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Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the important wheat diseases worldwide. In this study,
the spectral data were collected from wheat canopy during the latent period inoculated with three different concentrations of
urediniospores and classification models based on discriminant partial least squares (DPLS) were built to differentiate leaves with
andwithout infection of the stripe rust pathogen.The effects of different spectra features, wavebands, and the number of the samples
used in modeling on the performances of the models were assessed.The results showed that, in the spectral region of 325–1075 nm,
the model with the spectral feature of 2nd derivative of Pseudoabsorption index had better accuracy than others. The average
accuracy rate was 97.28% for the training set and 92.98% for the testing set. In the waveband of 925–1075 nm, the model with the
spectral feature of 1st derivative Pseudoabsorption index had better accuracy than other models, and the average accuracy rates
were 98.27% and 94.33% for the training and testing sets, respectively. The results demonstrated that wheat stripe rust in latent
period can be qualitatively identified based on the canopy spectral detection. Thus, the method can be used for early monitoring
of infections of wheat stripe rust.

1. Introduction

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici
(Pst), is one of the most destructive diseases worldwide [1–5].
China is the largest wheat-producing and consuming country
in the world, where stripe rust has caused heavy yield losses.
For example, in 1950, 1964, 1990, and 2002, stripe rust caused
yield losses up to 6.0, 3.0, 1.8, and 1.3 million metric tons,
respectively [6–8]. During pandemics of wheat stripe rust in
China, urediniospores of the pathogen can be transported
over a long distance across different geographic regions, and
the pathogen requires special climates for its overwintering
and oversummering [9]. As an obligate parasite [10–12], Pst
should overwinter and oversummer in living wheat plants to
complete its life cycle [13].The whole infection process by Pst
can be divided into four periods, that is, the contact period,
the invasion period, the latent period, and the diseased
period. In the latent period, the pathogen spreads within
host tissues although people cannot see this process with
the naked eye. At the early stage of latent infection, the
pathogen would consume the nutrients and moisturein host

to grow and extend, which resulted in multifaceted changes
in the metabolism of the wheat, the cell content, the color
pigments, and the moisture content, and the cell gaps were
affected significantly [14]. In the late stage of latent period,
the chlorosis spots are the typical symptom on the leaves.
Once the condition is suitable for development of the dis-
ease, the disease would appear. Accurate disease diagnoses,
rapid detection, and identification of plant pathogens were
of utmost importance for controlling plant diseases and
mitigating the economic losses that incur. However, the
most widely used method for detecting wheat stripe rust
was visual survey which was labor costing, time consuming,
and subjective. Furthermore, by the time visual and tactile
signs were evident, yield-limiting damagemight have already
occurred. Therefore, it is necessary to develop a new method
to identify and assess this disease, especially during the
latent period. Efficient detection and estimation of latent
infections in leaves could provide critical information for
disease prediction. The pathogen in latent infection of wheat
leaves usually serves as inoculum of epidemics. Detection
of initial inoculums in early growing season is important in
disease prediction and management.
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Nowadays, wheat stripe rust is the major obstacle to
stable and high yield of wheat [15, 16]. Monitoring and early
detection of this disease is crucial for the effective control
and implementation of measures. Recent developments of
remote sensing technology had the potential to enable direct
detection of plant diseases under field conditions [17–19].
Moreover, spectral remote sensing had been paid great
attention to and had been applied successfully to monitor
stripe rust at different platforms, such as the single leaf
platform [20–22], the ground remote sensing platform [23–
25], the airborne remote sensing platform [26–28], and the
space remote sensing platform [29–31]. Previous research
showed that it was simple to distinguish the objects from
each other because each object has its special reflectance
property. Taking healthy plants as an example, the leaf
reflectance was low in the blue (about 0.45 to 0.52𝜇m), peaks
in the green (about 0.52 to 0.55 𝜇m), and decreases to a
minimum in the red (about 0.63 to 0.70 𝜇m) regions. The
low reflectance in the blue and red regions was generally
attributed to absorption by chlorophyll. Gates et al. [32]
stated that chlorophyll, carotenes, and xanthophylls absorb
radiation at 0.445 𝜇m, but only chlorophyll absorbs in the red
region (near 0.645 𝜇m). Thus, healthy green leaves exhibited
low reflectance values in the blue and red portions of the
spectrum, and an increase in reflectance in these wavebands
might signal a stress condition. The green peak accounts
for the green color of plants perceived by the human eyes.
The high reflectance of leaves in the near-infrared region
(about 0.7 to 1.3 𝜇m) was apparently caused by their internal
cellular structure [33]. Radiation was diffused and scattered
through the cuticle and epidermis to the mesophyll cells
and air cavities in the interior of the leaf. Radiation was
further scattered bymultiple reflections and refractions at the
interface of hydrated cell walls with intercellular air spaces
because of refractive index differences (1.4 for hydrated cells
and 1.0 for air). 40% to 60% of the incident near-infrared
radiation was scattered upward through the surface of inci-
dence and was designated as reflected radiation, whereas
the remainder was scattered downward and was designated
as transmitted radiation, and little radiation, if any, was
absorbed. This phenomenon has been extensively studied
[34–36]. Physiological and anatomical changes are caused
within plants as a result of stress. Plant pathogensmay change
leaf color by causing chemical changes within plant cells or
by growing on plant surfaces [37]. So, in the latent period
of wheat stripe rust, the most obvious color change was the
chlorosis spots on the leaves.

In this study, the potential usefulness of an ASD spectro-
radiometer to detect wheat stripe rust in the latent period was
investigated. The canopy spectral data were collected and the
models were evaluated by using the method of DPLS. The
objective of this study was to use the canopy spectral data of
wheat stripe rust in the latent period to provide a method for
early monitoring and evaluating this disease.

2. Materials and Methods

2.1. Experimental Material. All experimental materials were
prepared in the Lab of Plant Disease Epidemiology,

Department of Plant Pathology, China Agricultural
University, in 2013. Mingxian 169, a wheat variety which is
highly susceptible to Pst, was used in the study. The seeds
of Mingxian 169 were soaked for 24 h in sterile water and
then sowed in pots (10 cm in diameter) at a density of
approximately 25 seeds per pot, 40 pots totally. Then, the
potted plants were grown in the artificial climate chamber
at 11∼13∘C with 60∼70% relative humidity (RH) and 12 h of
light per day (10,000 lux). When the first leaves of wheat
seedlings were fully expanded, the plants were sprayed
with urediniospores of three predominant races of Pst,
CYR31 (China Yellow Race 31), CYR32, and CYR33, at
concentrations of 0.2 (number 1), 0.1 (number 2), and 0.05
(number 3) mg/mL. Spore suspension of each concentration
was sprayed on plants for ten pots as treatment groups,
and the remaining ten pots were sprayed by distilled water
as healthy control group. Immediately after inoculation,
the wheat seedlings were transferred into a moist chamber
under dark conditions at 11∼13∘C for 24 h. Then, the wheat
seedlings were sealed with transparent plastic and incubated
in the artificial climate chamber. After 12 days of incubation,
uredinia appeared on all the treatment groups’ leaves and this
indicated that the inoculation experiment was successful, so
the latent period of wheat stripe rust was 11 days. During the
whole latent period, the spectral data was obtained on the
day before inoculation and on the 3rd, 6th, 9th, and 10th day
after inoculation.

2.2. Acquisition of Spectral Data. An ASD spectroradiometer
(ASD FieldSpec HandHeld 2) (ASD Inc., Boulder, Colorado,
USA) was used to collect the canopy spectral data of wheat. It
is a portable spectroradiometer that performs rapid, precise,
nondestructive, and noncontact measurements. The Hand-
Held 2 employs a unique spectrometer operating in a range of
325–1075 nm, a wavelength accuracy of ±1 nm, a spectral res-
olution of <3 nm at 700 nm, 25∘ field of view, and minimum
integration time of 8.5ms, which produces high signal-to-
noise ratio spectra in under a second using a highly sensitive
detector array, low stray light grating, built-in shutter, Drift-
Lock dark current compensation, and second-order filtering.
TheHandHeld 2 provides extremely accurate, quickly derived
reflectance, radiance, and irradiance spectra in a variety of
settings. The measurements were conducted on clear, sunny
days from 10:00 am to 2:00 pm. Before each measurement, a
white reference panel was taken to optimize the instrument.
When the baseline was nearly 100% (reflectance values of
1 at each wavelength), the measurements were carried on.
The spectrum average set value was 15. Three spectra were
measured for each pot, and the average value was treated
as the canopy spectrum at the point. The spectroradiometer,
facing the center of the pot, was positioned vertically to the
wheat canopy at a height of 0.2m above with a view area of
about 0.00785m2 (according to ASD sampling surface and
the distance formula, the sampling vertical distance was set at
20 cm which was suitable for the 10 cm diameter pots under
the outdoor conditions with sunlight as the light source).
A total of 600 reflectance spectra were used for subsequent
analysis. The spectra included 120 canopy spectra of healthy
wheat (control group before inoculation), 120 canopy spectra
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of healthy wheat in the same growth period, and 360 canopy
spectra of treatment group in the latent period.

2.3. Preprocessing of Spectral Data. Derivative transform
is one of the most commonly used methods for spectral
preprocessing, in which the background interference and the
atmospheric scattering effect can be reduced or eliminated
and the contrast of the different absorption characteris-
tics improved. The first derivative transform can partially
eliminate the linear and quadratic background noise; the
second derivative spectra can completely eliminate the effects
of linear background noise and can basically eliminate
quadratic background noise. In the analysis of vegetation
canopy spectra, the application of derivative transformation
has also been very popular. The use of derivative spectra
is an established technique in analytical chemistry for the
elimination of background signals and for resolving over-
lapping spectral features. Application of this technique for
tackling analogous problems such as interference from soil
background reflectance in the remote sensing of vegetation or
for resolving complex spectra of several target species within
individual pixels in remote sensing is proposed. And the use
of derivatives for monitoring chlorosis in vegetation shows
that derivative spectral indices are superior to conventional
broadband spectral indices such as the near-infrared/red
reflectance ratio [38]. The canopy spectra of wheat, the spec-
tra of soil background, and the spectra of the first derivative
values’ difference were compared, and the results indicated
that the derivative transform can easily confirm the bending
point of spectral curve, the positions of the maximum and
minimumwavelength. In the variation of the spectrum, such
as the blue edge, yellow edge, and red edge of the vegeta-
tion spectrum, the derivative transform can eliminate the
interference of soil background. Derivative spectra are very
sensitive on the spectral signal-to-noise ratio [39]. Therefore,
some other methods had been derived from the derivative
spectrum, such as high-order derivative method, logarithmic
derivative method, and high-order logarithmic derivative
method. The logarithmic derivative method generally refers
to the logarithm of the reflectance (log𝑅) or the logarithm of
reflectance reciprocal [log(1/𝑅)]. log(1/𝑅), defined as pseu-
doabsorption index, can reflect the absorption characteristics
of objects. Due to the lower vegetation spectral reflectance in
the visible region, logarithmic derivative method is necessary
which can not only enhance the spectral differences in visible
region, but also reduce multiplicative factors effect caused by
the changes of illumination [40–44]. Based on the previous
research, using the software of ViewSpecPro provided by
ASD, in this study, six variables were derived for modeling
including the original spectrum reflectance (𝑅), the first
derivative of reflectance (𝑅 1st.dv), the second derivative
of reflectance (𝑅 2nd.dv), the pseudoabsorption index or
the logarithm of 𝑅 or 1/𝑅[log(1/𝑅)], the first derivative
of log(1/𝑅)[log(1/𝑅) 1st.dv], and the second derivative of
log(1/𝑅)[log(1/𝑅) 2nd.dv].

The qualitative partial least squares regression (discrim-
inant partial least squares, DPLS) of MATLAB R2010a soft-
ware was used for processing the spectral data. PLS provides
a multiple linear regression modeling method, especially

for data containing a lot of correlated variables but few
observations; the PLS model performs better than the other
traditional regression analysis methods. The PLS method
combines the advantages of the principal component analysis
(PCA), canonical correlation analysis (CCA), and linear
regression analysis method, so it can result in a more rea-
sonable andmore comprehensive regressionmodel. Based on
PLS, the DPLS uses linear regression to analyze the spectral
data with the categorical variables. First, the discrimination
process needs to identify the classification variables from
calibration samples. Then, the PLS model between spectral
data and categorical variables was obtained. According to the
calibration set of the PLS model, from classification variables
and spectral characteristics, the samples of the testing set
were verified later [45]. The DPLS method’s discriminability
was highly efficient because the auxiliary matrices’ class
information with the form of code was taken into account.
At the same time, the principal component extracted not
only was most related to the category, but also had good
analytical ability on the categories informationmatrix. So the
sample spectrums’ scores of these components can be used
as spectral characteristics, and the principal components had
a much smaller dimension than the original sample spectra.
Therefore, the DPLS characteristics extraction method also
had a dimension reduction effect [46].

3. Results
3.1. The Spectral Curves of Different Concentrations and
Different Times. Figures 1(a), 1(b), and 1(c) showed the
wheat canopy spectral changes of three different inoculation
concentrations on the 1st day before inoculation and on the
3rd day, 6th day, 9th day, and 10th day after inoculation.
Each spectrum was derived from the average spectrum of
the treatment group at different inoculum concentrations.
According to Figure 1, the variation trend of thewheat canopy
spectra at number 1 inoculum concentration was basically
consistent with number 2 inoculum concentration: during
the latent period of 1–9 days, the reflectivity of 400∼700 nm
increased along with the time increase and reached the
maximum on the 9th day. The green peak near the 550 nm
and the red valley near the 670 nm changed obviously. Since
the 670 nm band is the absorption band of chlorophyll,
the increase of the green peak and decrease of the red
valley indicated that the chlorophyll content of wheat leaves
decreased continuously over time. The 700∼780 nm band,
known as the “red edge” of the vegetation reflectance, shifted
to the blue band with the latent time increase, indicating
that the wheat growth was influenced by the Pst infection to
some extent; the 780∼1050 nm bandmainly reflects the leaves
internal structure characteristics. The reflectance increased
with the latent period of wheat stripe rust and reached the
highest value on the 9th day.This phenomenon indicated that
the internal structure of wheat leaves would change by the
Pst infection, and then the spectral reflectance was further
affected. On the 10th day of the latent period, the spectral
reflectance of all bands decreased to some extent and the
reflectance of the 780∼1050 nm band decreased greatly. The
whole spectral curve on the 10th day was similar to the
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Figure 1: Wheat leaf canopy spectra curves of 1st (a), 2nd (b), and 3rd (c) inoculation concentrations.

spectral curve on the 6th day.The canopy spectral variation of
number 3 Pst concentration in the latent period of the former
nine days was the same as those of number 1 and number
2 Pst concentrations, but the spectral reflectance of each
band on the 10th day has not significantly changed from the
9th day. Because the high inoculation concentration caused
high primary infection quantity and number 3 concentration
was lower than number 1 and number 2 concentrations in
this study, the results may infer the following: The changes
of the wheat canopy spectra were not correlated with the
inoculation concentration in the latent period of the former
nine days but were mainly caused by the wheat defense
response, and this process of reaction was only connected
with the infection of Pst but not the infection quantity;
with the development of this disease, the Pst content in the
wheat leaves has become the main reason for the spectral
changes, including the pathogen and its metabolites amount
increasing. Therefore, with the comprehensive effects of Pst
and its variation in wheat, the canopy spectral reflectance
showed a decrease trend, and the decreased degree was

related to the initial inoculation concentration on the 10th day
of latent period.

3.2. Prediction Results of Different Models with Different
Spectral Features on the 325–1075 nm. For deep mining the
spectral information, differentmodels were proposed accord-
ing to the number of samples and spectral features by the
DPLS method on the 325–1075 nm band (Tables 1–6). To
use the reflectivity as spectral feature of modeling in the
325–1075 nm band, the average accuracy was 97.12% for the
training set and 85.13% for the testing set (Table 1). When
the ratio of training set to testing set was 4 : 1, the model
had better recognition than the other models, four principal
components were included, and the accuracy was 96.67% and
90.00% for the training and testing sets, respectively. To use
𝑅 1st.dv as spectral feature of modeling in the 325–1075 nm
band, the average accuracy was 99.03% for the training set
and 79.10% for testing set (Table 2).When the ratio of training
set and testing set was 1 : 1, the model had better recognition
effect than the other models, three principal components
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Table 1: Prediction accuracy of models resulting from different
ratios of training set to testing set based on reflectance.

Modeling ratio Accuracy
(TrS : TeS) PCN TrSA% TeSA%
1 : 1 4 97.33 84.00
2 : 1 4 98.00 78.00
3 : 1 4 96.46 89.19
4 : 1 4 96.67 90.00
Mean 4 97.12 85.30

Table 2: Prediction accuracy of models resulting from different
ratios of training set to testing set based on 1st derivative of
reflectance.

Modeling ratio Accuracy
(TrS : TeS) PCN TrSA% TeSA%
1 : 1 3 98.67 80.00
2 : 1 3 100 78.00
3 : 1 3 99.12 78.38
4 : 1 3 98.33 80.00
Mean 3 99.03 79.10

Table 3: Prediction accuracy of models resulting from different
ratios of training set to testing set based on 2nd derivative of
reflectance.

Modeling ratio Accuracy
(TrS : TeS) PCN TrSA% TeSA%
1 : 1 3 97.33 78.67
2 : 1 3 98.00 76.00
3 : 1 4 95.58 89.19
4 : 1 4 96.67 93.33
Mean 3.5 96.90 84.30

Table 4: Prediction accuracy of models resulting from different
ratios of training set to testing set based on log(1/𝑅).

Modeling ratio Accuracy
(TrS : TeS) PCN TrSA% TeSA%
1 : 1 8 100 83.67
2 : 1 8 98.00 74.00
3 : 1 7 95.58 83.73
4 : 1 10 97.50 96.67
Mean 8.25 97.77 84.52

were included, and the accuracy was 98.67% and 80.00% for
the training and testing sets, respectively. To use 𝑅 2nd.dv
as spectral feature of modeling in the 325–1075 nm band, the
average accuracy was 96.90% for the training set and 84.30%
for the testing set (Table 3).When the ratio of training set and
testing set was 4 : 1, the model had better recognition than
the other models, four principal components were included,
and the accuracy was 96.67% and 93.33% for the training and
testing sets, respectively. To use log(1/𝑅) as spectral feature
of modeling in the 325–1075 nm band, the average accuracy
was 97.77% for the training set and 84.52% for the testing

Table 5: Prediction accuracy of models resulting from different
ratios of training set to testing set based on log(1/𝑅)’s 1st derivative.

Modeling ratio Accuracy
(TrS : TeS) PCN TrSA% TeSA%
1 : 1 7 98.67 92.00
2 : 1 9 99.00 88.00
3 : 1 8 98.23 94.59
4 : 1 10 96.67 90.00
Mean 8.5 98.14 91.15

Table 6: Prediction accuracy of models resulting from different
ratios of training set to testing set based on log(1/𝑅)’s 2nd derivative.

Modeling ratio Accuracy
(TrS : TeS) PCN TrSA% TeSA%
1 : 1 7 96.00 93.33
2 : 1 10 99.00 94.00
3 : 1 8 98.23 94.59
4 : 1 11 98.33 90.00
Mean 9 97.89 92.98

set (Table 4). And when the ratio of training set and testing
set was 4 : 1, the model had better recognition than the other
models, ten principal components were included, and the
accuracy was 97.50% and 96.67% for the training and testing
sets, respectively. To use log(1/𝑅) 1st.dv as spectral feature
of modeling in the 325–1075 nm band, the average accuracy
was 98.14% for the training set and 91.15% for the testing
set (Table 5). When the ratio of training set and testing set
was 3 : 1, the model had better recognition than the other
models, eight principal components were included, and the
accuracy was 98.23% and 94.59% for the training and testing
sets, respectively. To use log(1/𝑅) 2nd.dv as spectral feature
of modeling in the 325–1075 nm band, the average accuracy
was 97.89% for the training set and 92.98% for the testing set
(Table 6). When the ratio of training set and testing set was
3 : 1, the model had better recognition than the other models,
eight principal components were included, and the accuracy
was 98.23% and 94.59% for the training and testing sets,
respectively. In conclusion, the models with log(1/𝑅) 2nd.dv
showed the best accuracy so that log(1/𝑅) 2nd.dv should be
taken as the priority parameter for modeling.

3.3. Discrimination Accuracy of Different Models with Differ-
ent Spectral Features on Different Wavelengths. The method
with different spectral features in the wavelength of 325–
1075 nm needed more calculation, ran slower, analyzed a
wider spectral region, and had more invalid information
and lower effective information, so the spectral identification
rate could not reach the highest value. In addition, if the
selection of spectral region was too narrow, it may omit
effective information and lower the identification accuracy
of the model. To find the more effective information band,
modeling was processed with five wavelengths (325–474 nm,
475–624 nm, 625–774 nm, 775–924 nm, and 925–1075 nm)
in 325–1075 nm spectral region according to the different
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Table 7: Prediction results of different samplingmodel built in 325–
474 nm.

Spectra features Modeling ratio
1 : 1 2 : 1 3 : 1 4 : 1 Mean

𝑅

PCN 3 4 3 4 3.5
TrSA% 96.00 97.00 95.58 97.50 96.52
TeSA% 76.00 90.00 81.08 93.33 85.10
𝑅 1st.dv

PCN 4 3 4 3 3.5
TrSA% 94.67 98.00 96.46 95.83 96.24
TeSA% 96.00 80.00 89.19 66.67 82.96
𝑅 2nd.dv

PCN 7 7 6 6 6.5
TrSA% 98.67 98.00 96.46 95.83 97.24
TeSA% 94.67 94.00 94.59 90.00 93.32

log(1/𝑅)
PCN 7 7 7 8 7.25
TrSA% 98.67 97.00 97.35 96.67 97.42
TeSA% 97.33 92.00 94.59 90.00 93.48

log(1/𝑅) 1st.dv
PCN 9 10 8 11 9.5
TrSA% 97.33 96 95.58 95.83 96.19
TeSA% 90.67 94.00 83.78 86.67 88.78

log(1/𝑅) 2nd.dv
PCN 9 11 9 13 10.5
TrSA% 96.00 96.00 95.58 97.50 96.27
TeSA% 81.33 94.00 86.49 93.33 88.79

spectral modeling features. The results were shown in Tables
7–11.

As shown in Figures 2(a) and 2(b), the average accuracy of
different models differed little for the training sets but varied
largely for the testing sets.Themodels with log(1/𝑅) 1st.dv or
log(1/𝑅) 2nd.dv as spectral feature in the 325–1075 nm band
were better than the other models, and the average accuracy
was over 98.00% for the training set and higher than 90.00%
for the testing set.When using𝑅 1st.dv asmodeling spectrum
feature, the average accuracy was 99.03% and 79.1% for the
training and testing sets, respectively, suggesting that this
model had good abilities in self-learning and predicting, but
the generalization error was relatively large. Selecting 325–
474 nm as modeling waveband, the models with log(1/𝑅)
and reflectance as spectra features’ accuracy were better than
others, the former’s average accuracy was 97.42% and 93.48%
for the training and testing sets, respectively, and the latter’s
average accuracy was 97.24% and 93.32% for the training and
testing sets, respectively; the testing set average accuracies
of other models were all below 90%. Selecting 475–624 nm
as modeling waveband, the model with log(1/𝑅) 1st.dv as
spectrum feature’s accuracy was better than others, and the
average accuracy was 99.25% and 89.47% for the train-
ing and testing sets, respectively; selecting 625–474 nm as
modeling waveband, the models with log(1/𝑅) 2nd.dv and
reflectance as spectra features’ accuracy were better than

Table 8: Prediction results of different samplingmodel built in 475–
624 nm.

Spectra features Modeling ratio
1 : 1 2 : 1 3 : 1 4 : 1 Mean

𝑅

PCN 6 6 6 6 6
TrSA% 98.67 98.00 97.35 97.5 97.88
TeSA% 81.33 90.00 81.08 83.33 83.94
𝑅 1st.dv
PCN 4 4 4 5 4.25
TrSA% 97.33 96 96.46 98.33 97.03
TeSA% 76 82 81.08 96.67 83.94
𝑅 2nd.dv
PCN 3 5 3 4 3.75
TrSA% 96.00 98.00 95.58 95.83 96.35
TeSA% 74.67 96.00 75.68 96.67 85.76

log(1/𝑅)
PCN 6 6 6 6 6
TrSA% 96.00 98.00 95.58 96.67 96.56
TeSA% 86.67 84.00 89.19 86.67 86.63

log(1/𝑅) 1st.dv
PCN 5 5 5 5 5
TrSA% 98.67 100 100 98.33 99.25
TeSA% 85.33 94.00 91.89 86.67 89.47

log(1/𝑅) 2nd.dv
PCN 3 3 3 3 3
TrSA% 98.67 96.00 95.58 98.33 97.15
TeSA% 73.33 76.00 81.08 80 77.60

others, the former’s average accuracy was 97.80% and 92.31%
for the training and testing sets, respectively, and the latter’s
average accuracy was 97.89% and 92.14% for the training and
testing sets, respectively. Selecting 775–924 nm as modeling
waveband, themodelswith reflectance and𝑅 1st.dv as spectra
features’ accuracy were better than others, the former’s
average accuracy was 97.93% and 91.48% for the training
and testing sets, respectively, and the latter’s average accuracy
was 97.75% and 92.30% for the training and testing sets,
respectively; selecting 925–1075 nm as modeling waveband,
the models with log(1/𝑅) and log(1/𝑅) 1st.dv as spectra fea-
tures’ accuracy were better than others, the former’s average
accuracies were 98.43% and 92.47% for the training set and
the testing set, respectively, and the latter’s average accuracies
were 98.27% and 94.33% for the training set and the testing
set, respectively.

As shown in Figures 3(a) and 3(b), selecting original
spectrum as modeling spectrum feature, the models on
the 625–774 nm and 775–924 nm wavebands accuracy were
better than others, the former’s average accuracy was 97.80%
and 92.31% for the training and testing sets, respectively, and
the latter’s average accuracies were 97.93% and 91.48% for the
training set and the testing set, respectively. Selecting𝑅 1st.dv
asmodeling spectrum feature, themodels on the 775–924 nm
waveband accuracy were better than others, and the average
accuracies were 97.75% and 92.30% for the training set and



Journal of Spectroscopy 7

Table 9: Prediction results of different samplingmodel built in 625–
774 nm.

Spectra features Modeling ratio
1 : 1 2 : 1 3 : 1 4 : 1 Mean

𝑅

PCN 6 7 7 6 6.5
TrSA% 97.33 99.00 97.35 97.50 97.80
TeSA% 93.33 94.00 91.89 90.00 92.31
𝑅 1st.dv

PCN 5 5 6 5 5.25
TrSA% 96.00 96.00 97.35 95.83 96.30
TeSA% 84.00 88.00 94.59 86.67 88.32
𝑅 2nd.dv

PCN 5 5 5 4 4.75
TrSA% 97.33 96.00 97.35 95.83 96.63
TeSA% 92.00 92.00 91.89 83.33 89.81

log(1/𝑅)
PCN 6 6 7 7 6.5
TrSA% 96.00 96.00 99.12 98.33 97.36
TeSA% 84.00 86.00 97.30 90.00 89.33

log(1/𝑅) 1st.dv
PCN 5 5 5 5 5
TrSA% 97.33 99.00 98.23 98.33 98.22
TeSA% 92.00 86.00 91.89 90.00 89.97

log(1/𝑅) 2nd.dv
PCN 5 5 5 4 4.75
TrSA% 98.67 98.00 98.23 96.67 97.89
TeSA% 93.33 90.00 91.89 93.33 92.14

the testing set, respectively. Selecting 𝑅 2nd.dv as modeling
spectrum feature, the models on the 325–474 nm and 775–
924 nm wavebands accuracy were better than others, and the
former’s average accuracies were 97.24% and 93.32% for the
training set and the testing set, respectively, and the latter’s
average accuracies were 96.27% and 90.80% for the training
set and the testing set, respectively. Selecting log(1/𝑅) as
modeling spectrum feature, the models on the 325–474 nm
and 925–1075 nm wavebands accuracy were better than
others, and the former’s average accuracies were 97.42% and
93.48% for the training set and the testing set, respectively,
and the latter’s average accuracies were 98.43% and 92.47%
for the training set and the testing set, respectively. Selecting
log(1/𝑅) 1st.dv as modeling spectrum feature, the models on
the 325–1075 nm and 925–1075 nmwavebands accuracy were
better than others, and the former’s average accuracies were
98.14% and 91.15% for the training set and the testing set,
respectively, and the latter’s average accuracies were 98.27%
and 94.33% for the training and testing sets, respectively.
Selecting log(1/𝑅) 2nd.dv as modeling spectrum feature, the
models on the 325–1075 nm, 625–774 nm, and 925–1075 nm
wavebands accuracy were better than others, the average
accuracies for training sets were 97.89%, 97.89%, and 96.31%,
respectively, and the average accuracies for testing sets were
92.98%, 92.14%, and 93.65%, respectively.

Table 10: Prediction results of different sampling model built in
775–924 nm.

Spectra features Modeling ratio
1 : 1 2 : 1 3 : 1 4 : 1 Mean

𝑅

PCN 4 5 5 5 4.75
TrSA% 97.33 97.00 98.23 99.17 97.93
TeSA% 82.67 92.00 94.59 96.67 91.48
𝑅 1st.dv
PCN 4 5 5 5 4.75
TrSA% 97.33 98.00 97.35 98.33 97.75
TeSA% 94.67 92.00 89.19 93.33 92.30
𝑅 2nd.dv
PCN 5 5 5 6 5.25
TrSA% 96.00 96.00 95.58 97.50 96.27
TeSA% 92.00 92.00 89.19 90.00 90.80

log(1/𝑅)
PCN 4 5 5 5 4.75
TrSA% 96.00 97.00 99.12 97.50 97.41
TeSA% 78.67 90.00 89.19 90.00 86.97

log(1/𝑅) 1st.dv
PCN 3 5 4 3 3.75
TrSA% 98.67 97.00 95.58 95.83 96.77
TeSA% 77.33 100 89.19 76.67 85.80

log(1/𝑅) 2nd.dv
PCN 4 4 5 5 4.5
TrSA% 96.00 96.00 95.58 95.83 95.85
TeSA% 82.67 96.00 86.49 93.33 89.62

In conclusion, the model selected log(1/𝑅) 1st.dv and
925–1075 nm waveband as spectral features, and the average
accuracies were 98.27% and 94.33% for the training and
testing sets, respectively. Different wavebands reflected dif-
ferent information of the plant and different spectra features
transform increased the information mining from different
perspective. Therefore, to establish the models which had
higher accuracy rate, increased robustness, and generaliza-
tion ability, in the future studies, it is necessary to build a
variety of models which have different wavebands and differ-
ent spectral transformations of original spectra. Combining
all the model’s predictions, the testing sample categories were
decided by vote.

4. Discussion and Conclusions

This study was still at the exploratory stage. Reports on
remote sensing in monitoring wheat stripe rust were few, and
previous studies mainly focused on spectrum properties of
rice blast or wheat powdery mildew, or the spectrum curve’s
similarities and differences between diseased crops and
healthy crops. In this study, an ASD FieldSpec spectrometer
was used to study the canopy spectral properties of wheat in
the latent period infected by Pst. Models with different Pst
concentrations, modeling proportion, spectra features, and
wavebands were assessed using DPLS, a practical, robust,
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Table 11: Prediction results of different samplingmodel built in 925–
1075 nm.

Spectra features Modeling ratio
1 : 1 2 : 1 3 : 1 4 : 1 Mean

𝑅

PCN 3 3 3 3 3
TrSA% 97.33 97.00 96.46 96.67 96.87
TeSA% 72.00 72.00 78.38 73.33 73.93
𝑅 1st.dv

PCN 3 3 3 3 3
TrSA% 97.33 100 97.35 97.50 98.05
TeSA% 80.00 80.00 81.08 76.67 79.44
𝑅 2nd.dv

PCN 3 3 4 4 3.5
TrSA% 97.33 98.00 95.58 95.83 96.69
TeSA% 78.67 76.00 89.19 93.33 84.30

log(1/𝑅)
PCN 5 8 6 7 6.5
TrSA% 100 98.00 98.23 97.50 98.43
TeSA% 85.33 96.00 91.89 96.67 92.47

log(1/𝑅) 1st.dv
PCN 7 8 7 8 7.5
TrSA% 98.67 97.00 98.23 99.17 98.27
TeSA% 94.67 92.00 97.30 93.33 94.33

log(1/𝑅) 2nd.dv
PCN 7 8 7 9 7.75
TrSA% 96.00 97.00 95.58 96.67 96.31
TeSA% 94.67 92.00 94.59 93.33 93.65

readily available, and cost-effective method. The results
showed that the model which selected log(1/𝑅) 2nd.dv as
modeling spectrum feature in the 325–1074 nm waveband
was better than the other models. Meanwhile, different mod-
eling proportions also affected the accuracy of the models,
and a modeling ratio of 4 : 1 (training set : testing set) resulted
in better accuracy than the other ratios. The waveband
selection was also very important for modeling: selecting
narrow wavebands, the effective information may be missed;
selecting wide wavebands, the invalid information may be
too much and the modeling has lower efficiency. With the
same modeling proportion and spectra features, there always
existed a model with subband which had a better-than-
average accuracy for its testing set.The results showed that the
models with better accuracy weremainly focused on the 625–
1075 nm waveband. This was consistent with the previous
studies and in good agreement with the physiological change
of wheat stressed by Pst. With the infection of Pst, the
foliar superficial structure and the mesophyll cells of wheat
were destroyed, which caused the leaf water content and
the chlorophyll content to take a downward trend. The leaf
internal structure was also changed with the accumulation
of Pst. In the latent period, the most obvious symptom of
the wheat leaves was chlorosis spots and yellow discoloration.
Because the 460–680 nm waveband was related to the vege-
tation pigment content and the 750–1300 nm waveband was
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Figure 2: (a) The training sets average accuracy of different
sampling model based on different spectra features and the same
waveband. (b)The testing sets average accuracy of different sampling
model based on different spectra features and the same waveband.

correlated with vegetation water content, the canopy spectral
reflectance changed more obviously [47]. The models in this
study had a good recognition effect, in which the wavebands
mainly focused on the 625–1075 nm.

Spectral remote sensing is a breakthrough technology
which can obtain relevant spectral data of the interesting
objects from many narrow defined channels [48]. As the
spectral remote sensing data could provide ample prop-
erty information of the objects on the earth, the spectral
information of target objects could be studied in the nm
level wavelength band. Therefore, the spectral information
of continuum wavelength band which traditional remote
sensing cannot provide could be obtained now. The final
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Figure 3: (a) The training sets average accuracy of different
sampling model based on different wavebands and the same spectra
features. (b) The testing sets average accuracy of different sampling
model based on different wavebands and the same spectra features.

objective of this study was to detect the infections of stripe
rust at latent period with DPLS, and the information can
be used to estimate possible infection levels before disease
appearance. Such estimated infection level serves as a refer-
ence of inocula, initiating disease epidemics in the coming
season. All materials of this study were obtained from the
artificial climate chamber which was not affected by the
external environment, so the models’ accuracy was relatively
high. However, wheat in the field environment was more
complex and affected by various interference factors. The use
of spectral remote sensing technology for monitoring wheat
stripe rust in the field will be the next research focus. The
potential applications of this method will be in rapid and
precise decision-making on disease management early in the
season.
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