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The genome and transcriptome of the Phalaenopsis yield

insights into floral organ development and flowering

regulation

Jian-Zhi Huang, Chih-Peng Lin, Ting-Chi Cheng, Ya-Wen Huang, Yi-Jung Tsai, Shu-Yun Cheng, Yi-Wen Chen, Chueh-Pai Lee, Wan-

Chia Chung, Bill Chia-Han Chang, Shih-Wen Chin, Chen-Yu Lee, Fure-Chyi Chen

Phalaenopsis orchid is an important potted flower with high economic value around the

world. We report the 3.1 Gb draft genome assembly of an important winter flowering

Phalaenopsis ‘KHM190’ cultivar. We generated 89.5 Gb RNA-seq and 113 million sRNA-seq

reads to use these data to identify 41,153 protein-coding genes and 188 miRNA families.

We also generated a draft genome for Phalaenopsis pulcherrima ‘B8802’, a summer

flowering species, via resequencing. Comparison of genome data between the two

Phalaenopsis cultivars allowed the identification of 691,532 single-nucleotide

polymorphisms. In this study, we reveal the key role of PhAGL6b in the regulation of flower

organ development involves alternative splicing. We also show gibberellin pathways that

regulate the expression of genes control flowering time during the stage in reproductive

phase change induced by cool temperature. Our work should contribute a valuable

resource for the flowering control, flower architecture development, and breeding of the

Phalaenopsis orchids.
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Abstract

Phalaenopsis orchid is an important potted flower with high economic value around

the world. We report the 3.1 Gb draft genome assembly of an important winter flowering

Phalaenopsis ‘KHM190’ cultivar. We generated 89.5 Gb RNA-seq and 113 million sRNA-

seq reads to use these data to identify 41,153 protein-coding genes and 188 miRNA families.

We  also  generated  a  draft  genome  for  Phalaenopsis pulcherrima ‘B8802’,  a  summer

flowering  species,  via  resequencing.  Comparison  of  genome  data  between  the  two

Phalaenopsis cultivars  allowed  the  identification  of  691,532  single-nucleotide

polymorphisms. In this study, we reveal the key role of PhAGL6b in the regulation of flower

organ development involves alternative splicing. We also show gibberellin pathways that

regulate the expression of genes control flowering time during the stage in reproductive

phase change induced by cool temperature. Our work should contribute a valuable resource

for  the  flowering  control,  flower  architecture  development,  and  breeding  of  the

Phalaenopsis orchids.

Keywords:  Phalaenopsis,  draft  genome,  PhAGL6b,  flower  organ  development,  flowering
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INTRODUCTION

Phalaenopsis is  a genus within the family Orchidaceae and comprises approximately 66

species  distributed  throughout  tropical  Asia  (Christenson  2002).  The  predicted  Phalaenopsis

genome size is approximately 1.5 gigabases (Gb), which is distributed across 19 chromosomes

(Lin  et  al.  2001).  Phalaenopsis flowers  have a zygomorphic  floral  structure,  including three

sepals (in the first floral whorl), two petals and one of the petals develop into a labellum in early

stage of development, which is a distinctive feature of a highly modified floral part in  second

floral  whorl  unique to  orchids.  The gynostemium contains  the male and female reproductive

organs  in  the  center  (Rudall  &  Bateman  2002).  In  the  ABCDE model,  B-class  genes  play

important  role  to  perianth  development  in  orchid  species  (Chang  et  al.  2010;  Mondragon-

Palomino & Theissen 2011; Tsai et al. 2004). In addition, PhAGL6a and PhAGL6b, which were

expressed specifically in the Phalaenopsis labellum, were implied to play as a positive regulator

of labellum formation (Huang et al. 2015; Su et al. 2013). However, the relationship between the

function  of  genes  involved  in  floral-organ  development  and  morphological  features  remains

poorly understood.

Phalaenopsis  orchids are produced in large quantity annually and are traded as the most

important  potted  plants  worldwide.  During  greenhouse  production  of  young plants,  the  high

temperature >28°C was routinely used to promote vegetative growth and inhibit spike initiation

(Blanchard & Runkle 2006). Conversely, a lower ambient temperature (24/18°C day/night) is

used  to  induce  spiking  (Chen  et  al.  2008)  to  produce  flowering  plants.  Spike  induction  in

Phalaenopsis orchid by this low temperature is the key to precisely control its flowering date.

Several  studies  have  indicated  that  low  temperatures  during  the  night  are  necessary  for

Phalaenopsis orchids to flower (Blanchard & Runkle 2006; Chen et al. 1994; Chen et al. 2008;

Wang 1995). Despite a number of expressed sequence tags (ESTs), RNA-seqs and sRNA-seqs

from  Phalaenopsis inflorescence, flowering buds and leaves with or without low temperature

treatment have been reported and deposited in GenBank or OrchidBase (An & Chan 2012; An et

al. 2011; Hsiao et al. 2011; Su et al. 2011), only a few flowering genes or miRNAs have been

identified and characterized. Besides, the clues to the spike initiation during reproductive phase

change  in  the  shorten  stem,  which  may  produce  signals  related  to  flowering  during  cool

temperature induction, have not been dealt with. So far, the molecular mechanisms leading to

spiking of Phalaenopsis has yet to be elucidated. 

Here we report a high-quality genome and transcriptomes (mRNAs and small RNAs) of

Phalaenopsis ‘KHM190’, a winter flowering hybrid with spike formation in response to low

temperature. We also provide resequencing data for summer flowering species  P. pulcherrima

‘P8802’. Our comprehensive genomic and transcriptome analyses provide valuable insights into

the molecular mechanisms of important biological processes such as floral organ development

and flowering time regulation. 
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METHODS SUMMARY

The genome of the  Phalaenopsis Brother Spring Dancer ‘KHM190’ cultivar was sequenced on

the Illumina HiSeq 2000 platform. The obtained data were used to assemble a draft  genome

sequence using the Velvet software  (Zerbino & Birney 2008).  RNA-Seq and sRNA-Seq data

were generated on the same platform for genome annotation and transcriptome and small RNA

analyses. Repetitive elements were identified by combining information on sequence similarity at

the nucleotide and protein levels and by using de novo approaches. Gene models were predicted

by combining publically available Phalaenopsis RNA-Seq data and RNA-Seq data generated in

this project. RNA-Seq data were mapped to the repeat masked genome with Tophat (Trapnell et

al.  2009)and  CuffLinks  (Trapnell  et  al.  2012).  The  detailed  methodology  and  associated

references are available in the SI Appendix.

RESULTS AND DISCUSSION

Genome sequencing and assembly.       We sequenced the genome of the Phalaenopsis orchid

cultivar  ‘KHM190’  (SI  Appendix,  Fig.  S1a)  using  the  Illumina  HiSeq  2000  platform  and

assembled the genome with the Velvet assembler, using 300.5 Gb (90-fold coverage) of filtered

high-quality sequence data (SI Appendix, Table S1). This cultivar has an estimated genome size

of  3.45 Gb on the  basis  of  a  17-mer  depth  distribution  analysis  of  the  sequenced reads  (SI

Appendix, Fig. S2 and S3 and Table S2 and S3). De novo assembly of the Illumina reads resulted

in a sequence of 3.1 Gb, representing 89.9% of the Phalaenopsis orchid genome. Following gap

closure, the assembly consisted of 149,151 scaffolds (≥1000 bp), with N50 lengths of 100 kb and

1.5 kb for the contigs. Approximately 90% of the total sequence was covered by 6,804 scaffolds

of  >100  kb,  with  the  largest  scaffold  spanning  1.4  Mb  (SI  Appendix,  Table  S3-S5).  The

sequencing depth of 92.5% of the assembly was more than 20 reads (SI Appendix, Fig.  S3),

ensuring high accuracy at the nucleotide level. The GC content distribution in the Phalaenopsis

genome was comparable with that in the genomes of Arabidopsis (2000), Oryza (2005) and Vitis

(Jaillon et al. 2007) (SI Appendix, Fig. S4). 

Gene prediction and annotation. Approximately 59.74% of the Phalaenopsis genome assembly

was identified as repetitive elements, including long terminal repeat retrotransposons (33.44%),

DNA transposons (2.91%) and unclassified repeats (21.99%) (SI Appendix, Fig. S5 and Table

S6). To facilitate gene annotation, we identified 41,153 high-confidence and medium-confidence

protein-coding regions with complete gene structures in the  Phalaenopsis genome using RNA-

Seq (114.1 Gb for a 157.6 Mb transcriptome assembly), based on 20 libraries representing four

tissues  (young floral  organs,  leaves,  shortened stems  and  protocorm-like  bodies  (PLBs))  (SI

Appendix, Table S7), and we used transcript assemblies of these regions in combination with

publically available expressed sequence tags  (Su et al. 2011; Tsai et al. 2013) for gene model

prediction and validation (Dataset S1-S2). We predicted 41,153 genes with an average mRNA
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length of 1,014 bp and a mean number of 3.83 exons per gene (Table 1 and Dataset S3). In

addition to  protein coding genes,  we identified a  total  of  562 ribosomal RNAs,  655 transfer

RNAs, 290 small nucleolar RNAs and 263 small nuclear RNAs in the Phalaenopsis genome (SI

Appendix,  Table  S8).  We also  obtained  92,811,417  small  RNA  (sRNA)  reads  (18-27  bp),

representing 6,976,375 unique sRNA tags (SI Appendix, Fig. S6 and Dataset S6-S7). A total of

650  miRNAs  distributed  in  188  families  were  identified  (Dataset  S8),  and  a  total  of  1,644

miRNA-targeted genes were predicted through the alignment of conserved miRNAs to our gene

models (SI Appendix, Fig. S7 and Dataset S9-S10). 

The  Phalaenopsis gene families were compared with those of  Arabidopsis (2000),  Oryza

(2005), and  Vitis (Jaillon et al.  2007) using OrthoMCL  (Li et al. 2003). We identified 41,153

Phalaenopsis genes in 15,855 families, with 8,532 gene families being shared with Arabidopsis,

Oryza and Vitis. Another 5,143 families, containing 12,520 genes, were specific to Phalaenopsis

(figure. 1). In comparison with the 29,431 protein-coding genes estimated for the Phalaenopsis

equestris genome (Cai et al. 2015), our gene set for  Phalaenopsis ‘KHM190’ contained 11,722

more members, suggesting a more wider representation of genes in this work. This difference in

gene  number  may  be  due  to  different  approaches  between  Phalaenopsis ‘KHM190’  and

Phalaenopsis equestris. To better annotate the  Phalaenopsis genome for protein-coding genes,

we generated RNA-seq reads obtained from four tissues as well as publically available expressed

sequence  tags  for  cross  reference.  Besides,  Phalaenopsis ‘KHM190’  is  a  hybrid  and

Phalaenopsis equestris a species, which may also show gene number difference due to different

genetic background.

We defined the function of members of these families using Gene ontology  (2008),  the

Kyoto Encyclopedia of Genes and Genomes (Kanehisa et al. 2012) and Pfam protein motifs (Finn

et al. 2014) (SI Appendix, Fig. S8 and Dataset S3-S5). Furthermore, conserved domains could be

identified  in  50.17% of  the  predicted  protein  sequences  based  on  comparison  against  Pfam

databases. In addition, we identified 2,610 transcription factors (6.34% of the total genes) and

transcriptional regulators in 55 gene families (SI Appendix, Fig. S9-S11 and Dataset S11-S12). 

Regulation  of  Phalaenopsis floral  organ  development. The  relative  expression  of  all

Phalaenopsis genes was compared through RNA-Seq analysis of shoot tip tissues from shortened

stems, leaf, floral organs and PLB samples, in addition to vegetative tissues, reproductive tissues,

and germinating seeds from P. aphrodite (Su et al. 2011; Tsai et al. 2013) (SI Appendix, Fig. S12

and  Dataset  S1).  Phalaenopsis orchids  exhibit  a  unique  flower  morphology involving  outer

tepals,  lateral  inner  tepals  and  a  particularly  conspicuous  labellum (lip)  (Rudall  & Bateman

2002). However, our understanding of the regulation of the floral organ development of these

species  is  still  in  its  infancy.  To  comprehensively  characterize  the  genes  involved  in  the

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182



development of Phalaenopsis floral organs, we obtained RNA-Seq data for the sepals, petals and

labella of both the wild-type and peloric mutant of Phalaenopsis ‘KHM190’ at the 0.2-cm floral

bud stage, which shows early sign of differentiation. This cultivar presented an early peloric fate

in its lateral inner tepals. In a peloric flower, the lateral inner tepals are converted into a lip-like

morphology at this bud stage (SI Appendix, Fig. S12a and 12b). We identified 3,743 genes that

were differentially expressed in the floral organs of the wild-type and peloric mutant plants. Gene

Ontology analysis of the differentially expressed genes in  Phalaenopsis floral organs revealed

functions related to biological regulation, developmental processes and nucleotide binding, which

were significantly altered in both genotypes (Huang et al. 2015). Transcription factors (TFs) play

a role in floral organ development. Of the 3,309 putative TF genes identified in the Phalaenopsis

genome  showed  differences  in  expression  between  the  wild-type  and  peloric  mutant  plants

(Dataset S11). Notably, the PhAGL6b gene was upregulated in the peloric lateral inner tepals (lip-

like petals) and lip organs (Huang et al. 2015). We therefore cloned the full-length sequence of

PhAGL6b from lip organ cDNA libraries for the wild-type, peloric mutant and big lip mutant.

The big lip mutant developed a petaloid labellum instead of the regular lip observed in the wild-

type flower (figure 2b). Interestingly, we identified four alternatively spliced forms of PhAGL6b

that were specifically expressed only in the petaloid labellum of the big lip mutant (figure 2c and

2d and SI Appendix, Fig. S13-S15).  The four isoforms of the encoded PhAGL6b products differ

in the length of their C-terminus region (figure 2d). C-domain is important for the activation of

transcription of target genes (Honma & Goto 2001) and may affect the nature of the interactions

with  other  MADS-box  proteins  in  multimeric  complexes  (Geuten  et  al.  2006;  Gramzow  &

Theissen 2010). In  Oncidium, L (lip) complex (OAP3-2/OAGL6-2/OAGL6-2/OPI) is required

for lip formation (Hsu et al. 2015). The Phalaenopsis PhAGL6b is an orthologue of OAGL6-2. In

our  study,  the  PhAGL6b  and  its  different  spliced  forms  may  each  other  compete  the

Phalaenopsis L-like complex to affect labellum development as reported in Oncidium (Hsu et al.

2015). This provides a novel clue further supporting the notion that PhAGL6b may function as a

key  floral  organ  regulator  in  Phalaenopsis orchids,  with  broad  impacts  on  petal,  sepal  and

labellum development (figure 2e).

Control of flowering time in Phalaenopsis. The flowering of Phalaenopsis orchids is a response

to cues related to  seasonal  changes  in  light  (Wang 1995),  temperature  (Blanchard & Runkle

2006) and other external influences (Chen et al. 1994). A cool night time temperature of 18-20°C

for approximately 4 weeks will generally induce spiking in most  Phalaenopsis hybrids, while

high temperature inhibits it. To compare gene expression between a constant high-temperature

(30/27°C; day/night) and inducing cool temperatures (22/18°C), we collected shoot tip tissues

from shortened stems of mature P. aphrodite plants after treatment at a constant high temperature

(BH) and a cool  temperature (BL) (1 to 4 weeks) for RNA-Seq data analysis  (SI Appendix,
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Fig.S12g-i). More than 7,500 Phalaenopsis genes were found to be highly expressed in the floral

meristems  during  4  cool  temperature  periods  (showing  at  least  a  2-fold  difference  in  the

expression level in the BL condition relative to BH) (Dataset S13). The identified flowering-

related  genes  correspond  to  transcription  factors  and  genes  involved  in  signal  transduction,

development  and  metabolism (figure  3  and  Dataset  S14).  The  classification  of  these  genes

include the following categories:  photoperiod,  gibberellins (GAs),  ambient temperature,  light-

quality pathways,  autonomous pathways  and floral  pathway integrators  (Fornara et  al.  2010;

Mouradov et al. 2002). However, the genes involved in the photoperiod, ambient temperature,

light quality and autonomous pathways did not show significant changes in the floral meristems

during the cool temperature treatments (SI Appendix, Fig. S16 and Dataset S14). By contrast, the

expression patterns of genes involved in pathways that regulate flowering, comprising a total of

22  GA  pathway-related  genes,  were  related  to  biosynthesis,  signal  transduction  and

responsiveness. The GA pathway-related genes and the floral pathway integrator genes have been

revealed as representative key players in the link between flowering promotion pathways and the

floral transition regulation network in several plant species (Mutasa-Gottgens & Hedden 2009).

In contrast to the expression patterns observed in BL and BH, the GA biosynthetic pathway and

positively  acting  regulator  genes  showed  high  expression  levels  in  BL.  Furthermore,  the

expression levels of negatively acting regulator genes were suppressed by the cool temperature

treatment.  The  genes  included  in  the  flowering  promotion  pathways  and  floral  pathway

integrators were generally upregulated in BL (figure 3 and SI Appendix, Fig. S16 and Dataset

S11). These findings suggest that the GA pathway may play a crucial role in the regulation of

flowering time in Phalaenopsis orchid during cool temperature.

Polymorphisms for  Phalaenopsis orchids.  The  Phalaenopsis genome assembly also provides

the  basis  for  the  development  of  molecular  marker-assisted  breeding.  Analysis  of  the

Phalaenopsis genome revealed a total of 532,285 simple sequence repeats (SSRs) (SI Appendix,

Fig.  S17  and  Table  S9  and  Dataset  S15).  To enable  the  identification  of  single  nucleotide

polymorphisms  (SNPs),  we  re-sequenced  the  genome  of  a  summer  flowering  species,  P.

pulcherrima ‘B8802’, with about tenfold coverage. Comparison of the genome data from the two

Phalaenopsis accessions (KHM190 and B8802) allowed the discovery of 691,532 SNPs, which

should be valuable for future development of SNP markers for  Phalaenopsis marker-assisted

selection. (SI Appendix, Fig. S18 and Table S10 and Dataset S16). 

CONCLUSION

In this study, we sequenced, de novo assembled, and extensively annotated the genome of one of

the most important Phalaenopsis hybrid. We also annotated the genome with a wealth of RNA-

seq and sRNA-seq from different tissues, and many genes and miRNAs related to floral organ

development, flowering time and protocorm (embryo) development were identified. Importantly,
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this RNA-Seq and sRNA-seq data allowed us to further improve the genome annotation quality.

In addition, mining of SSR and SNP molecular markers from the genome and transcriptomes is

currently being adopted in advanced breeding programs and comparative genetic studies, which

should  contribute  to  efficient  Phalaenopsis cultivar  development.  Despite  the  P. equestris

genome has been reported recently  (Cai et  al.  2015), focus on floral organ development and

flowering time regulation has not been dealt with. In our study, we obtained transcriptomes from

shortened stems, which initiate spikes in response to low ambient temperature, and floral organs

and generated valuable data of potentially regulate flowering time key genes and floral organ

development.  The  genome  and  transcriptome  informations  of  our  work  should  provide  a

constructive reference resource to upgrade the efficiency of cultivation and genetic improvement

of Phalaenopsis orchids.
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Figure Legends

Figure 1.  Venn  diagram showing unique and shared gene families  between and among

Phalaenopsis, Oryza, Arabidopsis and Vitis.

Figure 2. Possible evolutionary relationship of PhAGL6b in the regulation of lip formation

in Phalaenopsis orchid.

(a)  Wild-type  flower.  (b)  A  big  lip  mutant  of  Phalaenopsis World  Class  ‘Big  Foot’.  (c)

Representative RT-PCR result showing the mRNA splicing pattern of PhAGL6b in wild-type (W)

and big lip mutant (M). (d) Alignment of the amino acid sequences of alternatively spliced forms

of PhAGL6b.  (e) Model  of PhAGL6b spatial  expression  for  controlling Phalaenopsis floral

symmetry. PhAGL6b ectopic expression in the distal domain (petal; pink), petal converts into a

lip-like structure that  leads to radial symmetry. Ectopic expression in proximal domain, (sepal;

blue) sepal converts into a lip-like structure that  leads to bilateral symmetry15. The alternative

processing  of  PhAGL6b transcripts  produced in  proximal  domain  (labellum;  pink),  labellum

converts into a petal-like structure that leads to radial symmetry. PhAGL6b expression patterns in

Phalaenopsis floral organs are either an expansion or a reduction across labellum. This implies

that PhAGL6b be a key regulator to the bilateral or radially symmetrical evolvements. Pink color:

2nd whorl of the flower; blue color: 1st whorl of the flower; fan-shaped symbol: petal or petal-

like structure; triangle symbol: labellum or lip-like structure; Curved symbol: sepal.

Figure 3. Predicted pathway in the regulation of spike induction in 

Phalaenopsis.

Red color indicates that the involved genes are more highly expressed in the GA biosynthesis

pathway; whereas pink color of gene names indicates their  differential expression in the GA

response  pathway.  Blue  colors  of  gene  names  represent the  activation  of  flower

architecture genes. Red arrows show the steps of the GA signaling stage; Pink arrows direct the

steps of inflorescence evocation stage;  Blue arrows reveal the steps of flower stalk initiation

stage.  Black  arrows  indicate  the  genes  downregulated  2X

over. GA20ox, GA3ox, GAMYB, FT, SOC1, LFY and AP1 are upregulated 2X over. 
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Table 1 Statistics of the Phalaenopsis draft genome

Estimate of genome size 3.45 Gb

Chromosome number (2n)     38

Total size of assembled contigs 3.1 Gb

Number of contigs (≥1kp)       630,316

Largest contig 50,944

N50 length (contig)  1,489

Number of scaffolds (≥1kp)    149,151

Total size of assembled scaffolds   3,104,268,398

N50 length (scaffolds)    100,943

Longest scaffold   1,402,447

GC content    30.7

Number of gene models  41,153

Mean coding sequence length 1,014 bp

Mean exon length/ number 264 bp / 3.83

Mean intron length/ number     3,099 bp / 2.83

Exon GC (%) 41.9

Intron GC (%) 16.1

Number of predicted miRNA genes     650

Total size of transposable elements 1,598,926,178
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Figure 1(on next page)

Figure 1

Figure 1. Venn diagram showing unique and shared gene families between and

among Phalaenopsis, Oryza, Arabidopsis and Vitis.
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Figure 2

Figure 2. Possible evolutionary relationship of PhAGL6b in the regulation of lip

formation in Phalaenopsis orchid. (a) Wild-type flower. (b) A big lip mutant of

Phalaenopsis World Class ‘Big Foot’. (c) Representative RT-PCR result showing the mRNA

splicing pattern of PhAGL6b in wild-type (W) and big lip mutant (M). (d) Alignment of the

amino acid sequences of alternatively spliced forms of PhAGL6b. (e)Model ofPhAGL6b spatial

expression for controlling Phalaenopsis floral symmetry. PhAGL6b ectopic expression in the

distal domain (petal; pink), petal converts into a lip-like structure that leads to radial

symmetry. Ectopic expression in proximal domain, (sepal; blue) sepal converts into a lip-like

structure that leads to bilateral symmetry15. The alternative processing of PhAGL6b

transcripts produced in proximal domain (labellum; pink), labellum converts into a petal-like

structure that leads to radial symmetry. PhAGL6b expression patterns in Phalaenopsis floral

organs are either an expansion or a reduction across labellum. This implies that PhAGL6b be

a key regulator to the bilateral or radially symmetrical evolvements. Pink color: 2nd whorl of

the flower; blue color: 1st whorl of the flower; fan-shaped symbol: petal or petal-like

structure; triangle symbol: labellum or lip-like structure; Curved symbol: sepal.
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Figure 3

Figure 3. Predicted pathway in the regulation of spikeinduction in  Phalaenopsis.

Red color indicates that the involved genes are more highly expressed in the GA biosynthesis

pathway; whereas pink color of gene names indicates their differential expression in the GA

response pathway. Blue colors of gene names represent the activation of flower

architecturegenes. Red arrows show the steps ofthe GA signaling stage; Pink arrows direct

the steps of inflorescence evocation stage; Blue arrowsrevealthe steps offlower stalk

initiation stage. Black arrows indicate the genes downregulated 2X

over.GA20ox,GA3ox,GAMYB,FT,SOC1, LFYandAP1are upregulated 2X over.



 


