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On the Synthesis of Piecewise Affine Control Laws

A. Bemporad, Senior Member IEEE, W.P.M.H. Heemels, Member, IEEE, M. Lazar, Member IEEE

Abstract— Piecewise affine (PWA) control laws offer an
attractive solution to real-time control of linear, nonlinear and
hybrid systems. In this paper we provide a compact exposition
of the existing state-of-the-art methods for the synthesis of PWA
control laws using optimization-based methods.

I. INTRODUCTION

Piecewise affine (PWA) functions fPWA : R
n → R

m of
the form [1], [2]

fPWA(x) := Fix + fi if x ∈ Ωi, (1)

where I = {1, . . . , s} is a finite set of indices, {Ωi}i∈I
defines a partition of R

n with each Ωi a polyhedron (not
necessarily closed), Fi ∈ R

m×n are matrices and fi ∈ R
m

are vectors for each i ∈ I, have been largely used in
modeling and control of dynamical systems. Applications
of PWA functions include switched power converters [3],
direct torque control of three-phase induction motors [4],
automotive systems [5], paper flow in printers [6] and
systems biology [7]. For discrete-time systems

x(t + 1) = f(x(t), u(t)), (2)

where x(t) ∈ R
n is the state vector and u(t) ∈ R

m is
the control input vector, t ∈ Z+, the attractiveness of PWA
control u(t) = fPWA(x(t)) is explained by various reasons.
Firstly, PWA functions can be efficiently implemented on
inexpensive hardware. Secondly, PWA functions are versatile
and can approximate any nonlinear control law arbitrarily
close. Thirdly, PWA control laws have a simple form that
is close to affine/linear laws which (industrial) control engi-
neers are familiar with. As a consequence of these interesting
properties, there is a strong interest in synthesizing PWA
controllers with desirable properties.

Several Lyapunov-based methods for synthesizing PWA
laws exist in the literature [2], [6], [8]–[12]. However, one
of the most appealing ways to construct PWA state feedback
controllers for (constrained) linear and PWA system models
is model predictive control (MPC). Indeed, recently it was
shown that MPC, which requires on-line optimization, is in
fact equivalent to an explicit PWA control law [13]–[16].
The goal of this paper is to provide a compact overview of
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the state-of-the-art MPC-based methods for the synthesis of
PWA control laws.

II. EXPLICIT MPC

In this section we briefly recall the basic steps and
ingredients to compute explicit solutions of MPC and their
relations to PWA functions. The interested reader is referred
to [16] for a more extensive survey on explicit MPC.

A. Model predictive control

In MPC the control action is obtained by solving a finite
horizon open-loop optimal control problem at each sampling
instant. Based on a discrete-time dynamic model one can
obtain a prediction of the future states and outputs of the
process given a control input sequence and initial conditions,
which consist of the current (measured) state of the proces.
Based on these predictions the best control sequence is
chosen that satisfies input, state and output constraints and
optimizes a performance index. This optimization yields a
sequence of optimal control moves, but only the first move is
applied to the process. At the next time step, the computation
is repeated over a shifted time-horizon by taking the most
recently available (measured) state information as the new
initial condition of the optimal control problem. For this
reason, MPC is also called receding horizon control.

The process to be controlled is usually modeled by the
system of difference equations (2). We assume for simplicity
that f(0, 0) = 0. The control and state sequences are
requested to satisfy the constraints

x(t) ∈ X , u(t) ∈ U (3)

∀t ∈ Z+, where U ⊆ R
m and X ⊆ R

n are closed sets
containing the origin in their interior1. Assuming that the
control objective is to steer the state to the origin, MPC
solves the following constrained regulation problem given a
full measurement of the state x(t) at the current time t:

PN (x(t)) : min
z

N−1∑
k=0

l(xk, uk) + F (xN ) (4a)

s.t. xk+1 = f(xk, uk), k = 0, . . . , N − 1
(4b)

x0 = x(t), (4c)

uk ∈ U , k = 0, . . . , N − 1 (4d)

xk ∈ X , k = 1, . . . , N − 1 (4e)

xN ∈ XN , (4f)

uk = κ(xk), k = Nu, . . . , N − 1 (4g)

1Mixed constraints on (x, u) can be treated as well, for instance to handle
constraints on outputs with direct feedthrough y(t) = fy(x(t), u(t)).
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where z ∈ R
�, is the vector of optimization variables, z =

[u′
0 . . . u′

Nu−1]
′ (′ denotes the transpose), � = mNu, l is

the stage cost, and the closed terminal set XN ⊆ X , terminal
cost F , and terminal gain κ are chosen to ensure closed-loop
stability of the MPC scheme [17], [18]. At each time-step t,
xk denotes the predicted state vector at time t+k, obtained by
applying the input sequence u0, .., uk−1 to model (2), starting
from x0 = x(t). The number N ≥ 1 is the prediction horizon
and Nu is the control (input) horizon (1 ≤ Nu ≤ N ). In what
follows we will also use “≤” for vector variables, to denote
component-wise inequalities. Because N is finite, if f , l and
F are continuous and U is also compact the minimum in (4a)
exists. At each time-step t a solution to problem PN (x(t))
is found by solving the mathematical program

min
z

h(z, x(t))

s.t. g(z, x(t)) ≤ 0, g ∈ R
q

(5)

obtained from (4), yielding the optimal control sequence
z∗(x(t)) (assuming for simplicity the uniqueness of the op-
timal sequence). Only the first input is applied to system (2),
i.e.

u(t) = z∗0(x(t)), (6)

and the optimization problem (4) is repeated at time t + 1,
based on the new state x(t + 1) obtained from the process.

The basic MPC setup (4) can be specialized to different
cases, depending on the prediction model, performance in-
dex, and terminal conditions used.

1) Linear model and quadratic cost: An optimal control
problem (4) with quadratic costs and linear model is obtained
when

l(xk, uk) = x′
kQxk + u′

kRuk, F (xN ) = x′
NPxN (7)

in (4a), where Q = Q′ ≥ 0, R = R′ > 0, and P = P ′ ≥ 0
are weight matrices and (4b) is given by

f(xk, uk) = Axk + Buk (8)

κ(x) = Kx in (4g), U , X and XN are polyhedral sets,
e.g., U = {u ∈ R

m : umin ≤ u ≤ umax}. Then, by
substituting xk = Akx(t)+

∑k−1
j=0 AjBuk−1−j , problem (5)

becomes a quadratic program:

h(z, x(t)) =
1
2
z′Hz + x′(t)C ′z +

1
2
x′(t)Y x(t) (9a)

g(z, x(t)) =Gz − W − Sx(t), (9b)

where H = H ′ > 0 and C, Y , G, W , S are matrices of
appropriate dimensions [13].

2) Linear model and linear cost: Let ∞- or 1-norms be
used to measure performance

l(xk, uk) = ‖Qxk‖p + ‖Ruk‖p, F (xN ) = ‖PxN‖p, (10)

where p = 1,∞, R ∈ R
nR×m, Q ∈ R

nQ×n, P ∈ R
nP ×n,

and use the same setup for (4b)-(4g) as in Section II-
A.1. In case of ∞-norms, by introducing auxiliary variables
εu
0 , . . . , εu

N−1, εx
1 , . . . , εx

N satisfying εu
k ≥ ‖Ruk‖∞

(k = 0, . . . , N − 1), εx
k ≥ ‖Qxk‖∞ (k = 1, . . . , N − 1),

εx
N ≥ ‖PxN‖∞, or, equivalently,

εu
k ≥ ±Riuk, i = 1, . . . , nR, k = 0, . . . , N − 1

εx
k ≥ ±Qixk, i = 1, . . . , nQ, k = 1, . . . , N − 1

εx
N ≥ ±P ixN , i = 1, . . . , nP ,

(11)

where the superscript i in (11) denotes the ith row, prob-
lem (4) can be mapped into the linear program [19]

h(z, x(t)) =[

N︷ ︸︸ ︷
1 . . . 1

N︷ ︸︸ ︷
1 . . . 1

mNu︷ ︸︸ ︷
0 . . . 0]z (12a)

g(z, x(t)) =Gz − W − Sx(t), (12b)

where z � [εu
0 . . . εu

N−1 εx
1 . . . εx

N u′
0 . . . u′

Nu−1]
′ is

the optimization vector, and G, W , S are obtained from
weights Q, R, P , model matrices A, B, (11), constraint sets
U , X , XN , and gain K. The case of 1-norms can be treated
similarly by introducing slack variables εu

ik ≥ ±Riuk, εx
ik ≥

±Qixk, εx
iN ≥ ±P ixN . This reformulation extends beyond

1/∞-norms to any convex piecewise affine cost l, F , that,
thanks to the result of [20], can be rewritten as the max of
a finite set of affine functions.

The use of linear programming in optimization-based
control dates back to the early sixties [21].

3) Hybrid model and linear or quadratic costs: The MPC
setup also extends to the case in which (4b) (and thus
also (2)) is a hybrid dynamical model [22] of the form

xk+1 = f(xk, uk, δk, ζk) = Axk + B1uk + B2δk + B3ζk

(13a)

E2δk + E3ζk ≤ E1uk + E4xk + E5,
(13b)

involving both real and binary variables, denoted as the
Mixed Logical Dynamical (MLD) model [23], where xk ∈
R

nc × {0, 1}nb is the state vector, uk ∈ R
mc × {0, 1}mb is

the input vector, and ζk ∈ R
rc , δk ∈ {0, 1}rb are auxiliary

variables implicitly defined by (13b) for any given pair
(xk, uk). Matrices A, Bi, (i = 1, 2, 3), and Ei (i = 1, . . . , 5)
denote real constant matrices, and the inequalities (13b) must
be interpreted component-wise. In [22] it was shown that
this MLD model has strong equivalence relations to PWA
models, linear complementarity models [24] and other hybrid
models.

The associated finite-horizon optimal control problem
based on quadratic costs takes the form (9) with z =
[ u′

0 ... u′
N−1 δ′

0 ... δ′
N−1 ζ′

0 ... ζ′
N−1 ]′ and subject to the further

restriction that some of the components of z must be bi-
nary. The hybrid MPC problem maps into a Mixed-Integer
Quadratic Programming (MIQP) problem when the quadratic
costs (7) are used in (4a) [25], or a Mixed-Integer Linear
Programming (MILP) problem when ∞- or 1-norms are used
as in (10) [26].
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B. Multiparametric programming

Consider the following mathematical program

MP(x) : min
z

f(z, x) (14a)

s.t. g(z, x) ≤ 0 (14b)

Az + Bx + d = 0, (14c)

where z ∈ R
� collects the decision variables, x ∈ R

n is a
vector of parameters, f : R

� × R
n → R is the objective

function, g : R
� × R

n → R
q , A is a qe × � real matrix,

B is a qe × n real matrix, and d ∈ R
qe . Problem (14)

is referred to as a multiparametric programming problem.
We are interested in characterizing the (optimal) solution of
problem (14) a function of x for a given polytopic set X
of parameters. The solution of a multiparametric problem is
a quadruple (V ∗, Z∗, z∗,Xf ), where (i) the set of feasible
parameters Xf is the set of all x ∈ X for which problem (14)
admits a solution, Xf = {x ∈ X : ∃z ∈ R

�, g(z, x) ≤
0, Az+Bx+d = 0}; (ii) The value function V ∗ : Xf → R

associates with every x ∈ Xf the corresponding optimal
value of (14); (iii) The optimal set Z∗ : Xf → 2R

�

associates to each parameter x ∈ Xf the corresponding set of
optimizers Z∗(x) = {z ∈ R

� : f(z, x) = V ∗(x), g(z, x) ≤
0, Az + Bx + d = 0} of problem (14); (iv) An optimizer
function z∗ : Xf → R

� associates to each parameter x ∈ Xf

an optimizer z ∈ Z∗(x) (Z∗(x) is just a singleton if MP(x)
is strictly convex).

By treating x(t) as the vector of parameters, the QP prob-
lem arising from the linear MPC formulation of Section II-
A.1 can be treated as the multiparametric QP (mpQP)

QP(x) : V ∗(x) =
1
2
x′Y x + min

z

1
2
z′Hz + x′F ′z (15a)

s.t. Gz ≤ W + Sx. (15b)

In [13], the authors investigated the analytical properties of
the mpQP solution, that are summarized by the following
theorem.

Theorem II.1 Consider a multiparametric quadratic pro-
gram with H > 0,

[
H F
F ′ Y

] ≥ 0. The set Xf of parameters x
for which the problem is feasible is a polyhedral set, the value
function V ∗ : Xf �→ R is continuous, convex, and piecewise
quadratic, and the optimizer z∗ : Xf �→ R

� is piecewise affine
and continuous.

The immediate corollary is that the quadratic MPC approach
based on linear costs described in Section II-A.2 admits a
continuous piecewise-affine explicit solution of the form (1).

By treating x(t) as the vector of parameters, the linear
MPC formulation of Section II-A.2 can be treated as the
multiparametric LP (mpLP)

LP(x) : min
z

c′z (16a)

s.t. Gz ≤ W + Sx, (16b)

where z ∈ R
� is the optimization vector, x ∈ X ⊂ R

n is
the vector of parameters, c, G, W , S are suitable constant
matrices and X is the set of parameters of interest.

Theorem II.2 [27] Consider the mpLP problem (16). Then,
the set Xf is a convex polyhedral set, there exists an optimizer
function z∗ : R

n → R
l, which is a continuous and piecewise

affine function of x, and the value function V ∗ : R
n → R is a

continuous, convex, and piecewise affine function of x.

The first methods for solving parametric linear programs
appeared in 1952 in the master thesis published in [28],
and independently in [29]. Since then, extensive research
has been devoted to (multi)parametric analysis and pro-
gramming, see the references in [20], [27], [27], [30]–[32].
Recently, there is a renewed interest in this field, mainly
pushed by the application of mpLP in explicit MPC, see e.g.
the recent survey [33].

As detailed in [26], the MPC formulation based on ∞-,1-
norms or quadratic costs subject to the MLD dynamics (13)
can be solved explicitly by treating the optimization problem
associated with MPC as a multiparametric mixed integer
linear programming (mpMILP) problem or a multiparametric
mixed integer quadratic programming (mpMIQP) problem,
respectively. For further details regarding explicit PWA solu-
tions to these types of mixed integer problems the interested
reader is referred to [16].

III. IMPLEMENTATION OF PWA CONTROL LAWS

A PWA control (1) is essentially a lookup table of linear
feedback gains. The right gain is selected on-line by finding
the region Ωi of the polyhedral partition where the current
state x(t) lies. This latter problem has been referred to
as point-location problem. Note that if function fPWA is
continuous, then one can always define the regions of the
partitions as closed polyhedra Ωi = {x ∈ R

n : Hix ≤ ki},
as no ambiguity in the definition of fPWA would arise on
possibly overlapping boundaries of different sets Ωi, Ωj . The
most straightforward solution is to store all the M polyhedra
of the partition and carry out an on-line search through them
until the right one is found. While this procedure is extremely
easy to implement in a computer code, more efficient ways
have been proposed for evaluating explicit MPC controllers.
For instance, by exploiting the properties of multiparametric
solutions, several solutions are proposed in the last few years,
see e.g. [34]–[39] and the references therein.

From the hardware synthesis viewpoint, [40] showed that
explicit MPC solutions can be implemented in an application
specific integrated circuit (ASIC) with about 20, 000 gates,
leading to computation times in order of 1 μs. In the end,
whether the explicit PWA form is preferable to the one based
on on-line optimization depends on available CPU time, data
memory, and program memory (see e.g. [41, Table II] for a
comparison in the linear quadratic case).

IV. CONCLUSIONS

In this short paper we gave a compact overview of recent
MPC-based techniques for the synthesis of PWA control
laws, together with pointers to the relevant literature for more
details on this appealing topic. The potential of PWA con-
trollers is enormous and we envision a tremendous growth
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of PWA control in the years to come in various application
fields. Especially, if the implementation of PWA control laws
on real-time hardware can be performed more efficiently
and systematically, we foresee that PWA and MPC control
will also be applied to faster systems that require sample
frequencies in the order of 1kHz and above.
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