(hz,,,,divv) -0 Wev,
1

ouy, 1 .
( u, ’V> A1) = 5 V) + (curl g o ), V)

duy., 1 .
( ”“,v) + Asa(uz V) — E(u%)n,dlvv) + (curl ug otz ), v)

ot
(V") —g(hpp,divy) — g(hy,,divv) =0 Vv eV,
ohy p .
(’;l’ + le(ul,nh],n) = 07
ohy .
62t’ + div(uz,nh2,,) = 0,

u,(t=0)=u1,0, € Va, Uy (t =0)=uz0, € Va,
hia(t=0)=hio, € €' (Q), My a(t=0)=hyo, € €' (Q),

where the data and the constants satisfy the conditions of Theorem 1. Then we have:

Lemma 2. Problem (V) has a solution {(uy n,h1.,),(Uz.n,h2n)} in
[[L>=(0,T; L*()*) N L*(0,T; V,)] x €' (O)1,

which satisfies
Hul,n||i°°(0,T;L2(Q)2)+Hu2,Vl||i°°(0,T;L2(Q)2)+Sup/hl,nlOghl,n+Sup/hZ,nIOth,n
t Jo t Jo
+||u1,"H%z(O,T;V)J'_”uZ,n||%2(0,T;V)+Hh1,ﬂ”%Z(Q)—"thnHiz(g)SC' (24)

Proof. To prove this lemma we apply the second Schauder fixed point theorem [13]
as in [2]. We obtain approximated solutions that satisfy the a priori estimates.

In fact, due to the regularity of the basis, we have: uj ,,uz, € H'(0,T; H*(Q)?).
Therefore uy ,,uz, € €°([0,T];6*()*) and, using (11) and the positivity of initial
data h]jo,hz,(), we have: hl,nahZ,n S (51(Q_) and /’l1,n,h25n > 0.

2.4. Passage to the limit

In this section, we present a lemma that is used to pass to the limit in the approxi-
mated equations and to conclude the proof of the theorem. The passage to the limit is
done by adapting the procedure developed in [2] for a one-layer problem. In that case,
the most difficult point was to pass to the limit in the continuity equation. Now, this
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can be done in an easier way, because we have obtained an additional estimate for #;

in LX(0).

Lemma 3. For each n € N, let

{1y B )y (Uans o)} € [IL2°(0, T LA(Q)?) N LA(0, T; V)] x €' (0))

be the solution of (V) given by Lemma 2, that satisfies

Hul,nH%OO(O,T;LZ(Q)Z)"i_||u2,n||%x(0,T;L2(Q)2)+Sup/hl,n logh1,n+sup/h2,,, 10gh2,n
t JQ t JQ

+ ||u1,nH%2(O,T;V) + ||u2,nHiz(0,T;V) + th,n”iZ(Q) + HhZ,n”iZ(Q) <C

Then we have, for i =1,2:
Ui whi, is bounded in L*(0,T; L'(Q)?),

a in _
g£ is bounded in L*3(0,T; H~'(Q))

(25)

(26)

and we can extract from u;, and h;, subsequences still denoted u;, and h;, such

that
Uipg — U in L*(0,T; V) weakly,
i, —u; in L°(0,T; Lz(Q)z) weakly star,
hiw — hi in L*(Q) weakly,
winhin — wihy in LY3(Q) weakly,
curl u; yo(u; ) — curlwo(u;)  in LY3(0)* weakly,
Vuzn — Vi in LY*(Q)* weakly.

Proof. Results (25), (27)—~(29) are a direct consequence of (24).

Gagliardo—Nirenberg’s inequality implies that u; , is bounded in L*(Q)?

(27)
(28)
(29)
(30)
(31)

(32)

. Then ui,nhi,n,

curl u; ,0(u;,,) and Vu?, are bounded in L*3(Q)? and we can extract subsequences

from u;, and h;, such that

Uinhin — K; 1n L4/3(Q)2 weakly,

curl u; yo(u; ) — 0; in L*3(0)* weakly
and

2
Vu;,

—9; in LY3(Q)? weakly.

In order to obtain k; = u;h;, 0; = curl w;o(u;) and ¥; = Vu? we need an estimate for

du; /0t in L*3(0,T; H'(Q)?):

Notice that V4, is bounded in L*(0, T; H~'(2)?). By estimating the other terms in

the momentum equations we get (26).
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Now, using Aubin’s compacity theorem [7] with

Ao=V, A =LXQ), A, =H Q)

P=2 q=4/3,
we have
i, —u; in L*(Q)* and a.e. in Q. (33)

This will allow us to prove (30)—(32):
Let ¢ € 2(Q)*. Then

|(inhtin — tihi, )| < |(inhin — wihin, @) + [(Uittin — uihi, @)
< uin = will2c0) hinll2c0) | @llLoec0) + [(hin — hisuip))
and so,
Uinhip — ush;  in Ql(Q)z,
which implies that x; = u;h;.
Equally, it can be proved that 0; = curl u;o(w;) and ¥; = Vu?, i = 1,2.
2.5. Proof of the theorem
Let uy,0,u2,0 and hy,0, 52,0 be the initial conditions of problem (2).
Let {u1,0.,} and {uz2,0.,} be two sequences with elements u; 0, € ¥, such that
U0, — U0 and Uz, — Uz in V.
Also, let {h1,0.,} and {hy0.,} be two sequences in €'(Q) such that
hion— hio and  hyg, — hyo in LA(Q).
For each n € N, set
{1 ), (s o)} € [IL7(0, T3 LAQY?) N LAO, T3 V)] x 61(O)F

a solution of (7,) given by Lemma 2. This satisfies estimate (24).
Using Lemma 3, we can extract two subsequences to {u; ,} and {uy ,}, also denoted
by {u1,} and {uy,}, such that

uy, —u;  and  wup, — uy in L0, T; L2 ()N L*0,T; V) weakly star
and two subsequences to /; , and A ,, also denoted by 4, and %, ,, such that
hi,—h and hy, — hy in L*(Q).
Then,
up i, — why  and  wuy by, — uphy in LY3(Q) weakly.

Now we can deduce from the previous results that div(u;4;) belong to L*3(0,T;
w=143(Q)) and so h;;. We also have ;(t =0) = h;.
So we can pass to the limit in momentum equations and obtain u;(# = 0) = u;0.
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This concludes the proof that {(uy,h;),(u2,/2)} is a solution of the weak
problem (7).

Having shown the existence of solutions to problem (7"), we are going to prove the
uniqueness of the solution. In order to do this, first we have to prove some smoothness
results for (u;, h;), i=1,2.

3. Some smoothness and uniqueness results
3.1. Smoothness for the curl velocity

We consider the Lz-projection of equations (£); and (£); on the curl vectors field:

/ (6;1 — A1 Auy + Vul + curluyo(uy) + gVh +g— Vh2> Curl 0 =0,
Q

/ (6”2 ) Curl 0 =0,
0 0t

where Q € H}(Q).
Using the orthogonal decomposition uy =u, | +uy 1 and uy =u,» +u,» we arrive at

0

P ( Léq L 4 4, Curl(curl ug,1) + curluy oy )> (34)
(3uq 2

P at’ + A, Curl(curl sy, ) + curl ugr0(u) | =0, (35)

where P denotes the L?-projection operator on the curl vectors field.
The results stated in this section were proved in [3] for the one-layer case. It is easy
to adapt those results and their proofs to the two-layer case.

Lemma 4. If u;o € H'(Q)?, then we have

ug; € L0, T; WH(Q)), (36)
Mt ¢ 120y, (37)
for i=1,2.

Lemma 5. If u;o € H*(Q)* and if du,;/0t € L*(Q)?, then
ﬁuq,i

o .72 2
S ELTO,T; (Q)), (38)
url( ) e L*(0) (39)
and
ugi € W0, (40)

fori=1,2.
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Lemma 6. If u; o € H*(Q)* and if u,; € L*(0,T; W'*(Q)*) we have

ugi € L0, T; W>*(Q)%), (41)
for i=1,2.
Remark 1. In the proof of (36), the following smoothness for u,; is obtained

Ui € L0, TsH'(2)P) N L2(0, T HA(Q)), (42)
i=1,2.

3.2. A crucial estimate

First, we recall the L>-projection of equations (2), and (2); on the gradient vectors
field previously obtained:

0 1

ﬂ*1‘11A191+7u%+91+gh1+g&hz:C1, (43)
ot 2 P1

0 1

% — A2 Apy + Eug + Oy + ghy 4+ gh1 = (o, (44)

where the functions {; and {, depend only on time, and V@, and VO, are, respec-
tively, the projections for the L*() scalar product of curl ug,1o(uy) and curl ugr0(uy)
on the space VH!(Q).

We were able to choose ®; such that fQ ®; =0. Then we have

IVOill2 < kllourl ug jor(u;)|| 2

and the norm ||@;||; is equivalent to |V Oz, i =1,2.
The following results concerning ©; and {; are easily proved as in [3].

Lemma 7. The functions ©; previously defined verify:

0; € L*(Q), (45)
aupi
IVO; || < C[1+ : , (46)
ot ||
for i=1,2.
Lemma 8. The functions (; verify:
= e |, (48)
it — meas(Q) 0 ulul,ta

for i=1,2.

Now we give a lemma that will allow us to prove our smoothness theorem.
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Lemma 9. Let Q, be equal to Q x (0,t), for any t € [0,T].
If hio € L3(Q), then the relation

||hi||200(0,z;L3(Q)2) + ||hi||24(Q,) < C(1 + ||Pi,t||i4(g)) (49)
holds for i € {1,2}, and also the relation

2
||APi||i4(Q,) <Cl1 +Z ||P_/',tHi4(Qt) : (50)

J=1

In both cases, C > 0 is a constant that depends only on the data.

Proof. To prove (49) we first multiply the continuity equation (£)s by 3h? to obtain

ohy : 3 3
v + div(u1hy) +2h1Ap; = 0.
Replacing A p; with its value given by Eq. (43) we have
oh3 .
A aTl + Ay div(u 17) + uih3 + 2ght
0
+2g%h?h2=2h%cl —2/1?% 230, (51)
1

Then, integrating (51) over O, we obtain

A — Al olls + 4y / diviun /)

t

+/ ufh?+2g|h1||24(Ql)+2g2T/Qh?hz

<2/ |h1|3|C1|+2/ |y |?
z O

We know that [, div(uihj)=0, [, uihi > 0 and [, hjh, > 0. To bound the terms

on the right-hand side of (52) we use Young’s inequality as follows

&
| Pl < Sl + Gl

O

/ G
[

&
[ Eleil < 3l + ClO1lgy

P
0

+z/ e, (52)
O

€
< §||h1||24(Q,)+Cs||P1,t||i4(Q,)’

Choosing the positive number ¢ sufficiently small we obtain from (52) the estimate
3 4 4
1711700 0.0: 3y + 11 ll73c0,) < CCL A+ [ P1ell7ac0,))-
Analogously, we prove that

||h2||200(0,t;L3(Q)2) + ||h2||24(Q,) < C(1+ ||p2,t||24(Q,))'
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Finally, to prove (50) we multiply Eq. (43) by Api|Ap|? and integrate over O;:

1
AAP gy = — / GAPIADE + / P p | Ap ]+ /Q AApIAp

+/ @1AP1IAP1|2+g/h Ap1|Ap1|2+gpl/thp1\Ap1| .
) o O

Using Gagliardo—Nirenberg’s inequality
lll7s < Cllull 2 |divul e

we can estimate
[ aplapP < Cliliuzanldvinli,
O
and using again Young’s inequality we have

C
<A1 - 2||”1L°°(O,t;L2(Q)2)> “APIHZ(QJ

< C(HCI ”24(@) + le,t”z“(Q,) + ||@1 Hz“(g,) + ||h1||24(Q,) + ||h2||24(Q,))'

Using (49) and the assumptions concerning the stability space described in [3], which
allow us to ensure that A4y — C/2||uy |10, 12012) > 0, we obtain

A p: ||24(Q,) < C(1 + ||p1,t||24(Q,) + HpZ,tHi“(Q,))
In the same way, we prove that
||AP2||24(Q,) < C(1+ ||p2,t||}‘:4(Q,) + le,l”?j‘(Q,))'
Observe that, if we prove that p;, and p,, belong to L*(Q), then we will also have
that 4; and divu; are in L*(Q), i = 1,2. This is the goal of the next result.

Theorem 2. Let h;o € L3(Q) and let u; g € H*(Q)? for i =1,2. Then we have

e wh*(Q) (53)
and so
h; € LYQ), (54)
divu; € LY0), (55)
i=1,2.

Proof. The proof of this theorem is very technical and uses the techniques developed
in [12].

To show that p; € W4(Q) it is enough to prove that p;, € L*(Q). To prove this,
we first differentiate Eq. (43) with respect to all independent variables, and obtain the

system
Oup,
5t —AlAupl-i- Vu1+V@1+th1+J th (56)
0Pt _ A 2] h ha, =
5~ A1ApL +uruy; + O + ghy ;s + g; 20 =L (57)
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Next, we multiply (56) by 4u,|u,1|?, (57) by 2p1,, and integrate over Q:

d ) .
&/ |up,1|4+4A1/(dwup,l)dw(up,l|u,,,1|2)
Q Q

1 .
:4/ <2u%+@l + gh +gp2h2> div(up1|upa]?). (58)
Q P1
d
E/|p1,t|2+2Al/|vPl,z|2
tJa Q
:2/(€1,t —ujur,; — O1,)p1 _2g/hl,tp1,t —29&/}12,;1?1,;- (59)
Q Q Pl Jo

Now, some of the terms of previous equations are rewritten:
Note that the second term in (58) can be expressed as

44, / (divup, )div(upup|?)
Q
:4A1/(divupﬁl)\up,ﬂzdivup,l —|—4A1/(divup,1)up,1 -V|up,1\2
Q o

:4A1||”p,ldivup,1||%2 + 84, / (divuy Jupy - (up1 - Viup,
Q
while

1 .
4/ <2u% + 01 + ghy + g'ozhz) dlv(up,1|up,1|2)
Q P1

1 .
:4/Q (21'{% + @l + ghl —+ gzj}b) |up,l‘2dlvup’1

1
+8/ <2u% + @1 +gh1 +g2?h2) up,l ~(up,1 ~V)up’1.
Q

Substituting ¢ (4, + (p2/p1)h2) by its value in (43) and using the relation
”(”p,l 'V)”p,IHL2 < C””p,ldiV"‘p,lHL2

we have

1 .
4/9 (2% + 01+ ghy + gﬁ?hz) div(up|up[*)

< allupadivig iz + € [ (G + ol + ldivupa P
Q
Then, Eq. (58) yields

d .
PPN 1+ + (44) — &) |updivu, [|7:
< 8A1/ |(diVup,1)up,1 -(up,l -V)up,1|
Q

L, / (6P + | pral + 1div i P g - (60)
Q
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The last two terms in (59) can be treated using the continuity equations (£)s and
(2)11, respectively, as follows:

2 / s =29 / div(uh)pre = —2g / WV pr
Q Q Q

:_ZQ/up,lhIVpl,z_ZQ/uq,lhlvpl,t
Q Q
and

4”2 / o pr =292 / divushy)pr, = 27 / ushs ¥ prs
L1 Jo P1Jo P1Jo

:—Zg&/upgthp],t—2g&/uqazh2Vp],t.
P1 Ja Pt Ja

Now, note that we can give an expression for 4, in which 4; does not appear if we
subtract Eq. (44) from Eq. (43). In a similar way, an expression for /4; (not containing
hy) is obtained.

Using them, we have that

P
*29/ hiipre < §||Vp1,t||iz +CS/S1,2(|up,l|2+ lug1|?)
Q Q

and
P2 é 2 2 2
—29= | hopi: < ZIVpiellia + Co | Sio(lupa|” + |ug2|*),
p1 Ja 2 Q
where
_ 2 2 - 2 4 2
Sta= D (Gl + | pacl + [dive, * + [l + |©:f).
i—12

Then, (59) yields
d
&le,tﬂiz + (241 — )|V pisl2: < 2/(C1,t —uur,; — O1)p1s
0

€ [ S1aupal + gl + pal + lagaP (61)
Q
Adding (60) and (61) we obtain

d
gy Uptllze + 1l pudllz:]

+ 4y = o)lupadivupy |7 + IV prl2]

< 8A1 / |(divup,1)up,1 -(up)l -V)up,1|
Q
‘e, / Sa(ltpa P + g + [l + itgal?)
Q

2 / (G — s — Or )P (62)
Q
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Now we want to estimate all the terms on the right-hand side of (62).
We start with the terms of [, S12[up,1[*:
As {; € L>(0,T) and u,; € L>=(0,T; L*(Q)?),

/\ci|2|up,1\2 <cC
Q

163

We use Gagliardo-Nirenberg’s inequality and u,,; € L>°(0,T; L*(2)?) again to get

/Q il P < Pl Bellep 12

< Cllpille 1V prellcz upoa 12 | div e 12
< ellVpirllz: + Colldivup i |2 picll7o-

We also have
/Q\divup,ilzlup,ll2 < |Idivee il 2 1div e ill o | o1 [l o

< V2t P12 o P27 1V a2l
< ellup divap |7 + & |div e, ||z (ldivu, |7
+ Cae’”diV”p,iH%ZH”p,lnz“'
To estimate the term [, |u;|*|u,,1|* we first use Young’s inequality to write
Jui|* < (Jup.il + |“q,i|)4 < C(‘“p,i|4 + |”q,i|4)-
Also using Gagliardo—Nirenberg’s inequality

lellZs < Cllullgsldiv ul] e,

we have

/Q R P D 3

< C'Cllupllgalidiv eyl s lup. |2 l1div ey |2

< C'CPup il el il 718 22 1V 20,1 | divae 1 ]

12 12

< &/(ldiv a2 |div w72 + Corlldiv e, |72 o7

Using (36) we know that u,; € L*(0,T; L>°(2)?). Then
/Q gt < Cltg e,

with the [juy;||f~ integrable function in [0, T].
As O; € L*(Q) and u,, € L*(Q)*, we also have

/Q 0P lup P < 16041 ep |2

with the second term integrable in [0, T'].

Next we estimate the terms in fQ Si,2|ug,1 |2:

(63)

(64)

(65)

(66)
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The first and the last terms are as easily bounded as those of [, S| 2[u,1|*. The
other ones are bounded as follows:
By (42), we also know that u,; € L>°(0,T; L*(Q)?). Then

éWMWwV<WMﬂWN§

< Cllpiellz |V pillzz g1 1174
< eV picllz: + Coll picll > (67)

and
/Q\divup,ilzluq,ll2 < gl zoe [Jug ||zl div a2 (| div e, || 4

< S/HdiV”p,iHLz||divup,i||%4 + CS’””q,l”ioo ldivau,ill2,  (68)

where the last term is in L'([0, 7]). Finally,

/mm%wsc/www%#+c/WMme
Q Q Q

< CH“pJHi4 [t4g,1 ||z<>o + CH“q,in“ |t4g.1 ||z°°’ (69)

with the last term again in L'([0, T]).

The terms in [, Si2fupo|* and [, S12|ug | are estimated in the same way as the
previous ones.

The first term on the right-hand side of (62) is estimated using relation (64) again
and

(up1 - Vupille < Cllupdivuy, .

Now we estimate the last term in (62):
Using (48) and (37) we have that

1
IR e L T el e
ou 1 2
<ol +o |22t +clpl 10
12

with &[|Oug,/0t||?, integrable in [0, T].
Next, the term fQ wuy, p1,¢ is bounded by

2
q,l

/ulul,zpl,t < ¢|Vpy, t||L2 t+e
Q

Taking into account (63) and (67) we obtain

+c/mnmm
2

u .
e L Cldivup |- + Dl prdi. (1)
LZ

ot

/ulul,tpl,t < e|Vpii +e
Q
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Finally, using (46) we have
[ s <l
Q
1O || prellze

|
IVO Ll | Pl

<
<

2 2
<elVpule +e+ Gllipudi

Now we define
yi(t) = Tgl(log)(llup,l(r)llb + | pr@IE),
z21(t) = [Jup,1 diva, 1 (D)7 + IV prdo)]7,
ya(t) = 12&‘,’,)(“””’2(””2“ + | P2 (I),

22(t) = lup2 divu, (O3 + |V p2 (D172

and

Ao(t) = 1+ [[diva, 1 (D17 + |div up 2 (D)7 + [[ug 1 (D17~ + [|ug.2(0) |7

Integrating (62) in (0,7) we find that, by virtue of previous inequalities,

t
() + 24, — ¢) / 21(r)dr
0
t t
< c<1+g/ zz(r)dr+a’/ v a1 |21 div a1 |
0 0
t
+5/H&Wmﬁuww%ﬂ@
0

+/0 A1,2(T)y1(f)df+/0 A1,2(T)Y2(T)df>-

165

(72)

(73)

We can obtain the analogous result for i=2 after differentiating Eq. (44) with respect

to all independent variables. Adding the results for i = 1,2 it follows that

t t
yi(t) 4+ ya(t) + (24, — 8)/ zi(t)dt + (24, — 8)/ z(7)dt
0 0
t t
< C<1 +8'/ (1div a1 21 div a1 |17 +8'/ ([div a2 | div a2 |17
0 0

t t
+ [ aem@des [ Al,z(r)yz(r)dr> .
0 0
Setting O, = Q2 x (0,¢) and using Lemma 9 we have
t
/0 1div a2l diveep il|7e < 1divupill 2o, i, 1740,

< C1+ Hpi,t”i“(Q,) + Hp/JHi“(Q,)L
for i,j € {1,2}, j #i.

(74)
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Using Gagliardo—Nirenberg’s inequality again we can write

t 1/2
nmmé@><(cﬁénpmMAv@A@)

t 1/2 t
<@mwﬂ/€wmﬁ <8/4®M+Q%®
0 0

for i =1,2.

Hence, choosing ¢ and &' small enough, (74) yields
t

yl(f)+y2(f)+/021(‘f)dr+/0zz(r)dr

<c@+/AmmMmM+/Amman) (75)
0 0

As A5 is integrable in [0, T'], we can apply Gronwall-Bellman’s lemma to conclude
that

4 4 2 2
e p,1ll700 0,7 300y U210 0, 7: 15002y H I PLe Nz 0,7 120002y T P2t Lo 0,72 1200202

+lup divu,, Hiz(g)"‘””pl divuy,, Hiz(g)"‘”VPl,t||%2(Q)+||VP2JH%2(Q) <C.
(76)

Then p;, € L>=(0,T; L*(Q)) N L*(0,T; H'(R)) and so, p;, € L*(Q).
We conclude using Lemma 9.

3.3. A uniqueness theorem

The previous estimate is important because it proves that—under suitable
hypotheses—u,; € L*0,T;W"4%(Q)*), and by Lemma 4 we knew that u,; €
LY0, T; W4(Q)?). The following result shows that 4; € L°°(Q). This smoothness
is absolutely necessary to prove the uniqueness of the solution. In order to prove this
we use Lemma 6, that also ensures that curlu,,; €L*0,T; W'*(Q2)), and then ©; €
L*(0,T; L™=(Q)).

Lemma 10. If h;o > 0, logh; o € L>=(Q) and u; o € H*(Q)?, then we have
1
hoand o €1%(Q), (77)
for i=1,2.

This lemma and the following one, which will allow us to prove a uniqueness
theorem, are proved in the same way as those of [3] for the one-layer case.

Before stating them, we give some notation:

Let {(ii1, /1), (it h2)} and {(ii1,h1), (@12, h2)} be two solutions of (77), with

U :ﬁp,l —|—L7q,1 ZVI_?I —l—Curl(jl, ﬁzzﬁp,2+ﬁq)2:v132+cur]q_2
and

Uy =1tp1+ig1 =Vp +Curlqg, Uy=1tpy+iigr=Vp,+Curlg,.
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Then, the functions (l/ll,h])z(ﬁl — LNI],/’_II — h~1) and (UZ,hz): (4, — 112,/’_12 — ]712) verify

Uy =up1+ g1, Uy =Upo + Uy,
with

Ug 1 =g — g, Ugr =lUgn —Ugp,

pr=p— P> b2= Py~ P

Lemma 11. The following inequalities:

ug.illZ> < &V pillz, (78)

leurl ugil|7> < &V pillz2. (79)

where the arbitrary number ¢ is chosen sufficiently small, hold for i =1,2.
Now we state the uniqueness theorem:

Theorem 3. If u; o and h; verify the hypothesis of Theorem 2 and Lemma 10, then
problem (V") has a unique solution {(uy,hy),(uz, hy)} such that

{(ur, h), (ua, b2} € [LHO, T; WHH(Q)*) x L=(0)]. (80)

Proof. If {(iiy,h1),(ii2, i)} and {(ii1,h1),(ii2,hy)} denote two solutions of (77), we
have

by
ot

a—htl + div(ii b)) =0,

I B -
A1Apy + 5”21 + O +gh +g%h2 ={,

0
op TRELE S-S S S
51;2 — A p, + §u22 +©2+ ghy + ghy =G,
oh :
7; + div(izhy) = 0,

where VO, = curl@ (i) and VO, = curl (i), and
0, o+ i+ O1 + g+ g0 =
Py 4Apy h g~ ~hy =
5 | p1+2u1+91+gl+gm 2=0,
oh -
(Ttljhdiv(ﬁlhl):o’
op 5+ LR+ Oy gy + gy = C
6122 — A p, + 5“22 + 62+ ghy +ghi =0,
oh -
aTz + div(ii2hy) = 0,

with VO, = curl i a(ii,) and VO, = curl ii,0(ii ).
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Then, the functions (u,h1) = (i) — i1, by — k) and (ua,hy) = (12 — ii2, 1y — )
verify:

0 ..
A+ g0+ (B =60+ gh + 92 =0 -0 @D
oh -
671 + div(uhy + it hy ) =0 (82)
and
apz 1 _ ~ - ~ = ~
rr — A2 Apy + Euz(uz +i3)+ (0 — O2) + ghy +ghy =0, — {5, (83)
oh . -
=2 div(uahy + i12hy) = 0. (34)
We define the auxiliary functions yy; and y, as solutions of the Neumann problems
Alﬁl = hl in Q, Alﬁz = h2 in Q,
and
% =0 onlrl % =0 onl[I.
on on

Now, multiplying (81) by p1, (82) by 4 and integrating over €2, we obtain

1 _ -
/Plul(ul +iy)

Sl + 49l +

—/pl(é1—61)+g/p1Alﬁ1+g%/p1Alﬁ2=O,
Q

3 31Tl [ vty + aihn) =

Addlng these equations we have

Sl + IV ) + A 1 s

1 o - .
:_E/plul(ul+ul)+/pl(®l_@1)
Q Q

o [ Vo2 [ Tpvin+ [+ [(@mmn. @)
Q P1 Ja Q Q
We define the quantities

yi=lpil +IValz: and  y2 = p2liZ + Va2

and then we estimate the terms on the right-hand side of (85).
Using (78) we have

1 _ . _ -
—5/ pun(iy + i) < e(|V il + g l22) + Collan + d[[7< |l 11172
Q

<e|Vpil + Conn,

with C, integrable in time.
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Recalling the definition of ©, and 6~)1, we can write
[ 181-61) <al8y - Sl + Clpl
Q

<e|V(61 — O} + Coyr.
Using that
V(6, — 6,)=curl ug10Uit 1) + curlitg yo(uy ) — curl ug jo(uy)
we obtain
IV(O1 — 07 < [l [I7: llcurl ug1 7
+leurl g IV prllZe + llug 1 l172) + [l |7 curl g, 1 |72
Finally, with (78) and (79),
IV(61 = Oz < C[Vpill7:
and
/ P81~ 61) < eV il + Coni.
Q
Next, we obtain the estimate
o [ Vo < eIVl + CITGIE < oVl + Co
Q
and
g% / ViV < e|Vpilf + ClViallz: < el Vpillz: + Coyn
Q
Using Lemmas 10 and 11 again,

/Qulﬁlvlﬁl < e[|V pillfe + llug.1[22) + Colln |2« [V 172

<e|Vpillp: + Conn.
The last term of (85) is integrated by parts:

(A, Vi) = 5(divitr, [V ) — (V- V)i, V),

By using Lemma 10, 4, is a bounded function and then V) is also a bounded function.
Thus, if V1| < M a.e., we can estimate both terms on the right-hand side of previous
equality by

MZ(SH |Vlﬂ1 |2(175)”L1’(1—o’)

diviy s = M2 ||V |55~ (ldiv iy || e,

with & € (0, 1). Multiplying Eq. (43) by (A p;)' =99 and integrating over Q gives the
estimate

||diVL71HL1¢5 S C
Then
(Ayiiy, Vi) < Ky ~°
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Now, if we choose ¢ sufficiently small, equality (85) gives

% < Gy + Ky~ + G (86)
Multiplying (83) by p, and (84) by y» we can obtain the analogous result for i = 2:

% < G +Koyy 0 + Ciy (87)
and adding (86) and (87) we obtain

d(y1 + 1)

5 S COrt )+ KO + )0

and consequently,
A1 +32))
dr
Gronwall Bellmann’s lemma gives the estimate
(n(0) + y2(1))° < 6K &
and thus,
yi(t) + ya(t) < (5K)e“.

The term on the right-hand side converges to zero as J tends to zero. This proves that
y1(¢) and y,(t) are equal to zero and concludes the proof of the theorem.

< 6C(y1 + »m)° + K.

3.4. A regularity result

In order to obtain the existence of strong solutions for problem (), we must estimate
the higher derivatives of solutions. As in the previous section, a regularity result can
be proved by adapting the regularity result already proved for the one-layer system.
This allows us to obtain a regularity ¥°° for u and 4. The most difficult point is to
bound the first derivative of the fluid elevation. This is the theorem:

Theorem 4. If we have h;g € W'*(Q) then

Vu; € L=(0)*,

hi € W40,
fori=1,2.

The proof is carried out using the same techniques as in the one-layer case [3].

4. Conclusion

We have proved an existence and uniqueness theorem for a two-layer shallow water
model. It seems really hard to obtain the same result for an n-layer system with this
technique because of the data which have to be as small as » is large.
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We have also obtained numerical results in a simple case, using the method applied
to build the approximated solutions. We use Galerkin’s method for the velocity and
the characteristics method for the water elevation.
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