
Tien-Sheng Chang 
Engineer, 

Metal Industries Development Centre, 
Taiwan, Republic of China 

E. B. Magrab 
Professor, 

Department of Mechanical Engineering, 
College of Engineering, 
University of Maryland 

College Park, MD 20742 
Fellow ASME 

Component Rearrangement on 
Printed Wiring Boards to Maximize 
the Fundamental Natural 
Frequency 
A methodology to attain the highest fundamental natural frequency of a printed 
wiring board by rearranging its components has been developed. A general two-
dimensional rearrangement algorithm is developed by which the rearrangement of 
the component-lead-board (CLB) assemblies is performed automatically for any 
combination of equal size, unequal size, movable and immovable CLBs. This al­
gorithm is also capable of incorporating two design restrictions: fixed (immovable) 
components and prohibited (nonswappable) areas. A highly computationally ef­
ficient objective function for the evaluation of the automatic rearrangement process 
is introduced, which is a linear function of the size of the individual CLBs that have 
been selected for each interchange. The simulated annealing method is adapted to 
solve the combinatorial rearrangement of the CLBs. Using 61 combinations of 
boundary conditions, equal and unequal sized CLBs, movable and immovable CLBs, 
various CLB groupings and sets of material properties, it is found that, when 
compared to the exact solution obtained by an exhaustive search method, the sim­
ulated annealing method obtained the highest fundamental natural frequency within 
1 percent for 87 percent of the cases considered, within 0.5 percent for 72 percent 
of the cases and the true maximum in 43 percent of them. To further increase the 
fundamental natural frequency the introduction of a single interior point support 
is analyzed. Depending on the boundary conditions an additional increase in the 
maximum fundamental natural frequency of 44 to 198 percent can be obtained. 

Introduction 
Integrated circuit technology has advanced rapidly in the 

past twenty years. The means to produce electronic equipment 
with high reliability and minimum overall cost has captured 
the attention of numerous researchers. Most of these research­
ers have been concerned with finding the optimal placement 
[1-6], minimum chip area [3, 7-9], and minimum wiring [10-
12]. A few researchers have addressed different aspects of 
design optimization, such as the consideration of thermal prop­
erties [13-15], total failure rate [16], and optimal support lo­
cation of a printed wiring board (PWB) [17]. 

Another important aspect of building reliable PWBs is to 
reduce the probability of failure due to mechanically generated 
motions, which can cause high relative displacement levels of 
the components and, consequently, high stress levels. These 
cyclic stress levels often lead to fatigue-induced cracked com­
ponents and solder joints. One way to reduce the high cyclic 
stress is to subject the PWB to dynamic loadings whose fre­
quency content is below the PWB's lowest natural frequency, 
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thereby avoiding the amplification of the input displacements. 
Since, in a practical situation, the vibration environment is not 
within the designer's control, one seeks ways in which the 
fundamental natural frequency of the PWB can be raised as 
high as possible. 

It is the objective of this research to use structural optimi­
zation techniques to determine how to rearrange the compo­
nents of PWBs to attain its highest fundamental natural 
frequency for a given set of boundary conditions. In order to 
do this the following are required: (1) an efficient and accurate 
way of modeling the components comprising the PWB; (2) a 
finite element program to calculate the natural frequencies and 
mode shapes of the PWB for all combinations of boundary 
conditions; (3) a computationally efficient objective function 
to provide a basis for selecting among alternative configura­
tions of the PWB; (4) a sophisticated scheme that can auto­
matically rearrange any combination of equal, unequal, 
movable, and fixed (immovable) components; and (5) an op­
timization method that can find the global maximum. 

In certain circumstances, however, the highest fundamental 
natural frequency obtained from the optimization method may 
not meet the desired minimum value. To further increase the 
fundamental natural frequency a way of automatically deter­
mining the location of a single interior point support for the 
previously determined optimal configuration is suggested. 
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Fig. 1 An example of a PWB 
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Fig. 2 Mesh generation prior to forming CLBs 
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Fig. 3 Finite element model for PWB 

' 
^kWi-bi) 

t 

6; 
(xi,yi) 

<x, 

kwj 

i(H'-a,-) 
Fig. 4 Location of an individual component with respect to its CLB 
approximation 

Modeling of the PWB 
To reduce the complexity of the problem somewhat, the 

individual components and the PWB to which they are attached 
are first replaced by equivalent orthotropic plates [18-23], 
which are denoted component-lead-board (CLB) assemblies. 
The problem is now one of describing these CLBs in such a 
manner that they adequately represent the CLB's geometry, 
while still providing a reasonable means for their automatic 
rearrangement during the optimization process. In order to 
develop an algorithm for the rearrangement of the CLBs, these 
components are replaced with a simplified model that defines 
their type, the interaction between them, and their location. 
Such a model will reduce the complexity of the PWB, add 
structure to the problem, and make the optimal placement 
problem amenable to solution. After the algorithm is applied 
the results can be transformed back into their original descrip­
tion. The detailed transformation of the PWB structure into 
a finite element model is now described. The implications of 
these simplifications are discussed in the references cited above. 

Consider a typical PWB shown in Fig. 1. The numbers 2 
through 7 represent different types of components mounted 
on the board; that is, those with different material constants. 
Let the dimensions of the PWB be a x b and those of the 
individual components be a, X 6,-. These dimensions are used 
to determine the size of the mesh for the subsequent finite 
element model such that all the a,- and b-, can be closely ap­
proximated by an integral number of elements. The PWB is 
now overlaid with a grid of square elements as shown in Fig. 
2. The introduction of this square mesh is designed to reduce 
the complexity of the automatic rearrangement process, while 
still retaining a reasonable means of describing the geometry 
of the individual CLBs. 

To avoid the possibility of any of the CLBs overlapping in 
the final configuration obtained from the automatic rear­
rangement process, the size of each individual CLB is enlarged 
to conform to its nearest exterior grid line as shown in Fig. 3. 
For those CLBs that have their dimensions equal to an integer 
multiple of the size of grid k, their position is relocated to the 
nearest grid line. Otherwise, their position is relocated to the 
center of the enlarged area as shown in Fig. 4. Hence, the 
PWB structure is simplified to an assemblage of square or­
thotropic and isotropic plate elements. The size of each CLB 

Table 1 The equivalent sizes of the CLBs 
CLB type 

(B,) 

1 
2 
3 
4 
5 
6 
7 

No. of elements comprising 
each CLB type (/, x w,) 

l x l 
3 x 3 
4 x 4 
3 x 2 
2 x 5 
2 x 3 
2 x 3 

Total number of CLBs 
N, 

83 
3 
2 
4 
1 
2 
2 

can now be expressed as the product of an integer multiple of 
square elements in the x-direction with an integer multiple of 
square elements in the .y-direction as implied in Fig. 3 and 
shown in the second column of the Table 1. 

The information in the second column of Table 1 is rep­
resented by two permanent arrays [P] and (5), whose lengths 
are equal to the total number Nd of CLB types, including the 
isotropic board. The total number of CLBs is 

Nd 

Nc=S N ' (1) 

1 = 1 

For the example being considered Nc = 97 and Nd = 7. The 
elements in the (P) array are the lengths /,• of the corresponding 
CLB type /. Similarly, the elements in the [S] array are the 
widths Wj of the corresponding CLB type /. Thus, for the 
example given in Table 1, 

[luh, • • • ,/AH) = {1,3,4,3,2,2,2) (2) IP) = 

V/Nd\ i1,3,4,2,5,3,3) (3) (S) = [w,, w2, . 

The total number of each CLB type TV,- is represented by a 
permanent array {R} whose length is also equal to the total 
number Nd of CLB types. The elements in {P.} are 

[R] = {Ni,N2 NNd} = {83,3,2,4,1,2,2) (4) 
The elements in each of these arrays are selected by the value 

of Bj = i. For example, if ;' = 4, then 54 = 4 and /4 = 3, w4 
= 2 and 7Y4 = 4. A number representing the corresponding 
CLB type is assigned to each individual square element of the 
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Fig. 5 Two dimensional representation of {/.) 

PWB. It is assumed that for those elements without any com­
ponents mounted to them they are the board itself, and are 
denoted as CLB type 1. Consequently, the configuration of 
the original PWB shown in Fig. 1 has been modeled as Nx x 
Ny square elements, where the total number of grids is 

"d 

Nxy = NxNy=Y,w'l>Ni (5) 

A two-dimensional array, denoted the content matrix C, is 
constructed to store the corresponding type number of each 
individual element of the current configuration. Thus Q, = 
B„ where n = 1 , 2 , . . . , Nd. For the original PWB shown in 
Fig. 1, C is given by: 

may not be allowed to be relocated in the rearrangement proc­
ess. In this case the corresponding grid numbers are removed 
from the array \L j and the length of the location array \L\ 
becomes Nc = Nc - M. It is also possible that certain areas 
of the PWB may be prohibited from having any components 
placed there. Again, the grid numbers for these prohibited 
areas are removed from the array (L} and Nc is again reduced. 
The size of the rearrangement process problem shrinks when 
these types of design constraints are prescribed. 

Geometric Constraints 

CLBs Must be Distinct. When two numbers are chosen 
from the location array [L\ the two grid numbers are trans­
formed to two elements of matrix C to obtain the correspond­
ing CLB type using Eqs. (8) and (9). The interchange of these 
two CLBs is performed only when they are distinct; that is, 
their type number is different. For example, if the two integer 
numbers selected, which must be between 1 and Nc, are 5 and 
31, then the corresponding grid numbers are found from array 
{L} to be 6 and 67, respectively. Since the CLB type for both 
grid numbers is type 2 no interchange would be performed. 

Boundary Constraints. When two CLBs are found to be 
distinct and their sizes are feasible, the boundary constraints 
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5 
5 
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5 
5 
5 
5 
5 
1 
1 
1 

1 
1 
1 
1 
1 
1 
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6 
6 
6 
1 
6 
6 
6 
1 

6 
6 
6 
1 
6 
6 
6 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 1 4 4 4 1 4 4 4 1 4 4 1 4 4 4 1 1 1 
1 1 4 4 4 1 4 4 1 4 4 4 1 4 4 4 1 1 1 

(6) 

We now form a one-dimensional location array {L), whose 
length is equal to the total number of CLBs Nc. The purpose 
of [L] is to record only the upper-left corner address number 
in the content matrix C corresponding to each individual CLB 
type for the current configuration. For the example shown in 
Fig. 5 

[L] = (1,2,4,5,6,9,10,14,15,17,18,20,21,24,25, 

. . . , 194,198,199,200! (7) 
Thus, the grid number of the upper left-hand corner of the 
individual CLBs for the current arrangement is registered as 
a single integer number from 1 to Nxy. During the automatic 
rearrangement process only the integer numbers stored in array 
{LI can be accessed. For each selected number one obtains 
the CLB type from the content matrix Cand the corresponding 
dimensions /,- and w, from the arrays [P} and [S J, respectively. 
In this manner the connectivity of each CLB is maintained 
during the rearrangement process. For each Lk selected the 
coordinates of the corresponding element in C are obtained as 
follows: 

/=1+INTEGER U-\ 
Nx 

(8) 

are then checked. Again, let the number of finite elements 
along the x- and ^-directions of these two CLBs be lx and wx 

and l2 and w2, respectively. Assume that the numbers selected 
are located on the ;'ith and the /2th rows and j^th and j2th 
columns in the content matrix C, respectively. Consider the 
case wherein the selected CLBs satisfy Eq. (10). An intended 
rectangular or square swapping area for the first CLB type is 
defined by the subscripts of the elements in the content matrix 
C, which range from (/2, j2) to (i2 + ~W\ - 1, j2 + l\ - 1). 
The first pair of subscripts defines the rectangle's (or square's) 
upper left-hand corner and the second pair its lower right-hand 
corner. Referring to Fig. 6 it is seen that there are two intended 
swapping areas for each pair of CLBs. Only the intended 
swapping area for the larger CLB is checked to determine if 
it satisfies the boundary constraints. Notice that the actual size 
for both swapping areas is determined by the size of the larger 
CLB; that is, w, x /i for the example shown in Fig. 6. The 
detailed procedures and example for checking the boundary 
constraints are given in what follows. 

The boundary constraints can be expressed along the x-axis 
as: 

j=Lk-a-mx (9) 
The PWB structure has now been transformed into a finite 

element model consisting of square orthotropic and isotropic 
elements, and its configuration can be fully described by the 
associated content matrix C, the location index array [L} and 
the equivalent CLB dimensions in arrays {P} and (S j . 

Immovable CLBs and Restricted Areas 
In the design of a PWB some of the CLBs, say M of them, 

; 2 + / , - l < N A . (10) 

and along the .y-axis as 

i2+Wi-\<Ny (11) 

An example of an infeasible interchange due to the boundary 
constraints is given as follows. Consider Fig. 7 (a) and assume 
that two numbers 7 and 64 are chosen, and that they correspond 
to the numbers 10 and 143, respectively, in the location index 
array {L). The corresponding locations in the content matrix 
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— Intended swapping area for type 7 

V—H 
j = 10 

• Intended swapping area for type 3 

Fig. 6 Definition of the intended swapping areas 

Fig. 7 Contradiction due to the boundary constraints, (a) Original con­
figuration, (b) intended swapped configuration 
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Fig. 8 Contradiction to the feasibility of the size of a CLB. (a) Original 
configuration, (b) infeasibility of intended swap 

Fig. 9 Example of a feasible interchange between two areas 

C are found to be (1, 10) and (8, 3), respectively, and the CLB 
types are 3 and 1, respectively. From arrays [P] and [S] the 
sizes of these two types of CLBs are 4 x 4 and 1 x ^ r e ­
spectively. From Eq. (10) the feasibility of the sizes of these 
two CLBs is satisfied. The intended square swapping area for 
the CLB of type 3 has its upper left-hand corner at (8, 3) and 
its lower right-hand corner at (11, 6) in the content matrix C. 
It is clear that this interchange process contradicts Eq. (12). 
The interchange of these two CLBs would have placed one of 
the CLBs outside the boundary as shown in Fig. 1(b). 

Feasibility of the Size. Consider two different type CLBs 
for which the number of the finite elements along the x- and 
^-directions are /] and w1 and l2 and w2, respectively. The 
interchange of these two CLBs is feasible only when either 

l\>h and wx>w2 (12) 

l\ < l2 and w{ < w2 (13) 

are true. 
An example of an infeasible interchange due to the CLB 

sizes is given as follows. Consider Fig. 8(a) and suppose that 
the numbers 7 and 9 have been selected and they correspond 
to the index numbers 10 and 15 in the one-dimensional array 
[L\. The locations in C are (1, 10) an (1, 15), respectively. 
The corresponding types of the CLBs are found to be type 3 
and 5, respectively. From arrays {P} and [5] it is found that 
the sizes of these two types of CLBs are 4 x 4 and 2 x 5 , 

respectively; that is, lt = 4, w>\ = 4, l2 = 2, and wz = 5. It 
is found that neither Eq. (10) nor Eq. (11) is satisfied and, 
therefore, the interchange is not allowed. The interchange of 
these two CLBs would have resulted in their overlapping other 
CLBs as shown in Fig. 8(b). 

CLB Must be Containable. It is possible that the intended 
swapping areas could contain other CLBs, in addition to the 
one that is chosen. The intended swapping areas, therefore, 
are checked to see whether or not they are containable. In 
other words, to determine if an integral number of CLBs and 
board elements of size 1 x 1 fit inside their respective intended 
swapping areas. This concept of containability is especially 
important when performing the rearrangement of CLBs of 
unequal size. For example, if the intended swapping area is l\ 
x W\ as shown in Fig. 9, then their interchange is feasible only 
when (/ - 7) x Nx + j = Lk, k = 1, . . . , Nc and both of 
the following equations are satisfied: 

and 

j+la<h+J2 

J+Wa<W1 + l2 

(14) 

(15) 

where a = Ba 

h , • • • Ji + h 

Qj, for i i2, . . . , i2 + W\ - 1 andy = 
1. In other words, only the upper left-hand 

corner element of each individual CLB inside the intended 
swapping area is checked. For the example shown in Fig. 9, 
the containability criterion is satisfied since an integral number 
of CLBs fit inside the intended swapping areas. 
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H H 

Fig. 10 Contradiction to the containable property, (a) Original config­
uration, (o) intended swapped configuration 

An example of an infeasible interchange of two CLBs due 
to the contradiction of the containable property is given as 
follows. Assume that two numbers 7 and 28 are selected. Their 
corresponding index numbers in the location index array {L} 
are 10 and 62, respectively. The locations in the content matrix 
C are (1, 10) and (4, 2), respectively, and the corresponding 
CLB types are 3 and 1, respectively, as shown in Fig. 10(a). 
From arrays [P] and {S} the size of these two types of CLBs 
are 4 x 4 and l x l , respectively. It is seen from Eq. (10) 
that the feasibility of the sizes of these two CLBs is satisfied. 
The intended swapping square area for the CLB of type 3 has 
its upper left-hand corner at (4, 2) and its lower right-hand 
corner at (7, 5) in the content matrix C. The boundary con­
straints given by Eqs. (12) and (13) are also satisfied. Equations 
(14) and (15) are therefore checked for their containability. It 
is found that the intended interchange contradicts Eq. (15) 
when ; and j equal to 1 and 3, respectively. The interchange 
of these two CLBs would have overlapped and split other CLBs 
as shown in Fig. 10(6). 

Transformation of Finite Element Model to Component's 
Location. As shown in Fig. 4 the location of each individual 
CLB is at the center of its area (£/,) X (kwt). The final 
configuration obtained from the automatic rearrangement and 
optimization process must be transformed back to their actual 
sizes on the PWB. To do this the grid numbers for the finite 
element model and their associated connectivity are converted 
to their x,-, yt coordinates using the original dimensions a{ and 
bi of each CLB. For example, consider a CLB that has its 
upper left-hand corner index located at (/, j) in the content 
matrix C. Let the number of elements along the x- and y-
directions for this CLB type be /and w, respectively. The actual 
dimensions of this CLB were stored as a' and b'. The actual 
coordinates of the location of the upper left-hand corner (Ux, 
Uy) of this CLB are therefore 

Ux=(j-l)k + ̂  (kl-a') 

Uy=(i-\)k + - (kw-b') 

and the coordinates of its center are 

Xi=(j-l)k + 
kl 

(16) 

(17) 

(18) 

y,= ( / - ! ) * + -
kw 

(19) 

Objective Function 
The fundamental natural frequency can be approximated by 

the Rayleigh quotient 

Jg Jg Udxdy 

' ]l So fdxdy 

where, for an orthotropic plate the quantities U and T are 
given by 

2 
0)1 = (20) 

U=DX 
d2wt 

dx2 + 2DC 
dzWt 

dx2 

+ A 

d2wt 

dy2 

d2Wj 

dy2 + 4A 
d2wy 
dxdy) 

T=phW\ 

(21) 

(22) 

and Wx = W\(x,y)\s the plate's mode shape corresponding 
to its fundamental natural frequency u>\, p and h are the mass 
density per unit volume and thickness of the plate, respectively, 
and Dx, Dy, Dxy, and Dc are the flexural rigidities of the or­
thotropic plate [22]. The right-hand side of the Eq. (20) is 
known as the Rayleigh Quotient for an orthotropic plate. It 
is well known that a good estimation of the fundamental nat­
ural frequency is obtained when the approximate displacement 
function W\ (x,y) satisfies the boundary conditions and closely 
resembles the actual fundamental mode shape. 

It can be shown [24] that the numerator and denominator 
of Eq. (20) can be approximated by 

2 
U)p 

U, 

?=SSwSS^w ; = i j=\ /=1 7=1 

where 

Uu (Cij) = (Dx)Cjj(Sl)u+ (A)C/J.(S2),7 

+ (Dy)cij(Si)u+(Dxy)ciJ(S4), 

fij{Cij)=(ph)Cij(Si)ij 

(Si)/. 

(S2)y = 2 

IS3), 

d2Wx 

dx2 

dx" dy2 

(S4)y = 4 

ay2 

dlw: 
dxdy I.. 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(S5)ij=(lVi)L (30) 

and it was assumed that dxdy =» Ax Ay = k2. The subscripts 
/ and j indicate the location of each k x k element in the C 
matrix. The subscript Cy denotes the material properties cor­
responding to that element. 

To determine a good estimate of Wx (x,y) the finite element 
approximation to the original configuration is used. For mod­
erate changes in the properties of a structure it is reasonable 
to assume that Wx (x, y) does not change. Furthermore, the 
second derivatives of the transverse displacement can be ap­
proximated by the appropriate linear combination of the modal 
displacements determined from the finite difference method 
[25]. These linear combinations are a function of the plate's 
boundary conditions for those elements that are on the plate's 
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perimeter. Since W\ is assumed to remain constant throughout 
the design changes, these approximations to the second deriv­
atives are only computed one time. Therefore, the (S,t),y, k = 
1,2, . . . , 5, are constants. The evaluation of (7y(C,7) for each 
individual element for the finite element model contains only 
four multiplications and three additions. The evaluation of 
Tij(Cjj) requires one multiplication. 

Consider the mathematical operations required for the eval­
uation of the design changes using this proposed objective 
function. Let two sets of h x vi\ elements be exchanged as 
shown in Fig. 9. One set has the original location of its elements 
defined by the indices i = h h + w, - 1 and j = 
Ju . . . , 7i + /j - 1, whereas that of the second set by / = 
I2, . . . , h + wi - 1 and / = J2, • • • , h + h - 1- We now 
define several quantities as follows: 

IQ+ W\ - 1 J^+l\~ 1 

Uijidj) (31) *= s s 
/ „+Wi - 1 ^ + / | 

v= S E f^c^ (32) 

where C'y, t = 1, 2 denotes the element of content matrix C 
for the current and new configurations, respectively, and 5 = 
1, 2 denotes the location indices for the two sets of elements 
to be exchanged. It is now possible to compute a new estimate 
of the fundamental natural frequency co/2 from the following 
expression: 

CO! 
U0+(U\- U\) + (UJ U\) 

T0+(Ti-T\) + (Ti-Tl) 
(33) 

In Eq. (33) both U0 and f0 are computed only one time. All 
subsequent computations involve only U's and f's. Since de­
tection of any improvement of a new configuration can be 
determined from Eq. (33) during the interchange process, the 
objective function F of the current configuration is set to the 
negative of co2; that is [recall Eq. (23)] 

F=-
Uo 
f0 

(34) 

The comparison between a pair of configurations can be made 
by simply computing the difference in the objective function 
shown in Eq. (33) with that obtained with Eq. (34). Suppose, 
for example, that during the rearrangement process the two 
sets of elements to be interchanged are the two / x w areas 
shown in Fig. 6. The justification for accepting the interchange 
of these two areas only requires the computation of the quan­
tities shown in Eqs. (31) and (32) with / = 4, w = 4, J{ = 
10, U = 1. Ji = 2, and I2 = 5. The value of the objective 
function for the new configuration F' is then determined from 

F' = -5r = 
tn 

- c o . (35) 

The fundamental natural frequency for the swapped config­
uration has increased when F' < F. In this case, the swapped 
configuration is retained and the values of the U0 and f0 are 
set equal to U„ and ta, respectively. The current configuration 
is restored when F' > F and the quantities U0 and f0 remain 
the same. 

Empirical Formulation for Simulated Annealing 
Simulated annealing is a technique for solving the combi­

natorial optimization problems [26]. The objective function 
of an optimization problem is analogous to the energy in a 
physical system, and the interchanges between components to 
attain new configurations are analogous to the changes in the 
energy state of the physical system. Interchanges are selected 
randomly and the possibility of accepting a move is dependent 

Table 2 Analogy between simulated annealing and the PWB 
optimal placement problem 
Simulated annealing 

Energy (E) 
Energy state 
Crystalline solid state 
Cooling schedule 
Temperature 
Initial temperature 
Cooling 

temperature factor 
Final temperature 

PWB optimal placement 

Objective function (F= -co?) 
Configuration of PWB 
Optimal placement of PWB 
Search procedure 
Scaling factor of o>?, T 
Initial scaling factor of o>\, 7) 

Control parameter, Tc 

Stopping criterion of scaling factor, Tf 

of the system's current temperature', which is controlled by a 
probability function using the Metropolis algorithm [27]. The 
analogy between simulated annealing and the PWB optimal 
placement problem is given in Table 2. 

The performance of the simulated annealing method, as 
measured by the quality of the solution and the overall com­
putational time, is dependent on the search procedure, the 
initial value of the scaling factor T, denoted T), the control 
factor Tc and the stopping criterion of scaling factor Tf. After 
some computational experience was obtained it was found that 

Tj = 0M\FNM\ (36) 

where Nbd is the number of zero finite element nodal displace­
ments of the prescribed boundary conditions and F is obtained 
for the initial configuration from Eq. (34). 

The annealing process is completed when the value of the 
scaling factor T is such that virtually no configuration changes 
will occur. After some numerical testing for the PWB optimal 
placement problem the stopping criterion for the scaling factor 
T, denoted Tf, was set to 7} = 1(T20. However, since the value 
of the scaling factor varies with the boundary conditions and 
the total number of CLBs considered, the optimal configu­
ration can be obtained before this pre-selected value Tf is 
reached, and, therefore, unnecessary searching time will have 
taken place. To avoid this situation a quantity that records the 
number of successful swaps Nsu at each value of Tis introduced 
to serve as an additional stopping criterion. The searching 
process is terminated when either 7} is reached or no successful 
swap occurs at the current value of the scaling factor T; that 
is, when either T = Tfor Nsu = 0. 

The value of scaling factor T of the simulated annealing 
method is decreased gradually by a factor of Tc. Empirically, 
in order to allow the value of Tto decrease slowly, it has been 
suggested that Tc vary between 0.8 to 1.0 for the combinatorial 
optimization problem [3]. In this research the factor is set to 
Tc = 0.9; that is rnew = 0.9 7old. 

The maximum number of configuration swaps allowed for 
each value of 7" is, therefore, controlled by the maximum 
number of tries (Aftry)max and the maximum number of suc­
cessful swaps (Nsu)max. It has been found that the maximum 
number of tries and the maximum number of successful swaps 
for each value of T are a function of Nc. Therefore, both of 
these numbers were set to (Nsll)max = (Aftry)max = 50 Nc. A 
typical curve of the number of successful swaps at each T 
versus the value of T is given in Fig. 11 for four different 
boundary conditions. As seen in the figure, the choice of the 
initial value of the scaling factor 7} is a function of the bound­
ary conditions. The final value of the scaling factor Tf also 
varies with the boundary conditions. Notice that the deter­
mination of the initial value T,- given by Eq. (36) is an empirical 
formula. It suggests a value for the initial scaling factor 7} 
that is high enough, but not unnecessarily high, for this PWB 
optimal placement problem. 

When using simulated annealing it is conventional to refer to the value of 
the objective function as temperature. In the present problem temperature cor­
responds to cop 
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Scaling factor T 

Fig. 11 Typical curve of temperature versus the number of successful 
swaps for simulated annealing for various boundary conditions and for 
Nc = 8 [(Nlry)max = (50) (Nc) = 400] 

Table 3 Characteristics of the CLBs for the five examples 

Example Size of CLBs Mass density Rigidities Mobility 

1 Equal Equal Various All movable 
2 Equal Various Equal All movable 
3 Equal Various Various All movable 
4 Unequal Various Various One immovable 
5 Unequal Various Various Some movable 

Table 4 The boundary conditions 
Edge 1 

Clamped 
Simple 

Clamped 
Clamped 
Clamped 
Simple 
Simple 
Simple 

Edge 2 

Clamped 
Clamped 
Clamped 

Free 
Simple 

Free 
Free 
Free 

Edge 3 

Clamped 
Simple 

Clamped 
Clamped 

Free 
Simple 
Simple 
Free 

Edge 4 

Clamped 
Clamped 

Free 
Free 

Simple 
Clamped 

Free 
Clamped 

Exhaustive Search Method 
An exhaustive search method [25] was used to determine the 

exact global optimal configuration of the components on the 
PWB for several very small combinatorial problems. To obtain 
an exact solution for the global optimal configuration of the 
PWB, an algorithm [25] was developed that generated all the 
possible distinct configurations. A standard finite element 
method was used to determine the fundamental natural fre­
quency of each individual configuration obtained from the 
permutation process. The optimal configuration correspond­
ing to the highest fundamental natural frequency was then 
obtained by sorting all the fundamental natural frequencies 
from high to low. The number of distinct component com­
binations in these small combinatorial problems varied from 
648 to 92,544. 

Examples and Comparison 
To demonstrate that the suggested cooling schedule and 

objective function can be used to search for the optimal con­
figuration of the PWB for various combinations of the equal 
size, unequal size, movable and immovable CLBs and for 
various boundary conditions in a relatively short computa­
tional time, five examples are investigated. These examples 
include those in which the CLBs have either uniform mass 
density and varying rigidities, uniform rigidities and varying 
densities, or varying mass densities and rigidities. The general 
characteristics of the CLBs for the five cases to be rearranged 
are shown in Table 3, as are the cases that have movable and 
immovable CLBs. The various combinations of boundary con­
ditions considered are shown in Table 4. Each example is 
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Error % 

Fig. 12 The percentage error between the highest fundamental natural 
frequencies found by the simulated annealing and the exact maximum 
fundamental natural frequencies obtained from the exhaustive search 
method versus the percentage of total number of cases less than that 
error. A total of 61 different cases were considered. 

conducted on an 8 x 6 in. PWB that is modeled2 by 48 1 x 
1 in. finite element squares (k = 1 in.) When the results 
obtained from the simulated annealing were compared with 
those using the exhaustive search method, the simulated an­
nealing method found the highest fundamental natural fre­
quency CO)' = w\/\l(ph)\ within 1 percent for 87 percent of 
the cases considered, within 0.5 percent for 72 percent of them 
and the true maximum in 43 percent of the cases. The cu­
mulative distribution of the number of cases as a function of 
the percentage error is shown in Fig. 12. These cases considered 
61 combinations of the boundary conditions, equal and une­
qual sized CLBs, movable and immovable CLBs, various 
grouping types and several sets of material constants. When 
the 61 combinations were re-run using a different set of ran­
domly determined rearrangements these percentages remained 
virtually the same. For those few results obtained by the sim­
ulated annealing that did not converge to the highest funda­
mental natural frequency it is possible that: 

1. Since the possible configurations are generated randomly 
some configurations may not have been generated during 
the search process. 

2. Since the number of tries (iVtry) is a relatively small value 
that has been chosen to prevent the possibility of lengthy 
computational time, when the total possible number of 
permutations becomes large the probability of finding 
the global maximum decreases. 

It was found that in 3 out of the 8 cases in which the simulated 
annealing found the highest fundamental natural frequency to 
be more than 1 percent lower than the global maximum, they 
still ranked within the 10 highest exact fundamental natural 
frequencies. In 8 out of the 9 cases in which the simulated 
annealing found the highest fundamental natural frequency 
within 0.5 to 1 percent of the global maximum, they also ranked 
within the 10 highest fundamental natural frequencies. The 
maximum error was slightly less than 3 percent. Therefore, 
the suggested cooling schedule, which uses the energy for the 
initial configuration, the number of zero finite element nodal 
displacements from the prescribed boundary conditions and 
total number of the individual CLBs, seems to be both efficient 
and accurate enough for searching for the optimal configu­
ration for all the combinations of the PWB placement problems 
considered. It also seen that the modified Rayleigh procedure 
given by Eqs. (23) to (34) is a very accurate predictor of u>\. 

An Application 
The optimization method presented is now applied to an 

2When the fundamental natural frequency for several of these cases was eval­
uated it was found that an increase in the number of elements from 48 to 96 
resulted in the value of the natural frequency changing by approximately 0.1 
percent. Thus, 48 elements were considered adequate. 
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Table 5 Material constants [17] for the CLB type in Table 1 
and Figure 3 

Component CLB type Dx Dv Dr, Dc ph(x KT3) 
Board 

Capacitor 
Capacitor 

Transformer 
Heat sink 

Transformer 
Chip socket 

1 
2 
3 
4 
5 
6 
7 

56.75 
56.75 
56.75 
52.56 

102.73 
66.75 

215.40 

56.75 
56.75 
56.75 

167.93 
53.38 

112.10 
79.72 

19.86 
19.86 
19.86 
34.03 
27.84 
32.35 
48.40 

17.03 
17.03 
17.03 
15.77 
16.07 
20.03 
23.92 

3.109 
14.767 
19.948 
31.865 
30.311 
9.585 
3.109 

Table 6 Highest fundamental natural frequency and corre­
sponding CPU time 

Boundary Initial Maximum Percentage CPU time* 
conditions frequency (Hz) frequency (Hz) improvement (seconds) 

_ _ _ 
150.26 
64.97 
36.95 
71.84 
49.07 
14.43 
38.63 

C-C-C-C 
S-C-S-C 
C-C-C-F 
C-F-C-F 
C-S-F-S 
S-F-S-C 
S-F-S-F 
S-F-F-C 

108.08 
106.54 
33.86 
21.47 
48.05 
21.11 

9.22 
16.64 

89.17 
41.04 
91.88 
72.10 
49.51 
32.45 
56.51 
32.15 

137.7 
476.2 

61.5 
84.4 
79.2 
64.9 
91.9 
77.0 

*SUN 4/75 (SPARC 2). 
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Fig. 13(a) Optimized configuration for C-C-C-C boundaries, (b) optim­
ized configuration for C-S-F-S boundaries 

example in which experimentally determined material con­
stants [17] are used, and in which several combinations of the 
boundary conditions are considered. This example considers 
the rearrangement of seven unequal size CLBs. The PWB 
shown in Fig. 3, which is approximated as a finite element 
model shown in Fig. 4, is used as the initial configuration for 
all the combinations of the boundary conditions considered. 
The flexural rigidities (lbf-in.) and mass density per unit area 
(lb-s2/in.3) for each individual CLB type are given in Table 5. 
The corresponding size and number of each CLB type are given 
in Table 1. The size of the PWB is 10 x 5 in. All the CLBs 
can be relocated and no prohibited areas are prescribed. The 
highest fundamental natural frequencies corresponding to eight 
sets of the boundary conditions and the fundamental natural 
frequency for the initial configuration are given in Table 6. 
Two configurations corresponding to the optimal natural fre­
quency for boundary conditions "C-C-C-C" and "C-S-F-S" 
are shown in Figs. 13 (a) and (b), respectively. From Table 6 
it is seen that the fundamental natural frequencies for the 
boundary conditions considered were increased by 41 to 132 
percent from their initial configurations. 

A Method to Further Increase the Fundamental Natural 
Frequency 

In certain circumstances the highest fundamental natural 
frequency obtained from the optimization method described 
may not meet the desired minimum value, and further im­
provement is needed. One strategy that can be used to increase 
the fundamental natural frequency further is to introduce a 
point support somewhere on the plate. To determine the lo­
cation and the effect that the placement of a single point 
support has on the fundamental natural frequency, several 
cases were studied for Example 3 in Table 3. This PWB was 
considered general enough to be chosen for the investigation 
of a point support's effect on the fundamental natural fre­
quency. One point support was placed at all the possible lo­
cations; that is, at each finite element node of the configuration 
obtained from the optimal solution to Example 3. This single 
point support is modeled as a clamped node in the finite element 
model; that is, both the displacement and the rotations in the 
x- and j-directions are zero. Each example is conducted on an 
8 x 6 in. PWB that is modeled by 48 1 x 1 in. finite element 
squares. The total number of possible locations for the point 
support is 63 [(8 + 1) x (6 + 1)]. The standard finite element 

Fig. 14(a) Fundamental mode shape of the optimized design, (i>) sec­
ond mode shape of the optimized design, (c) fundamental natural fre­
quency mpTas a function of the location of a single clamped point support, 
(d) fundamental mode shape of the configuration with the point support 
placed at the location in (c) that corresponds to the highest value of 
mpT. The boundary conditions are C-C-C-F. 

method is used to obtain the mode shape corresponding to all 
63 configurations, where each configuration is obtained by 
placing this one point support at the 63 possible locations of 
the plate. 

To determine the location of the single point support that 
yields the highest increase in the fundamental natural fre­
quency, it seems reasonable that one should place the single 
point support either at those locations that have the highest 
relative deflection amplitude of the fundamental natural fre­
quency or at an appropriate point along the nodal line of the 
second mode shape [17]. In order to investigate these ideas, 
the eight combinations of boundary conditions given in Table 
4 were studied. Consider, for example the clamped-clamped-
clamped-free plate. First, the first and second mode shapes of 
the optimized configuration were determined. These are the 
shapes shown in Figs. 14(a) and (b). Then, the normalized 
fundamental natural frequencies wpT = u>PT/^l{ph)\ corre­
sponding to the locations at which the point support was placed 
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Table 7 Effect of the single point support location on the 
configuration producing the maximum fundamental natural 
frequencies «i 

First two 
Boundary frequencies 
conditions a. 

Optimal configuration 
with point support 

Percentage 
improvement 

w2 0)pf 100(o)pr/co,'-l) 

C-C-C-C 
S-C-S-C 
C-C-C-F 
C-F-C-F 
C-S-F-S 
C-F-S-C 
S-F-S-F 
S-F-F-C 

22.767 
20.521 
11.864 
9.821 
8.747 
6.715 
3.728 
3.720 

35.285 
27.690 
21.826 
12.008 
15.711 
18.329 
7.405 
9.317 

39.299 
30.402 
24.916 
14.135 
16.672 

' 19.980 
9.698 
10.899 

79.61 
48.15 
110.01 
43.93 
90.60 
197.54 
160.14 
192.98 

were recorded. When the value of o>PT is plotted as a function 
of its corresponding point support location one obtains the 
plot shown in Fig. 14(c). Lastly, Fig. 14(d) represents the 
fundamental mode shape that is obtained by placing the point 
support at that location in Fig. 14(c) which yielded the highest 
value of b>pT. Although somewhat difficult to see in Figs. 14(b) 
and (d) the optimal location of the single point support yield­
ing the highest fundamental natural frequency is coincident 
with one of the locations that lie along the nodal line of the 
second natural frequency of the optimized plate's configura­
tion. Also, when the single point support is located at its 
optimal location the fundamental mode shape strongly resem­
bles that of the second mode shape of the original optimized 
design for most of the boundary conditions studied. This seems 
to suggest that the effect of the single point support is to shift 
its fundamental mode shape to a mode shape that resembles 
that of the original second mode. The values of both the fun­
damental and second natural frequencies for the optimized 
design and the fundamental natural frequency after applying 
single point support at the optimal location are given in Table 
7. The effect of this single support is to increase the funda­
mental natural frequency from 44 to 198 percent for the bound­
ary conditions considered. The percentage improvement of 
co/is defined as 100 (wpT/o>{ - I). 

As shown in Figs. 14(6) and (c) the maximum values of 
LOPT occur on the nodal line of the second mode shape of the 
original optimal configuration. Examination of similar results 
for the remaining seven boundary conditions reveals that the 
location that has the highest relative displacement amplitude 
of the fundamental natural frequency is not coincident with 
the nodal line of the second mode shape when any of the 
boundaries are free. Also, the value of u{ and the value of 
copy-are fairly close to each other, although coPris always greater 
than «/. This seems to reinforce the idea that the effect of the 
single point support is to shift its fundamental mode shape to 
a mode shape that resembles that of the original optimal con­
figuration's second mode. The optimal point support locations 
found for the various boundary conditions are shown in Fig. 
15. 

Summary 
A methodology to determine the configuration that gives 

the highest fundamental natural frequency of the PWB has 
been obtained by: 

1. Developing a general algorithm by which the rearrange­
ment of the CLBs is performed automatically for any 
combination of equal size, unequal size, movable and 
immovable CLBs and for all combinations of clamped, 
simply supported and free boundary conditions. This 
algorithm is also capable of incorporating two design 
restrictions: fixed (immovable) components and prohib­
ited (nonswappable) areas. 

2. Introducing a highly computationally efficient and ac­
curate objective function for the evaluation of the au-
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Fig. 15 Optimal point location for the configurations corresponding to 
the maximum natural frequencies. The symbol • denotes the point sup­
port location to obtain the maximum frequency. 

tomatic rearrangement process. Its evaluation is linearly 
dependent on the area of the larger of the two individual 
CLBs that have been selected for the interchange. 

3. Adapting the simulated annealing method to solve the 
combinatorial rearrangement of the CLBs comprising the 
PWB. An empirical cooling schedule that considers the 
boundary conditions of the PWB and the total number 
of individual CLBs to be rearranged was given. Using 
this schedule for 61 combinations of boundary condi­
tions, equal and unequal sized CLBs, movable and im­
movable CLBs, various CLB groupings and sets of 
materials, it was found that when compared to the exact 
solutions the simulated annealing method obtained the 
highest fundamental natural frequency within 1 percent 
for 87 percent of the cases considered, within 0.5 percent 
for 72 percent of these cases and the true maximum in 
43 percent of them. The maximum discrepancy was 3 
percent. 

Although the method was demonstrated for boundary con­
ditions that remained uniform along an edge, the programmed 
procedure can easily be generalized to include any combination 
of boundary conditions along a single edge, including elasti-
cally supported. 

A means to determine the location of a clamped interior 
point support to improve upon the optimal configuration was 
also developed. The concept is based on the idea that the 
fundamental mode of the PWB with a single clamped interior 
point support will resemble the second mode of the optimized 
PWB. The optimal location of the interior point support was 
found by obtaining the location (node) in which the absolute 
value of the transverse defection for the second natural fre­
quency was a minimum. The results confirmed that not only 
was the value of the fundamental natural frequency greatly 

320 / Vol. 115, SEPTEMBER 1993 Transactions of the ASME 
Downloaded From: https://electronicpackaging.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



increased to values greater than those of the original second 
natural frequency, but the mode shapes also resembled each 
other. For the boundary conditions considered an additional 
increase in the maximum fundamental natural frequency of 
44 to 198 percent was obtained. 
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