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Abstract

A model for the densification of spherical powders is developed for the early stages of cold
and hot compaction under general loading. General viscoplastic properties are adopted which
reduce to strain hardening plasticity at ambient temperature and to power law creep at elevated
temperature. A large strain analysis is carried out to determine the macroscopic compaction
behaviour, based on the affine motion of particles with viscoplastic dissipation occurring at the
contacts between particles. Random packing is assumed and the model includes the increase
in the number of contacts per particle with densification. A general prescription is given for
computing the macroscopic stress as a function of strain rate and accumulated strain. Detailed
results are presented for yield surfaces and creep dissipation surfaces after isostatic and closed
die compaction. A scalar constraint factor is derived for a random mixture of two populations
of particles with different sizes and strengths. The predictions include the limiting case of
deformable spheres reinforced with rigid spheres of different size. © 1999 Elsevier Science Ltd.
All rights reserved.

Keywords: Indentation and hardness; Powder compaction; Anisotropic material; Constitutive behaviour;
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1. Introduction

The compaction of powders to form both bulk materials and net-shaped parts has
become a successful and well-established process for metals, alloys, polymers and
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ceramics. In the powder metallurgy (PM) industry a popular process route is cold
compaction by rate-independent plasticity, followed by pressureless sintering by
diffusional flow. In hot pressing, compaction is by power law creep and/or diffusional
flow. Although significant empirical progress has been made to optimise compaction
procedures with respect to pressure, temperature and time, a concise and general
micromechanical model, free from phenomenological assumptions, has been lacking.
Early constitutive descriptions have been empirical in nature, with no underlying
modelling (see for example, Kuhn and Downey, 1971; Shima and Oyane, 1976).
Herein, a micromechanical model is developed for powder compaction by both
plasticity and power-law creep, with the relative density in the practical range of 0.6—
0.8. The essential physics are the relationship between the macroscopic strain and the
local kinematics of particle contact, and the relationship between local contact loads
and the resulting macroscopic stress. The model is appropriate for the so-called Stage
I regime, with relative density of the compact approximately in the range 0.6-0.8.

Substantial progress has already been made in the modelling of the plastic and creep
responses of powder aggregates. Wilkinson and Ashby (1975) laid the foundations for
isostatic compaction by power law creep, and Fischmeister and co-workers (Fis-
chmeister et al., 1978 ; Fischmeister and Arzt, 1983) addressed the parallel problem
of isostatic compaction by plastic flow. Several elements from these studies were
combined by Helle et al. (1985). For the early state (designated Stage I), when
particulate topology with interconnected porosity still prevails, they used the geo-
metric model of Arzt (1982) to predict the area and number of contacts during
deformation. Elementary models for the generation of interparticle loads were used
to predict the plastic and the creep response of the aggregate. These ideas were
extended to non-isostatic deformation rates for rate-independent plasticity (Fleck et
al., 1992a), for power law creep (Kuhn and McMeeking, 1992 ; Fleck et al., 1992b)
and for sintering (Jagota et al., 1988 ; Jagota et al., 1990). The effect of previous
anisotropic straining of the powders, which determines the contact area distribution
in particles, was introduced by Jagota et al. (1988) and by Fleck (1995). Fleck (1995)
also explored the effects upon the yield surface of the shear strength and cohesive
strength of the contacts.

To date, most theoretical studies have focused on the compaction of monolithic
equi-sized spherical powder ; the next step is to address the more practical problem
of the compaction of a powder composite, comprising two populations of particles
of unequal size and strength. Recently, new theoretical tools have become available
for analysing the compaction of such a composite powder, and it is timely to synthesise
a powder compaction model combining these fresh results with some robust elements
of the previous work.

One of the new tools is a generic treatment of the mutual indentation of two
viscoplastic spheres of dissimilar diameter and strength (Storakers et al., 1997 ; Sto-
rakers, 1997). This advance builds on the analysis of spherical (Brinell) indentation
of a power law deformation theory solid by Hill et al. (1989). The relation between
indentation depth and contact area was found to be geometrically invariant and from
a detailed finite element study, the compliance properties for two equally sized spheres
was calculated. Explicit results in this spirit have subsequently been computed for
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creep (Bower et al., 1993 ; Stordkers and Larsson, 1994), for plastic flow theory (Biwa
and Storakers, 1995; Ogbonna et al., 1995) and for viscoplasticity (Ogbonna et al.,
1995 ; Stordkers et al., 1997). From this standpoint, isostatic cold and hot compaction
was recently analysed by Larsson et al. (1996) ; the model compared favourably with
earlier experimental observations for Stage I compaction of copper, tin, bitumen and
lead. One of the present objectives is to generalise this strategy to account for non-
isostatic cases.

An additional tool for the construction of a compaction model for powder com-
posites is a knowledge of the neighbour statistics for a mixture of spherical particles
made from two different materials and two different sizes, as provided by Turner and
Ashby (19954, b).

Robust elements from previous work include the cumulative radial distribution
function for particle neighbour positions in a monodispersed powder and the associ-
ated change in the number of contacts during straining (Arzt, 1982), the concept of
affine deformations for particle aggregates (Fleck et al., 1992a) and the generation of
anisotropic distributions of contact area and contact load due to arbitrary defor-
mations (Fleck, 1995). Fleck (1995) found that the plastic dissipation due to tangential
loads is a small fraction of the total for general straining of a rigid, ideally plastic
compact. We shall take advantage of this to make the important simplifying assump-
tion of frictionless indentation between particles.

It is the present purpose to derive general macroscopic constitutive equations for
the compaction of homogeneous and composite powders. To begin, the kinematics
associated with affine motion are outlined, viscoplastic indentation theory is reviewed
and the macroscopic stress is related to the local contact forces between individual
particles. Compaction relations are then obtained for a random homogeneous aggre-
gate of identical spheres. The full macroscopic theory, with all parameters having a
physical interpretation, are specified and the resulting densification equations are
given for practical cases. For both isostatic and closed die compaction, the evolution
of the yield surface is calculated for rate independent plasticity, and creep dissipation
surfaces are determined for power law creep. The results are generalised for a com-
posite powder comprising a random mixture of two populations of spheres. A con-
straint factor to account for reinforcement by particles of dissimilar strength and size
is proposed. Finally, the domain of validity of the model is discussed.

2. Foundations of the compaction model
2.1. Kinematics

Consider a powder aggregate consisting of spherical particles of two different radii
R, and R,, in a state of dense random packing as shown in Fig. 1. Following a
standard procedure for granular materials, e.g. Christoffersen et al. (1981) and Walton
(1987), affine deformations are assumed such that each particle translates at the
velocity prescribed for its centre. Where contact is made between neighbours, isolated
indentations can occur. The aggregate is assumed to experience a macroscopically
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undeformed deformed

reference sphere

Fig. 1. A dense random packing of spheres of two different radii, and the relative motion of two adjacent
particles.

homogeneous deformation which therefore prescribes the motion of the particles’
centres. Placing the stationary origin at the centre of a reference particle as shown in
Fig. 1, we see that a given particle with its centre initially at position X (a distance 7
from the reference particle) is carried to a new location with its centre at position

x=F-X (M

where F is the macroscopic deformation gradient. It is convenient to decompose x
into its magnitude r, designating the current distance from the reference particle centre
to the centre of the particle of interest, and the unit vector n, defining the orientation
with respect to the reference particle, as shown in Fig. 1. Then,

X =17n 2)

Based on the macroscopic deformation gradient, the stretch ratio 4 can be computed
as

A(n) = -= m-(F)T-F'-n] 72 )

r
If the two particles are close enough, they will indent each other as shown in Fig. 2.
The overlap of particle centres /, a function of n, serves as a useful indentation

parameter and is given by
/1([1) = Rl +R2 —V(ll) = Rl +R2 _i(n)f (4)

where R, and R, are the radii of the particles indenting each other. Note that / is
positive for those pairs of particles which flatten each other in compression. The rate
of indentation is given by
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(a) Undeformed State

r=(R1+R2"h)

(b) Currently Indented at Stretch Ratio A = t/7

Fig. 2. Two nearby particles which eventually touch and indent each other.

h= —iF (5)
and / is related to the macroscopic deformation rate D by

A= /niDycny, (6)
2.2. Viscoplastic indentation

Consider two spherical particles experiencing monotonic mutual indentation as
shown in Fig. 3. The two spheres are labelled 1 and 2, with radii R, and R,, respectively.
In the current state the contact area is of radius ¢ and the particle centres have
overlapped by /. Particle 1 is made from viscoplastic material with a uniaxial stress
response given by
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l

Ri+Ro-h

Fig. 3. Two particles identing each other.

g =g,V (7

where o, is a strength parameter, ¢ is the axial strain, ¢ is its rate, M is a hardening
exponent and N is a creep index. An equivalent law governs material 2, with o,
replaced by g,. Both particles are taken to have the same hardening exponents and
the same creep indices. Based on indentation theory and von Mises isotropic flow
theory, the solution for the indentation load F is (Storakers et al., 1997 ; Storakers,
1997)

F= ”h(2+M7N)/’2hN (8)
where

1M 3N MmN 24 MAN T
n=2'"2"23 (14+2N)zc goRy " 272 9)

Ry'=R7'"+R;! (10)
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oy =0;"+0,1 (11)
and

q=M+N)"! (12)

The parameter ¢ in eqn (9) is an indentation invariant, and depends only upon the
material constants M and N. From a detailed finite element study it was found that
the invariant ¢ is given, to within a very good approximation, by

¢? = 1.43exp[—0.97(M + N)] (13)
The contact radius «a is related to the indentation depth / by
a® = 2c¢*hR, (14)

For later use it is helpful to introduce a creep potential $.(h) for a single contact
by integrating the indentation load F with respect to / at fixed 4, so that

h
¢.(h) = j F(ydl' < F = 0¢.Joh (15)
0
giving, via eqn (8),
B 1 2EMoN
¢c—7N+1nh > h (16)

2.3. Macroscopic stress

In the early stages of compaction, when particles can still be represented as spheres
with only small circular contacts around their surface (i.e. Stage I), a macroscopic
viscoplastic potential ®(D) can be computed as

O =V T (17)

where Vis a representative volume of the powder aggregate containing many particles,
the summation is carried out over all particle—particle junctions in the aggregate and
{¢.}, is the value of the potential from eqn (16) for junction J. This formulation
neglects the dissipation due to shearing motions at each junction and is exact for
frictionless spheres. Our experience (Kuhn and McMeeking, 1992 ; Fleck 1995) sug-
gests that for values of g greater than about two, the dissipation due to shearing
motions can be neglected in the macroscopic average even for well-bonded aggregates.

The macroscopic average stress X for the aggregate subjected to a deformation rate
D is then given by

oD » oh
Zik h aDik - V E{FODM’}] (18)

where F(h) is given by eqn (8). In the case of a cohesionless powder F vanishes when
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the particles lose contact at a junction. In principle, eqn (18) gives the exact result if
h were known at each junction. Instead, we assume affine deformation, in which 7 is
given by eqns (5) and (6). The macroscopic stress is then given by

1
Zik = — ?z {Fﬂ.fn,-nk}J (19)
J

This result is equivalent to an average for the aggregate value given by Christoffersen
et al. (1981).

In the following section, Stage I compaction of a homogeneous viscoplastic aggre-
gate is addressed. Then, the analysis is broadened to the case of composite powders.

3. Homogeneous aggregate

Consider first an aggregate of n uniform spheres of radius R, all made from the
same material 1 with strength parameter o,. The aggregate volume V is related to the
volume of each sphere V| and to the relative density D by

_ Vin_4nRin
- D 3D

(20)

The initial relative density is taken to be that of dense random packing, D, = 0.64.
From a distribution function obtained by Mason (1968), based on data by Scott
(1962), Arzt (1982) proposed that this initial state could be approximated by a
cumulative radial distribution function for particle centres adjacent to a reference
sphere :

G(F) =ZO+C<2;1—1>, i;l @1
where G is the number of particle centres within a radius 7 from the centre of the
reference particle and Z, and C are constants. (This form is sufficient for the values
of #/R, which we encounter in our model.) The best estimates for the constants are
C =155 and Z, = 7.3 (Arzt, 1982). The latter value implies that on average each
sphere initially has 7.3 contacts with neighbours.

For affine deformations, eqn (4) provides the indentation / for two particles orig-
inally having their centres a distance 7 apart. Furthermore, with §; = 4nR7, eqn (21)
shows that there are initially dG/S, particles per unit reference sphere surface area
having their centres between 7 and (#+ d7) from the reference particle. Summing over
all such contacts and attributing half of the contribution to each particle making the
contact, we find that the contribution to eqn (19) from a typical reference particle is

R, Z, 1 2Ry /2 dG
2= — Fiinn]— —=— Ann, P FF—— 22
ik Vs, Ll dsS, [FiAnn] 2VS, Ll dsi[ nrnA]LR di| F# d7 (22)

where Fj is the load on an original contact, of orientation n, which has existed from

1
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the beginning of consolidation and therefore for which 7 = 2R,. For these original
contacts, F; follows from eqn (8) as

M—N

Fi=nhy 5 23)
expressed in terms of the overlap A,

hy = 2R [1—A(n)] 24)
and the rate of overlap

hy = —2R, A(n) (25

by eqns (4) and (5), respectively.

The integrals with respect to S, in eqn (22) are taken over the surface of the
reference particle with radius R,. The first term on the right hand side of eqn (22) is
the contribution from these original contacts whereas the second term arises from
contacts made during compaction. Such new contacts are associated with particles
originally having their centres beyond a distance 2R, from the reference particle centre
but not beyond a distance 2R, /A from it. Since there are n particles within the aggregate
volume V, the total stress X is simply # times the result given in eqn (22).

It follows from eqns (4), (5), (8) and (23) that the load F on a new contact can be
expressed in terms of Fj as

24+M—N
1—AF2R,\\ 2 P \Y
= ) D (6)
1
Consequently, by (20)—(22) and (26),

3DZ
Ti=— 0 ds, {Finn}
2
s? s,

1
C PR ((1=JRRN T (Y
e — !
S M e I 0 I T

The integral with respect to 7 is difficult to evaluate analytically in general. However,
the integral may be represented accurately by its asymptotic expansion for 1 —4 < 1,
giving

3Dz, 2C(1—4) 1 (N+D(1 -2
T = — i L]dS]{l—F 2, A M-N_ 6+M—N Fiinn,

1

(28)

with F; computed from eqn (23). This integration is exact when N = 0 (i.e. the rate
independent limit).

In addition to calculation of macroscopic stress, the number of contacts Z and the
total area of contact 4, for a representative particle follow directly from the assump-



794 B. Stordkers et al.|Journal of the Mechanics and Physics of Solids 47 (1999) 785-815

tions of affine deformation, eqns (1)—(4) and indentation theory, eqn (14). Recall that
dG/S, particles per unit area of reference sphere initially have their centres between 7
and (7+d7) from the reference particle. The indentation overlap % for these neigh-
bouring particles is given by eqn (4) and the associated radius of contact a is specified
by eqn (14), with R, = R,/2. The total area of contact A4, for a representative particle
follows as

1 R dG
A = J ds, J di— na? (29)
S s, 2R dr

1

Upon substituting for G from eqn (21), and performing the integration in eqn (29)
with respect to 7, we find that A4, is given by

2 1
A, =CJ ds, {220(1—;L)+c<z+"—2>} (30)
4 s, A
The number of contacts per particle Z follows directly as
1 Wz dG C 1
Z=—1 dS di—=2Zy+| dS (5 -1 31
S, L] : LR] Y L] : </1 > G
by eqn (21).

In the limiting case of infinitesimal straining, the stretch ratio A simplifies to
/& 14+ E;nn;, where E is the macroscopic infinitesimal strain tensor. This limit is
valid for small amounts of consolidation and is likely to be broadly applicable since
the relative density of interest will generally range from D = D, = 0.64 to D = 0.80,
say. At about 80% relative density, the three-dimensional, network of porosity begins
to close off into isolated voids and there is a transition to Stage II in which the closure
of cavities rather than the flattening of isolated junctions controls the deformation
(Helle et al., 1985). For the case of infinitesimal straining, /; and /; are evaluated
from linear strain kinematics, and follow from eqns (24) and (25) as

h = —2R\n,E, (32)

ij /
and

hy= —2R,n,E (33)

UJ

respectively. Additionally, if the number of contacts is kept constant then the term in
curly brackets in eqn (28) reduces to unity, and eqn (28) simplifies to

3nD,Z N
Tp= — S eR RY 2 st (—mEm) > (=nEpn)nm] — (34)
Sl

Of particular interest is the result for N = M = 0, which is the rate independent
non-hardening result. This gives
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6nD,Z,R
Zi/':(n 0401

52 ) J ds, oM (35)
1 S

which simplifies to

nD,Z 1
2[/- = < Snolelo> |:Ef/-+ 25i/Ekk:| (36)
upon use of the identity (see for example, Ogden, 1984),
ds 1
J 5 D] = 750,00+ 048+ 0,0,) (37)
5 21

The suggested values for the parameters in eqn (36) (i.e. n = 3nc’o R, ¢* = 1.43,
Z,=1.3) lead to

The form of eqn (38) is equivalent to that of an isotropic linear elastic law with a
Young’s modulus equal to 7.86,D, and a Poisson ratio of 0.25. The use of a fixed
value of D, is consistent with asymptotic expansions which lead to the linearised
form of eqn (38). The conclusion, therefore, is that rigid, ideally plastic powders
experiencing consolidations which generate monotonic compressive loads on all junc-
tions respond macroscopically as if they are linear elastic and isotropic. A predicted
value for the Poisson’s ratio of 0.25 is a direct consequence of the assumption of
frictionless contact : only central forces act between particles, and shear and bending
loads are neglected. This is reminiscent of the rari-constant theory of elasticity, as
summarised by Love (1927). We further note in passing that Shima and Oyane (1976)
measured a ‘plastic Poisson ratio” of 0.25-0.3 in the uniaxial compression of copper
powder.

For infinitesimal straining but arbitrary N and M, expressions for the total area of
contact 4, and number of contacts per particle Z simplify from eqns (30) and (31) to

o2
A= - gzoEk/\»Sl (39)
and

Z=2, (40)
3.1. Isostatic compaction

In isostatic compaction of homogeneous spherical powder, both F; and 1 are
independent of n. The stretch ratio is given by

) =(Dy/D)'? (41)

where it is assumed that pressure-driven compaction commences at random dense
packing. Similarly, the rate of change of 4 is
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. 1 /Dy\'? D
A=_3<DO> D “2)

Consequently, the indentation /; for junctions initially in contact is

h = 2R [1—(D,/D)""] 43)
by eqns (24) and (41), and likewise

. 2R1 DO 1/3 D

hy = 3 <D> D (44)

by (25) and (42). It follows from eqn (23) that

2+M+N 2+ M—N D, 1/3 D N
Fi=nQR) 2 [1_(D0/D)U3]2[<D> 30} 45)

On noting the identity

1
J n;n; dS] = 7515,‘/( (46)
S 3

the macroscopic stress can be written in the form
Ty = —Poy 47)

where, from eqns (28) and (45), the pressure P required to compress the aggregate is

P KnDZO(2R1)2+A;I+N |:1 B <D0>13:|

2+ M

2_N D() N+1 D N 48
D)’ \3p (43)
N+2

_ 26D (Do) 1 (N+1D[1—(Do/D)'"]
K= +ZO<DO> [_<D> }{4+M—N_ 6+M—N }

The densification rate D can be obtained from eqn (48) by rearrangement, which
shows that for any pressure P, D is infinite at random dense packing (D = D,). For
the rate independent case, N = 0, graphs of the pressure P vs the density D for selected
values of M are shown in Fig. 4. The plots are terminated at the transition to Stage
IT at D = 0.80. It should be noted that the results in Fig. 4 are relatively sensitive to
the strain hardening exponent M. This sensitivity of macroscopic pressure to M is
associated with the strong dependence of 7 on M, and can be explained as follows.
Since the level of effective strain in the vicinity of each contact is much less than unity,
the flow stress distribution is much less than ¢, and increases steeply with depth of
indentation.

and

(49)



B. Stordkers et al.|Journal of the Mechanics and Physics of Solids 47 (1999) 785-815 797

1 T T T
full theory
— ~infinitesimal theory, no new contacts /
0.8 4
/
, 0.6 M=0 / 5
4
o /
0.4 <
/ # M=0.1
0.2 /
_—" M=03
0
0.6 0.65 0.7 0.75 0.8

relative density, D

Fig. 4. Macroscopic pressure vs density for rate independent plasticity during isostatic compaction. N = 0.

For the rate dependent but non-hardening case (M = 0) the pressure P, normalised
by (D/D)", is plotted against relative density in Fig. 5. The plots are extended up to
D = 0.80 as before. The rigid, ideally plastic limit N = 0 is included in the figure.

The parameter « in eqn (49) equals unity when the effects of new contacts during

1 ) !
full theory
— -infinitesimal theory, no new contacts /
0.8 /
N=0 /
0.6 ; 7
E(E)N =
o,\D 4 ~
04 = N=0.3
7~ N=0.1
0.2 //
0 V. a

0.6 0.65 0.7 0.75 0.8
relative density, D

Fig. 5. Macroscopic pressure at a given densification rate vs relative density for a power law creeping
material during isostatic pressing. M = 0.
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compaction are neglected. Inspection of eqn (49) shows that up to D = 0.80, x differs
little from unity and the effects of new contacts can be neglected. For example, in the
rigid, perfectly plastic limit N = M =0, with D, = 0.64, D = 0.80, C = 15.5 and
Z,=17.3, the parameter k = 1.08, and the error in P by neglecting new contacts is
only 8%.

It is instructive to compare the predictions of the kinematically non-linear theory
presented above with the version neglecting new contacts and assuming infinitesimal
strain. Upon specialising eqn (34) to the isostatic limit, the pressure P is given by

24+M—-N

1Dy Z, min—2[ (D—D,\ 2 D\
reen (5 ()]

Note that the effect of new contacts is not present in the infinitesimal strain version,
but this leads to negligible error as discussed above. The predictions of the infinitesimal
strain (50) are in good agreement with those of the full theory, as seen by the direct
comparisons shown in Figs 4 and 5. A detailed inspection of relations (48) and (50)
reveals that the small difference between the two predictions arises mainly from the
strengthening contribution of new contacts and not from the effect of non-linear
kinematics vs linear kinematics.

For completeness, the total area of contact 4, and number of contacts Z for a
representative particle in the isostatic case are obtained from eqns (30) and (31) for
the full non-linear theory, giving

4 =S bz T (P e (P (2N o fls 51
=5pap-(3) Jrel(5) +(3) s 2
z—z+cl(2Y" 52
=2Zy+ |:<Do> —:| (52)

In the limit of infinitesimal straining these expressions simplify to the previous results
eqns (39) and (40), respectively.

and

3.2. Closed die compaction

In addition to isostatic compaction, closed die compaction is of major industrial
relevance, particularly in the powder metallurgy industry. A typical processing route
is to cold-compact metallic powder along the major axis of a cylindrical closed die,
later followed by sintering at elevated temperature and at atmospheric pressure.
Alternatively, the compaction and sintering processes are combined in a single hot
compaction operation. The case of closed die compaction has been studied previously
by Fleck et al. (1997), and only the main results are summarised below.

In closed die compaction, with the compression direction parallel to the x;-axis,
the components of the deformation gradient are given by
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Fy =0y ©3)
except that
Fi; =A (54)

where A is the compaction ratio. With ¢ being the angle between a given orientation
and the x;-axis as shown in Fig. 1, eqn (3) provides

272 =14+(A2—1)cos’p (55)

This result can be used in eqns (24) and (25) to give A(¢), and /i (¢p). Fi(¢) then
follows from eqn (23). In addition,

D/D,y = 1/A (56)

where, as before, it is assumed that compaction commences at random dense packing.

The results above, along with eqn (28), have been used to compute S = X;; and
T=2X, =%, for closed die compaction, for two values of the strain hardening
exponent M in the rate independent limit (N = 0). The results are shown in Fig. 6
plotted against the relative density. As for the case of isostatic compaction, the results
are sensitive to the strain hardening exponent M, but examination of eqn (28) reveals
that most of the sensitivity is accounted for by #. The level of macroscopic stress at
each density depends on the area of junctions produced by the deformation and on
the average indentation pressure at each contact. As the contact area between particles
is non-uniform with respect to relative orientation of particles, the axial stress S differs
significantly from the transverse stress 7. The larger indentations and junctions near

2 [ 1
full theory
T "o new contants" -S, M=0
15 \\*/
-S/0o, -S, M=0.1 /
and 1 / A
/4 7
_T/GO . / |
7 -T,M=0
0.5 / N~
d ’/:r
/ —
===~
-T, M=0.1
0
0.6 0.65 0.7 0.75 0.8

relative density, D

Fig. 6. Macroscopic stress vs relative density for rate independent plasticity during closed die compaction.
N =0.
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the poles of the reference sphere compared to near the equator lead to an axial stress
thatis larger than the transverse stress. For example, in the initial stages of compaction
of a rigid, perfectly plastic solid the magnitude of the axial stress is three times that
of the transverse stress, as follows from eqn (36) and as discussed earlier by Fleck et
al. (1997).
The results for S and T from infinitesimal strain theory, eqn (34), have been plotted
in Fig. 6 for comparison. In this case
nE;n; =(A—1)cos® ¢ (57a)

L)
and
nEn; = Acos® ¢ (57b)
The axial stress Z;; can be obtained in closed form by integration of eqn (34) over S|,

giving

24+M—N .
S=3.. = —1 3'7D°Z°/2R )M+N—2 D—D, 2 BN (58)
TSN TSI MAN o 2 D, D,

The transverse stress 7 is obtained by numerical integration of eqn (34). It can be
seen from Fig. 6 that these results for infinitesimal straining approximate the finite
deformation results fairly well. Further details on the comparison between the finite
strain and infinitesimal strain results are given by Fleck et al. (1997) in the limiting
case M = N = 0, for both closed die compaction and isostatic compaction.

The axial stress S, normalised by (D/D)", is plotted in Fig. 7 against relative density
for closed die compaction, upon taking M = 0. The response is displayed for selected

2 ) '
full theory
— ~infinitesimal theory, no new contacts
15 /
-s(D\WN N=0
=5(2)
o, \D
1
/ 74
Z N=0.3
05 /
0 /
0.6 0.65 0.7 0.75 0.8

relative density, D

Fig. 7. Macroscopic axial stress at a given densification rate vs relative density for a power law creeping
material during closed die compaction. M = 0.
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values of the creep exponent N, including the rigid, ideally plastic limit, N = 0. Plots
are given both for the finite strain result eqn (28) and for the infinitesimal strain case,
eqn (34). Again, it can be seen that the simpler infinitesimal theory approximation of
eqn (34) predicts the more exact results from eqn (28) quite well.

3.3. Yield surfaces

For the rate independent case, N = 0, all combinations of macroscopic stress which
cause further deformation for a given state of the powder aggregate can be computed
from eqn (28) to predict a yield surface. Plastic flow is normal to the yield surface, as
discussed by Fleck et al. (1992), following the general proof outlined by Gurson
(1977).

The current state of the powder is characterised by /;(n) as given by eqn (24), with
/(n) determined by the prior deformation F via eqn (3). At further yield, the junction
load Fjin eqn (28) is computed for any instantaneous macroscopic strain rate applied
to the aggregate. The junction load F; for use in the yield stress calculation is given
by eqn (23) (with N = 0) if the junction continues to experience compression; i.e.
hy > 0 from eqn (25). For a given orientation, if /;; < 0 due to the imposed deformation
rate, so that a junction separates or there is no relative motion across it, a different
choice is made for F,. If /; = 0, we enforce F; = 0 since no deformation rate is imposed
at the contact of interest. If the powder is cohesionless, F; vanishes when /; < 0
because separation of the powder particles is not resisted. If there is full cohesion
between the particles and /; < 0, F; is given by the negative of eqn (23) (with N = 0),
since the junction sustains a tensile load.

In summary, the procedure to compute a yield surface is first to generate a current
state by a monotonic deformation and then to impose a full range of direction of
subsequent deformation rates on that current state. The stresses for each direction of
deformation rate are computed from eqn (28) using the procedure outlined above for
evaluating F| at each orientation. The resulting locus of stresses from eqn (28) defines
the current yield surface in macroscopic stress space X. A similar procedure can be
used with eqn (34) to determine the yield surface based on infinitesimal strain theory.

We shall restrict our presentation of results to the axisymmetric case. Yield surfaces
after prior isostatic consolidation from D, = 0.64 to D = 0.70 are shown in Fig. 8,
and after prior closed die compaction in Fig. 9. Results with and without cohesion
are depicted for various hardening exponents M and are computed from eqn (28).
The yield surfaces are plotted as contours of effective stress £ = S— T vs mean stress
X, = %S +§ T for axisymmetric states of stress. Associated flow prevails for the macro-
scopic aggregate, so that the macroscopic deformation rate D is normal to the yield
surface. In Fig. 8 and in subsequent figures, the components of the deformation rate
are the dilatancy H = 2E,, + E5; (parallel to the abscissa) and the deviatoric strain
rate E = 2(Ey; —E,))/3 (parallel to the ordinate). The yield surfaces for the perfectly
plastic case M = 0 are the same shape as predicted in our previous work on isostatic
compaction (Fleck et al., 1992a; Fleck, 1995). The vertices at the loading point on
the yield surfaces on the hydrostatic stress axis have been discussed already in these
papers.
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—full cohesion
----- no cohesion
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Fig. 8. Yield surfaces after isostatic compaction to a relative density of 70% for rate independent plasticity
of a cohesive and a cohesionless aggregate. N = 0.

—full cohesion
----- no cohesion

0.25 0.5

Fig. 9. Yield surfaces after closed die compaction to a relative density of 70% for rate independent plasticity
of a cohesive and a cohesionless aggregate. N = 0.
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Yield surfaces after prior closed die compaction from D, = 0.64 (i.e. A=1) to
D =0.70 (i.e. A = 0.914) are shown in Fig. 9. They are computed from eqn (28) and
results with and without cohesion are given for various strain hardening exponents.
The yield surface for the perfectly plastic case, M = 0, is essentially the same as that
given previously for prior closed die compaction by Fleck (1995) and represents the
shape of all the yield surfaces quite well. Fleck (1995) compared his predictions with
experimental data on closed die compaction reported elsewhere in the literature and
found good agreement. More recently, Akisanya et al. (1997) have performed triaxial
tests on copper powders and find that closed die compaction gives strong anisotropy
in comparison with isotropic compaction, with the formation of a corner at the
loading point. The model of Fleck (1995) gives similar predictions to those reported
here, and was found to be in excellent agreement with the measurements of Akisanya
et al. (1997).

The vertices on the yield surfaces in Fig. 9 lie at the loading point associated with
closed die compaction and at its image at the opposite end of the yield surface. The
elongation of the yield surface in Fig. 9 compared to those in Fig. 8 is caused by the
larger indentations and larger junction areas near the poles of the reference particle
which make the aggregate strong in response to deformation rates close to uniaxial
strain. On the other hand, deformation rates orthogonal to the uniaxial strain direction
are resisted mainly by junctions which are mildly indented and therefore have rela-
tively small areas. As a result, the yield surface is relatively narrow in the second
and fourth quadrants giving rise to a weak response to deformation rates close to
axisymmetric plane strain. It may be further concluded from Figs 8 and 9 that the
shapes of the respective yield surfaces do not vary much with the hardening exponent ;
the major factor dictating yield surface shape is the geometry of local contacts.

Yield surfaces at D = 0.70 for the perfectly plastic case for both prior isostatic
consolidation and for prior closed die compaction are shown in Fig. 10 for a powder
with full cohesion. Results are given for the complete model computed from eqn (28),
for the model when new contacts are ignored [i.e. eqn (28) with C = 0] and for
infinitesimal strain theory with no new contacts, eqn (34). It can be seen that at
D = 0.70 there is little difference among these predictions. This suggests that the
infinitesimal strain theory, which also neglects the formation of new contacts, is
adequate at this relative density. The discrepancies among the models increases with
relative density, but even at D = 0.80 the differences are modest, as was already noted
in the remarks associated with Fig. 4.

3.4. Creep dissipation surfaces

For the case of a viscoplastic aggregate (any M and N # 0), eqn (28) is used to
calculate the locus of values of macroscopic stress which give rise to the same dis-
sipation rate for a given state of the powder aggregate. This locus forms a surface of
constant dissipation. The procedure is similar to that used for computing the yield
surface : first, a current state is generated by contact growth under fixed macroscopic
stress to a desired level of relative density D and second, a range of subsequent virtual
deformation rates is imposed on the powder and the associated macroscopic stress
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Fig. 10. Yield surfaces after compaction to a relative density of 70% for the rigid, ideally plastic limit of a
cohesive aggregate showing results for various versions of the model. M = N = 0.

states are computed from eqn (28). The load F; on a junction is computed according
to eqn (23). For the case of full cohesion between particles, F; is compressive, tensile
or vanishes according to whether a junction experiences continued indentation, sep-
aration or is not deforming under the imposed virtual deformation rate D. The
absolute value of /; is used in eqn (23) and the sign of F; is made to agree with the
sign of /. Tensile loads are excluded for cohesionless powder as before.

For each macroscopic virtual deformation rate D about the current state, the creep
dissipation per unit volume of aggregate W* is computed as

W = 5,0, (59)

The magnitude of the virtual deformation rate is then scaled until W* equals the same
prescribed value for all directions of virtual deformation rate imposed on the current
powder aggregate. The macroscopic stress corresponding to each direction of virtual
deformation rate is calculated and plotted as a surface of constant dissipation in stress
space. A similar procedure can be used with eqn (34) to determine the dissipation
surfaces based on infinitesimal strain theory.

It is convenient to introduce a stress potential W(X) which is the dual of the creep
potential ®(D), defined by
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W(E) = sup [£,D;— O(D)] (60)

The stress potential W(X) can be stated directly as

Tr=2

J ij 6‘1‘ F E
P(X) =J D, (E%) dZ} < Dif=7(9(2f_ )
=0 i

(61)
It is evident that the deformation rate D is normal to the potential surface ¥(X) in
stress space, and that ¥ is homogeneous and of degree (N+1)/N in X. Following the
argument of Rice (1970) it is straightforward to show that ¥ (X) is convex provided
the indentation rate at each contact between particles increases with increasing contact
load. Furthermore, in the rate independent limit (N — 0), the macroscopic yield
surface displays both convexity and normality.
The stress potential ¥(X) is related directly to the dissipation W* by

N

|
N+1

(62)

Thus, W* is homogeneous and of degree (N + 1) in X. In the spirit of Calladine and
Drucker (1962) it is convenient to introduce a ma@roscopic effective stress ¥ which is
homogeneous and of degree one in X such that W* depends only upon the scalar ¥,
viz

W@ﬂz%ffm>”. (63)

0

Creep dissipation surfaces in stress space are presented below in the form of contours
of £/6, = 1. In the limit of N — 0, the macroscopic yield surface for the rigid, perfectly
plastic solid is recovered, as discussed by Cocks (1994).

Representative results are now given for the case of prior isostatic consolidation
from D, = 0.64 to D = 0.70; the resulting creep dissipation potential surfaces are
shown in Fig. 11. Results with and without cohesion are depicted for the non-
hardening case M = 0 for various creep exponents N and are computed from eqn
(28). The shape of the creep dissipation surfaces for values of N close to zero are in
close agreement with those given by Kuhn and McMeeking (1992) for isostatic
compaction with full cohesion.

Creep dissipation surfaces after prior closed die compaction from D, = 0.64 to
D = 0.70 are computed from eqn (28) and are plotted in Fig. 12. The surfaces are
displayed for both cohesion and no cohesion, with M = 0 and with various creep
exponents N. The elongated shape arises from the anisotropy of indentations and
junction areas around particles caused by the prior uniaxial strain. There is a strong
resemblance with the corresponding yield contours in Fig. 9, and the shapes of the
dissipation surfaces do not vary much with the creep exponent N. In the limit N = 0,
the dissipation surface reduces to the yield surface for perfect plasticity with vertices,
as noted above.

Creep dissipation surfaces are compared for prior isostatic consolidation and for
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Fig. 11. Contours of creep dissipation after isostatic compaction to a relative density of 70% for the power
law creep of a cohesive and a cohesionless aggregate. M = 0.
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Fig. 12. Contours of creep dissipation after closed die compaction to a relative density of 70% for the
power law creep of a cohesive and a cohesionless aggregate. M = 0.
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full theory
— ~full theory, but no new contacts
----- infinitesimal theory, no new contacts

0.5

Fig. 13. Contours of creep dissipation after compaction to a relative density of 70% for the power law
creep of a cohesive aggregate showing results for various versions of the model. M =0, N = 0.3.

prior closed die compaction in Fig. 13 for a powder with full cohesion; we take
Dy =10.64, D=0.70, M =0 and N = 0.3. Dissipation surfaces are given for the
complete model from eqn (28), for the model when new contacts are ignored [i.e. eqn
(28) with C = 0] and for infinitesimal strain theory, eqn (34). Again, there is little
difference between the predictions of the full theory and the infinitesimal version. This
suggests that the infinitesimal strain theory, which also neglects the formation of new
contacts, is adequate for a small amount of compaction. The discrepancies among
the models increase with relative density, but even at D = 0.80, the differences can be
neglected for practical purposes, as was noted in the remarks associated with Figs 4
and 5.

4. Composite powders

So far we have derived constitutive relations for a monolithic powder. Now consider
a mixture of n spheres comprising two populations of particles : type 1 having strength
o, and radius R,, and type 2 having strength ¢, and radius R,. We seek the macroscopic
compaction response of the aggregate under multi-axial loading.

The strength ratio & is defined by
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k=o0,/0, (64)
and the size ratio by

p=Ry/R, (65)
Let f; be the number fraction of type 1 particles and £, that of type 2 so that

Sitfa=1 (66)

The indentations for each junction are controlled by the local contact force and the
hardnesses and sizes of the particles. We need to distinguish between the inter-
penetration £ at the various types of contact: we express the overlap between two
neighbouring type 1 particles by /,,, the overlap between two neighbouring type 2
particles by /,,, and the overlap between a type 1 particle and a type 2 particle by /,,
or, equivalently, by /,,;. We shall denote the various types of overlap using notation
h,, with the Greek subscripts « and ff ranging from 1-2. Here, a repeated Greek suffix
does not imply summation. In similar fashion, the contact force is labelled F,s, and
the centre—centre spacing of two contacting particles is designated by

Ry=R,+Ry (67)

We shall calculate the compaction response for the mixture of particles. In view of
the prior discussion, we assume infinitesimal strain kinematics so that 4 ~ 1 and we
neglect the formation of new contacts. The macroscopic stress for a two phase
composite follows from eqn (19) as

1
Zij = — 172 {FaﬁRaﬁnin/}J (68)

where the summation is taken over all contacts J, in a composite of volume V.

It remains to determine the contact force distribution F,;(n). In general, more or less
sophisticated trial functions can be used, but here a straightforward Reuss approach is
adopted such that all junctions transmit the same force at all particulate contacts in
a given direction n. A prototype model of this kind for isostatic compaction of a
powder composite was used by Bouvard (1993) for equally sized populations of
creeping and rigid particles. Accordingly, for identical contact forces
Fyp(n) = Fy(n) = Fyy(n).

Upon introducing contact co-ordination numbers, Z, is, on average, the number
of contacts each type 1 particle makes with other type 1 particles, Z,, is the average
number each type 1 particle makes with type 2 particles, and so on. Note that
fiZ,, = f>Z,,, and the average co-ordination number of all particles Z is given by

Zc :fl(le+le)+f2(zzl+zzz)- (69)

The subscript C here and elsewhere refers to the composite. Thus, (68) can be
expressed explicitly as

2 . . .
Z,j,' = - 7 VZ {ninj[flzllRlFl 1 HZ0n (R +Ry)F, +f2222R2F22]}J (70)
cV 7
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for a statistically homogeneous, uncorrelated and isotropic mixture. Turner and
Ashby (1995a, b) provide the following estimates :

A
(fi +12p)°
fop e,
(fl +/2p)’
 fin
(fi +1>p)°
R
(fi +120)°

in terms of the average co-ordination number Z. over all particles. Further, Turner
and Ashby (1995) suggest that Z satisfies the empirical law

Z, =

ZZ]

(71)

Ze = 12D¢ (72)

where D¢ is the initial relative density of the aggregate. Upon using the estimates (70)
and (71), the macroscopic stress in (70) reduces to

5 o 2R Uit f)

=TV Gt & 7

For future use, this relation is re-written in the alternative form,

Z,—,-z —3DCZC - (fl +f2,p2), J [/’lii’l,-Fn]@ (74)
' 4nR} (fi+fop)(fi+fopD) s, S

upon (i) averaging over all orientations, (ii) noting that the volume V of the aggregate
is related to the number of particles n by

4nR n
V=

(fl +£2p%) (75)

and upon (iii) recalling that the total number of contacts in the aggregate equals
nZq/2.

The dissipation per unit volume of the composite is the sum of the dissipations at
each contact,

. . 1 .
We = ZI/EU = T/Z‘ {Fu/fhzxﬁ}J (76)

Once the assumption of equal local contact forces has been adopted, the indentation
rates h,; may be deduced from relations (8)—(12) using the notation
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hag(0) = 51, () (77)
where the parameters y,, are given explicitly by
=1 (78a)
| 20 2-M-N
_ (1K ey (14 ey
Y12 = < 7 > < 2 > (78b)
and
2 2—-M—N
Y22 = k7(2+M+N>p7<2+M+N> (78¢)

With relation (77) in hand, the dissipation rate W* can be expressed in terms of the
dissipation rate between type 1 particles, by substitution of (71) and (78) into (76),
and by following the same line of argument that led from (68)—(70), to obtain

o 1 (1421150712 +/3p7722)
Ty (fr +/2p)

To proceed, the indentation rate /,,(n) is related to the macroscopic strain rate by
multiplying each side of (73) by E,; and equating with the dissipation rate (79), giving

2i(f1 +£>0%) 1 (f1+2f1f2,0/12+fzp V22)
—Ey (fi +£2p) 5 2. AmmFiits = (fi +/p)°

ZJ:{FIII;III}J (79)

Z{Fnhll}f

(80)

Since this relation holds for arbitrary F,,, we find

B = — (fi +20) (i +1207) IR, (E,-,-”,n_,-) 1)

(f1+2f 120012 +f207722)

which integrates to give

h, = — (i +2p) (1 +1207) 2R, (Eynin) (82)

(S1+2/1 /2712 +/3P722)
Now F,, is related to Ay, and /iy, via Fy, = ny,(hy,) > =2k, )" according to (8), and
the macroscopic stress can thereby be expressed in terms of E;; and E;; by substitution
of (81) and (82) into (74), giving

3n,,DcZ 24 M4N
SHEEEERR) T 2 stll( wEm) 1 (—n,En,) nn]
S,

(83)

where the constraint factor K is defined by
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+M+N

_ () [ (i +P) i +op7) } z
(fi +2p) (1 +120) LUT 211120712 +/307722)

It is instructive to compare (83) with the parallel results for a monolithic power of
material 1, given by (34). To avoid confusion we designate the macroscopic stress in
the monolithic powder by X,; and the macroscopic stress in the composite by ;. For
the same value of initial relative density, and same overall co-ordination number for
the composite and monolithic powder, the stress in the composite Xf; is K-times the
stress X,; in the monolithic powder.

Typically, the initial relative density for a composite D differs from the value D,
for the monolithic powder, see for example Lange et al. (1991). Similarly, the average
co-ordination number for the composite Z differs from the value Z, for the mono-
lithic powder. Assume the composite and the monolithic powder are subjected to the
same strain history E;(f). Then, a comparison of (83) and (34) reveals that the
macroscopic stress in the composite X, is related to the macroscopic stress X, in the
monolithic powder by

(84)

25 = K2, (85a)
where
_ DcZc
K- = D.Z, K (85b)

In summary, K is a scalar constraint factor for the effect of the particle strength ratio
o,/o, and the size ratio R,/R, upon the macroscopic strength of the composite,
compared with the monolithic powder under the same strain history. In an analogous
manner, if the macroscopic stress in the composite X{(¢) equals that for the monolithic
powder X,(7), then the strain history of the composite Ef;(¢) is related to that of the
monolithic powder E;(¢) by

E5(1) = KcPCTMNE (1) (86)

by nature of the fact that the macroscopic stress in eqn (34) is homogeneous and of
degree (2+ M+ N)/2 in accumulated strain.

Clearly, the above approach gives an approximate model of the constraint. It
assumes that all contacts in a given orientation carry the same indentation force
irrespective of whether the contact is hard or soft. The fact that all equally oriented
contacts carry the same force neglects the possibility that groups of hard particles
may shield soft particles, and might induce a percolation limit. Only more thorough
simulations such as by network models are likely to provide more exact constraint
models. For example, from a discrete numerical model for equi-sized soft and hard
spheres, Jagota and Scherer (1995) predicted percolation at a site fraction of 0.32 for
the case of bonded spheres.

Of particular interest is the result for N = M = 0, which is the rate independent
non-hardening result. The constraint factor K, as defined in eqns (84) and (85b),
simplifies to



812 B. Stordkers et al.|Journal of the Mechanics and Physics of Solids 47 (1999) 785-815

_ DcZc (fi +f207)°
o=
DoZo (fi +fop")f T +1ifs(1+p) +f3p/K]

Some immediate insight into the form of K is achieved by specialising to the case of
two populations of equi-sized spheres. Then, K- equals K, and K is given by

1

1+f§</1€—1>

In the limiting case of rigid spheres of type 2, k — oo and K¢ =(1—f3)~"'. We note
that the addition of a small volume fraction f; of rigid particle reinforcement has only
a second order effect on the macroscopic stress: the constraint factor varies with f,
according to K¢ &~ 1+ /3 for small f,. This is consistent with the observation that the
contact stiffness for a rigid particle against an ideally plastic particle is identical to
that for two ideally plastic particles, as seen by direct evaluation of eqn (8).

(87)

Kc = (88)

5. Concluding discussion

The assumption of affine deformation is central to the analysis presented here, and
its validity is worthy of further study. We believe that affine deformation is an
adequate approximation in the Stage I regime by the following arguments. The relative
density is sufficiently high for each particle to have a large number of contacting
neighbours (7-10). Each particle is kinematically constrained by its neighbours so
that particles are unable to roll past each other: plastic indentation and sliding
occurs at contacts and the load carried by each contact is relatively uniform. In
their experimental investigation, Fischmeister et al. (1978) concluded that non-radial
particle motion (sliding) proceeds well into the plastic densification range of Stage |
during closed die compaction. This is in sharp contrast with the behaviour of an
elastic, granular material at low relative density ; for such a granular solid deformation
is not affine. Rather, particles tend to roll past each other and the load varies widely
from contact to contact.

A separate issue is the method we have used to introduce the effect of inhomogeneity
in particle size and strength. It was assumed that each junction in a given orientation
carries the same load. Now, it is known that a high volume fraction of hard particles
carries most of the load by percolation within a random mixture of hard and soft
particles (Lange et al., 1991 ; Bouvard and Lange, 1991). However, when the number
fraction of hard particles is modest, the approach we have used avoids the excessive
weighting of the influence of the harder particles as occurs in a purely affine method.
For example, if one set of particles is non-deforming, the affine method predicts that
the entire powder aggregate is non-deforming for any number fraction of rigid
particles. On the other hand, the prediction we have given has a finite strength except
when all the particles in the aggregate are rigid.

In the analysis of composite powders a set of not more than two dissimilar spherical
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particles has been studied. In reality, powder particles can be non-spherical and there
is usually a wide range of sizes in a single aggregate. It remains to be seen how well
our model represents non-spherical particle aggregates without sieving to limit the
range of sizes. In addition, in our model, the material properties of the two families
of particles can differ only in terms of the strength parameters o, and g,, but otherwise
must have the same hardening and creep exponents. As was found above, however,
the shapes of the yield surfaces and creep potentials do not vary much with the
material exponents. The model includes the important limiting case where one family
of particles is so hard that it is essentially non-deforming. It is significant because it
includes the case of ceramic inclusions placed in a metal powder to make a particulate
composite.

The model developed here is strictly for the initial stages of compaction (known as
Stage I) where the powder comprises identifiably separate particles, with an inter-
penetrating network of porosity. Consequently, the model should not be used for the
later stages wherein the porosity closes off into isolated cavities. During isostatic
pressing, this transition begins at about 80% relative density (Helle et al., 1985).
However, before the density is reached, the deformation zones for each junction begin
to influence each other and the level of constrain is affected (Akisanya et al., 1994).
Therefore, it becomes necessary to modify the Stage I model which is based on non-
interacting deformation zones at each junction. This is usually done by invoking an
interpolation between Stages I and II (isolated porosity) models occurring over a
relative density level, say 80-90% (Helle et al., 1985; Fleck et al., 1992a). However,
models for Stage II, equivalent to the one presented here for Stage I, have not yet
been developed.

The model we have formulated is viscoplastic and makes no allowance for elastic
behaviour. It is straightforward to deduce from indentation theory that the initial
Hertzian elastic contact between particles is superseded by plastic indentation when
the compact has increased in density by about 1% (Larsson et al., 1996). Of a more
serious nature is the effect of elasticity when the compacted aggregate is unloaded. The
degree of elastic spring-back and the level of residual stress generated by unloading a
non-uniformly compacted aggregate is sensitive to the details of the elastic response,
and is beyond the scope of the present study.

Acknowledgement

B.S. and R.M.M. are grateful for the hospitality offered by the Cambridge Centre
for Micromechanics at Cambridge University during their sabbatical leaves from the
Royal Institute of Technology, Stockholm, Sweden and the University of California,
Santa Barbara, U.S.A., respectively.

References

Akisanya, A.R., Cocks, A.C.F., Fleck N.A., 1994. Hydrostatic compaction of cylindrical particles. Journal
of the Mechanics and Physics of Solids 42, 1067-1086.



814 B. Stordkers et al.|Journal of the Mechanics and Physics of Solids 47 (1999) 785-815

Akisanya, A.R., Cocks, A.C.F., Fleck N A., 1997. The yield behaviour of metal powders. Int. J. Mech.
Sci. 39(12), 1315-1324.

Arzt, E. (1982) The influence of an increasing particle co-ordination on the densification of spherical
powders. Acta Metallurgica 30, 1883-1890.

Biwa, S., Stordkers, B., 1995. Analysis of fully plastic Brinell indentation. Journal of the Mechanics and
Physics of Solids 43, 1303-1334.

Bouvard, D., 1993. On Brinell and Boussinesq indentation of creeping solids. Acta Metallurgica et
Materialia 41, 1413-1420.

Bouvard, D., Lange, F.F., 1991. Relation between percolation and particle co-ordination in binary powder
mixtures. Acta Metallurgica et Materialia 39, 3083-3090.

Bower, A.F., Fleck, N.A., Needleman, A., Ogbonna, N., 1993. Indentation of a power law creeping solid.
Proceedings of the Royal Society of London A441, 97-124.

Calladine, C.R., Drucker, D.C., 1962. Nesting surfaces of constant rate of energy dissipation in creep. Q.
Appl. Math. 20(1), 79-84.

Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S., 1981. A micromechanical description of granular
material behaviour. Journal of Applied Mechanics 48, 339-344.

Cocks, A.C.F., 1994. Overview No. 117: The structure of constitutive laws for the sintering of fine grained
materials. Acta Metallurgica et Materialia 42(7), 2191-2210.

Fischmeister, H.F., Arzt, E., 1983. Densification of powders by particle deformation. Powder Metallurgy
26, 82-88.

Fischmeister, H.F., Arzt, E., Olsson, L.R., 1978. Particle deformation and sliding during compression of
spherical powders : a study by quantitative metallurgy. Powder Metallurgy 21, 179-187.

Fleck, N. A. (1995) On the cold compaction of powders. Journal of the Mechanics and Physics of Solids
43, 1409-1431.

Fleck, N.A., Kuhn, L.T., McMeeking, R.M., 1992a. Yielding of metal powder bonded by isolated contacts.
Journal of the Mechanics and Physics of Solids 40, 1139-1162.

Fleck, N.A., Otoyo, H., Needleman, A., 1992b. Indentation of porous solids. International Journal of
Solids and Structures 29(13), 1613-1636.

Fleck, N.A., Stordkers, B., McMeeking, R.M., 1997. The viscoplastic compaction of powders. IUTAM
Symposium on Mechanics of Granular Flow and Powder Compaction, 15-17 July 1996, Cambridge,
U.K., ed. N.A. Fleck, A.C.F. Cocks. Kluwer Academic Publishers, Amsterdam.

Gurson, A.L,. 1977. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield
criteria and flow rules for porous ductile media. Trans. ASME J. Engng Mats and Technology 99,
2-15.

Helle, A.S., Easterling, K.E., Ashby, M.F., 1985. Hot-isostatic pressing diagrams: new developments.
Acta Metallurgica 33, 2163-2174.

Hill, R., Stordkers, B., Zdunek, A.B., 1989. A theoretical study of the Brinell hardness test. Proceedings
of the Royal Society of London A436, 301-330.

Jagota, A., Scherer, G.W., 1995. Viscosities and sintering rates of composite packing of spheres. Journal
of the Americal Ceramics Society 78, 521-528.

Jagota, A., Dawson, P.R., Jenkins, J.T., 1988. An anisotropic continuum model for the sintering and
compaction of powder packings. Mechanics of Materials 7, 255-269.

Jagota, A., Mikeska, K.R., Bordia, R.K., 1990. Isotropic constitutive model for sintering particle packings.
Journal of the American Ceramics Society 73, 2266-2273.

Kuhn, H.A., Downey, C.L., 1971. Deformation characteristics and plasticity theory of sintered powder
materials. International Journal of Powder Metallurgy 7(1), 15-25.

Kuhn, L.T., McMeeking, R.M., 1992. Power law creep of powder bonded by isolated contacts. Inter-
national Journal of Mechanical Sciences 34, 563-573.

Lange, F.F., Atteraas, L.A., Zok, F W., 1991. Deformation consolidation of metal powder containing
steel inclusions. Acta Metallurgica et Materialia 39, 209-219.

Larsson, P.-L., Biwa, S., Stordkers, B., 1996. Analysis of cold and hot isostatic compaction of spherical
particles. Acta Materialia 44, 3655-3666.

Love, A.E.H., 1927. A Treatise of the Mathematical Theory of Elasticity, 4th edn. Reprinted by Dover,
1944, p. 13.



B. Stordkers et al.|Journal of the Mechanics and Physics of Solids 47 (1999) 785-815 815

Mason, G., 1968. Radial distribution functions from small packings of spheres. Nature 217, 733-735.

Ogbonna, N., Fleck, N.A., Cocks, A.C.F., 1995. Transient creep analysis of ball indentation. Int. J. Mech.
Sci. 37(11), 1179-1202.

Ogden, R.W., 1984. Non-linear Elastic Deformations. Ellis-Horwood, London.

Rice, J.R., 1970. On the structure of stress—strain relations for time-dependent plastic deformation in
metals. 37, 728-737.

Shima, S., Oyane, M., 1976. Plasticity theory for porous metals. Int. J. Mech. Sci. 18, 285-291.

Scott, G.D., 1962. Radial distribution of the random close packing of equal spheres. Nature 194, 956-957.

Storédkers, B., 1997. Local contact behaviour of viscoplastic particles. Presented at the [IUTAM Symposium
on Mechanics of Granular Flow and Powder Compaction, 15-17 July 1996, Cambridge, U.K., ed. N.
A. Fleck and A. C. F. Cocks. Kluwer Academic Publishers, pp. 173-184.

Stordkers, B., Larsson, P.-L., 1994. On Brinell and Boussinesq indentation of creeping solids. 42(2), 307—
332.

Storédkers, B., Biwa, S., Larsson, P.-L., 1997. Similarity analysis of inelastic contact. International Journal
of Solids and Structures 34(24), 3061-3083.

Turner, C.D., Ashby, M.F., 1995a. The cold isostatic pressing of composite powders I. Experimental
investigations using model powders, to be published.

Turner, C.D., Ashby, M.F., 1995b. The cold isostatic pressing of composite powders II. Modelling of the
initial stage of densification, to be published.

Walton, K., 1987. The effective moduli of random packing of spheres. Journal of the Mechanics and
Physics of Solids 35, 213-226.

Wilkinson, D.., Ashby, M. F., 1975. Pressure sintering by power-law creep. Acta Metallurgica 23, 1277—
1285.



