
Adaptive Information Filtering:
evolutionary computation and n-gram

representation1

Daniel R. Tauritz a Ida G. Sprinkhuizen-Kuyper b

a Leiden Institute of Advanced Computer Science, Universiteit Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

b Institute of Knowledge and Agent Technology, Universiteit Maastricht,
P.O. Box 616, 6200 MD Maastricht, The Netherlands

dtauritz@liacs.nl, kuyper@cs.unimaas.nl

Abstract

Adaptive Information Filtering (AIF) is concerned with filtering information
streams in changing environments. The changes may occur both on the
transmission side (the nature of the streams can change) and on the reception
side (the interests of a user can change). The research described in this paper
details the progress made in a prototype AIF system based on weighted n-
gram analysis and evolutionary computation. A major advance is the design
and implementation of an n-gram class library allowing experimentation with
different values of n instead of solely with 3-grams as in the past. The new
prototype system was tested on the Reuters-21578 text categorization test
collection.

1 Introduction

Information Filtering (IF) is the process of filtering data streams in such a way
that only particular data are preserved, depending on certain information needs.
The IF environment is the combination of data stream and information needs.
When the data stream and the information needs are changing over time, the IF
environment is dynamic, and an Adaptive Information Filtering (AIF) system is
called for. An AIF system is capable of adapting to changes in both the data
stream and the information needs. Our main goal is to build an AIF system that
classifies incoming data in clusters based on the long-term needs of a specific user.
Some clusters will be very important to the user, some less, and some will be
discarded altogether.

One of the essential ingredients in any IF system is its ability to match a profile
with the documents available for perusal. While, optimally, a semantic match
should be performed, that is not currently feasible and we have to be satisfied

1This research is funded in part by a NWO grant for the Adaptive Information Filtering
research project under the DISH theme. The project web site is http://www.liacs.nl/home/
dtauritz/aif/. This study is also performed as part of the NWO ToKeN2000 project which
studies the access and disclosure of knowledge in The Netherlands.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357590305?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

with a syntactic match. The most widely employed syntactic representation of
textual documents is based on term indexing [4] (keywords, frequency of terms).

Another approach is based on the so-called n-gram analysis [2]. The n stands
for a positive integer. The application of n-gram analysis produces an n-gram
frequency vector which comprises the frequencies of all the distinct character com-
binations of length n. In 1-gram analysis the occurrence of single letters is de-
termined, in 2-gram analysis that of pairs of letters, in 3-gram analysis that of
triplets, etc.

The use of n-gram analysis has many advantages over term-based systems. It
is more robust when dealing with spelling variations or errors and does not require
linguistic preprocessing which facilitates the deployment of n-gram-based systems
in multi-topic/multi-language environments [1]. However, also an n-gram-based
system can potentially benefit from preprocessing, since, for example, when the
stop word ‘the’ is removed, the 3-gram ‘the’ becomes of significance. A special
advantage of n-grams in dynamic environments is the ease at which they can
automatically be added.

A prototype AIF system based on weighted 3-gram analysis (each 3-gram is
assigned a weight indicating its relative importance) was introduced in [7]. For
n < 3 n-gram analysis does not provide sufficient syntactic information [5] and
for n > 3 sparse representations are required which are employed by the new
prototype system introduced in this paper.

A crucial step in working with weighted n-gram analysis is to find the right
weight vector. Our first prototype AIF system introduced a novel two-pool evo-
lutionary algorithm (EA) for optimizing weight vectors. EAs are a class of opti-
mization algorithms which come in handy when no a-priori solutions to a specific
optimization problem are available. They work by evolving a population of trial
solutions using techniques inspired by evolutionary biology. For an introduction
to evolutionary computation (EC) see [3].

A new prototype AIF system based on the improved matching technique has
been constructed. This paper describes the new system and presents the results
of testing it on the Reuters-21578 text categorization test collection. Using a
standard test collection will facilitate comparing these results with other case
studies. The Reuters collection has embedded tags indicating common usage in
text categorization tests. Unfortunately they were not suitable for our purposes
and this prevents our results from being compared to previous studies which did
employ those tags. However, as the collection is readily available and later in this
paper we describe how we obtained the training and test sets for our research,
comparison studies can be made. Another standard test collection for IF is the
one employed by the TREC conference series2.

2 Overview of the AIF system

The core of the system is the clustering cycle (see figure 1). The clustering algo-
rithm uses a weight vector to compare the n-gram distribution vector of a docu-

2http://trec.nist.gov

ment with the prototype vectors of the clusters and decides in which cluster the
document will be classified. The prototype vectors are initialized by averaging the
n-gram distributions of a number of documents belonging to each cluster (class).

EA clustering
algorithm

document

n-gram vector

document
classification

fitness of the
weight vectors

weight vectors

prototype
vectors

Figure 1: Schematic overview of the adaptive IF system.

The weight vector is determined by the EA. The EA works on a population of
individuals, each containing a chromosome with genes composed of the components
of the weight vector. The fitness of an individual is determined by dividing the
number of documents it has correctly classified by the total number of documents
it has classified.

3 System components

The following subsections discuss the different components of the AIF system as
depicted in figure 1.

3.1 Representation and metrics

Consider two documents, A and B. We want to determine their semantic similarity.
While this is not yet possible, we can estimate it by applying a metric to syntactic
representations of the documents. The syntactic representation that we use is the
n-gram frequency distribution3. Given that a is a token alphabet with size |a|, we
define an n-gram as a sequence of n tokens belonging to a. By determining the
relative frequencies at which n-grams occur in a sequence of tokens, one obtains
the n-gram frequency distribution representation of that sequence.

Let Af = (Af 1, · · · , Af t) and Bf = (Bf 1, · · · , Bf t) with t = |a|n be the cor-
responding n-gram frequency distribution vectors for these documents. While
one could apply a metric directly to the normalized n-gram frequency distribu-
tion vectors of A and B to estimate their semantic similarity, a better estimate
can be obtained by applying a metric to normalized weighted n-gram frequency
distribution vectors [6, 7, 8, 9].

3For more information regarding n-grams see the n-gram clearinghouse at http://www.liacs.
nl/home/dtauritz/ngram/.

Let w = (w1, · · · , wt) with wi ≥ 0 be the weight distribution vector giving the
relative importance of the different n-grams. The weighted n-gram vectors Awf =
(Awf 1, · · · , Awf t) and Bwf = (Bwf 1, · · · , Bwf t) are defined as follows: Awf i =
Af i · wi and Bwf i = Bf i · wi for i = 1, · · · , t. Normalization is accomplished by
introducing Awf = (Awf 1, · · · , Awf t) with Awf i = Awf i/

∑t
j=1 Awf j and Bwf =

(Bwf 1, · · · , Bwf t) with Bwf i = Bwf i/
∑t

j=1 Bwf j .
The metric we will use is the Manhattan metric:

ρ(Awf , Bwf) =
t

∑

i=1

|Awf i −Bwf i| (1)

3.2 Evolutionary Algorithm

In our AIF system the classification of a document is dependent on the weight
distribution vector being used. We determine this vector by using an evolutionary
algorithm (EA). In [8, 9] we showed a detailed derivation of the classification EA
(CEA) we have developed and the simplified form we implemented for our AIF
system. This section will describe the algorithm as implemented.

Object space consists of the objects to classify. For short σ will stand for an
object and c(σ) for the class σ maps to. In our system the objects are textual
documents. As this is a discrete temporal process in Information Filtering we
indicate the current iteration with τ . As we are trying to optimize the weight
vector used by the classification algorithm, the members of the CEA population
are weight vectors. The population is indicated with P and the members with
Pi where i is ranging from 1 to pop size (the size of the population). The fitness
of a member should reflect how well it does in classifying. In the best case it
always classifies correctly, in the worst case always wrongly. We quantify this
by assigning score and age attributes. The score of a member is the number of
correctly classified documents and will be indicated with P score

i . The age of a
member P age

i is the total number of documents it has classified. The fitness is
defined as follows:

FITNESS (Pi) =
P score

i

P age
i

. (2)

Note that the range of the fitness is from zero to one. As the age of a member
increases, so does its statistical reliability in approximating the true fitness of a
member. If, when producing offspring, the new member’s score and age are set to
zero, as opposed to basing them on those of its parent(s), its statistical reliability
plunges and time is needed to recover some measure of reliability. In that case it is
necessary to prevent the new member from participating in the evolution process
until it matures. This is accomplished by splitting the population of trial solutions
into two pools, namely a child pool P c and an adult pool P a with P = P c∪P a, |P c|
the number of members in P c, |P a| the number of members in P a and age threshold
the age at which members are moved from P c to P a.

Two essential components of any CEA are the evaluation of all the population
members and, based on that, the evolvement of the population. The evaluation

component will be denoted with EVAL(στ , P) and the evolvement component will
be denoted with EVOLVE (P). The evaluation component is defined as follows:

EVAL(στ , P) : ∀Pi ∈ P :

P age
i ← P age

i + 1, P score
i ← P score

i + RESULT (στ , Pi)
and compute FITNESS (Pi)

The result of classifying an object given a trial solution is either zero (incorrect)
or one (correct). The result function is defined as follows:

RESULT (σ, Pi) =
{

0 if CLASSIFY (σ, Pi) 6= c(σ)
1 if CLASSIFY (σ, Pi) = c(σ) (3)

where CLASSIFY (σ, Pi) = the class σ maps to using Pi.
There are two evolvement algorithms, one with crossover (resulting in two children
produced by two selected parents) and one without crossover (resulting in one child
which is a copy of the selected parent). In both algorithms the generated child(ren)
are mutated (see below) and the weakest adult(s) is (are) removed in favor of
the generated child(ren). The form of crossover employed is uniform crossover,
in which each gene of a child has an equal chance to come from either parent.
Mutation is performed by adding with a certain probability Gaussian noise to the
genes of a member. Parent selection is done by selecting fitter members with an
exponentially higher probability; this causes selective pressure. Taking this all
together we arrive at algorithm 1.

Algorithm 1 AIF two pool
τ ← 1, initialize prototype vectors
initialize P c

repeat forever
EVAL(στ , P)
if (|P a| > 0) EVOLVE (P a)
∀Pi ∈ P c: if (P age

i = age threshold) move Pi from P c to P a

τ ← τ + 1
end

3.3 Classification

In order to concentrate on the effect the CEA had on the weight vectors, we used
a very simple classification algorithm without any parameters. The algorithm
calculates the distance between a document and all the classes and classifies the
document as belonging to whichever class is closest. The classes are represented by
their class center. The prototype vectors representing the class centers are initial-
ized by calculating for each the average of a certain number of n-gram frequency
distribution vectors known to belong to that class. The distance is calculated by
applying equation 1 to the normalized weighted n-gram frequency distributions
(see subsection 3.1) representing the document and the classes.

4 System parameters

Weights are implemented using doubles ranging from 0 to 1. System performance
is expressed in correct classifications per document and ranges from zero for all
documents classified incorrectly to one for a perfect classification record. In order
to accurately measure the performance of the system thousands of documents
need to be classified. The c(σ)’s should be provided via user feedback. Until the
system is ready for trial deployment, however, it will be necessary to simulate this
user feedback. One way this can be accomplished is by employing a test set of
documents for which the c(σ)’s are known. The initialization of the population
is done by setting the scores and ages to zero. The weights are either initialized
to a user specified value or assigned randomly (either using a specified seed or
deriving the seed from the hardware timer). The definable experiment parameters
for the AIF system are as follows. For the CEA a researcher can specify the size
of the population, the age threshold, the number of adults to replace after each
evaluation, the selective pressure rate (a value between 0 and 1; e.g. 0.1 means
a 0.1 chance to select the fittest member, a 0.9 ∗ 0.1 chance to select the second
fittest member, a 0.92 ∗ 0.1 chance for the third fittest member, etc.), crossover
(enabled/disabled), the chance that a gene will be mutated and the amount of
Gaussian noise used during mutation. Note that after 2∗age threshold generations,
the size of the child pool is age threshold ∗ offspring size, under the condition that
that is not larger than pop size. So, for example, if the size of the population is
100, the age threshold 10 and the offspring size is 4, then after 20 generations
the child pool will stabilize at size 40 and the adult pool at size 60. For each
experiment the user can further specify the number of vectors used for averaging
during the initialization of the prototype vectors, the class topics, the number of
passes for the trainingset and the size of both the training and the test sets.

5 Experiments

As mentioned in section 4 we are currently using a simulated environment to test
our system. Note that while our system is fully designed to be adaptive, and
when classifying a document no knowledge about future documents is used, our
simulated environment is currently static to simplify testing.

We experimented using the Reuters-21578 text categorization collection. The
documents in this collection appeared on the Reuters newswire in 1987. The
collection is downloadable from David D. Lewis’ professional home page4. The
documents are in SGML format and tagged for the purpose of splitting into train-
ing and test sets as used in published studies concerning text classification. For
our purposes a subset of the collection was needed. First of all it was required
that a document be indexed with only one topic. This limited the subset to 9494
documents. And, secondly, it was required that the document be a regular text
document. This further limited the subset to 8654 documents. From that subset
only those documents belonging to the ten most frequently occuring topics in the

4http://www.research.att.com/home/lewis

Table 1: Subset of Reuters-21578
used in experiments
tag size
acq 2125
coffee 114
crude 355
earn 3735
interest 211
money-fx 259
money-supply 97
ship 156
sugar 135
trade 333

Table 2: Test set system results
(percentage correctly classified)
Topics Unweighted Weighted
Coffee, trade 99.0 98.0
+ crude 94.7 97.6
+ money-fx 90.5 94.0
+ sugar 90.4 94.2
+ money-supply 84.3 89.5
+ ship 81.9 87.4
+ interest 79.8 84.8

subset, as listed in Table 1, were employed.
For the purpose of n-gram analysis, a document is treated as a string of charac-

ters. Letters are handled case-insensitive and all other characters are interpreted
as the space character. Any sequence of spaces is replaced by a single space.
Therefore the token alphabet consists of 27 characters, namely ‘a’ through ‘z’ and
the space delimeter. So for n = 3 the number of distinct n-grams is 273 = 19683.
As n increases the number of distinct n-grams increases exponentially.

We did experiments using a growing number of the topics in Table 1 and em-
ploying the following parameters: n = 3, documents to average = 30, trainingset
size = 30, testset size = 30, number of passes = 20, crossover = true, random seed:
timer, pop size = 200, age threshold = 25, offspring size = 2, selective pressure =
0.1, gene mutation chance = 0.5 and deviation = 0.2. A small keyword stop list
was also employed. The results are given in Table 2. The first column lists the
test set system results without using weights and the second column the test set
system results with weights averaged over five runs. The results show that for a
small number of topics even unweighted n-gram analysis performs reasonably well,
but when the number of topics is increased, the superiority of weighted n-gram
analysis is clearly demonstrated. Comparing these results with those reported in
[8, 9] shows that the use of a keyword stop list definitely improves the effectiveness
of n-gram analysis.

6 Conclusions

In this paper we described a complete revision of the prototype AIF system in-
troduced in [8, 9]. From the results presented in section 5 we can draw a number
of conclusions. First of all, while maintaining the accuracy of the old system, the
performance has been greatly improved by the use of advanced sparse representa-
tions and optimized associated functions. This has also significantly reduced the
memory requirements, allowing experiments with both more topics and larger EA
populations to be run. And as part of the rewrite, the system can now handle
researcher defined values of n instead of being hardcoded for 3-grams.

The major problem that needs to be tackled now is generalization. The train-
ingset results (not listed) are very encouraging, but the testset results are a bit
disappointing. Especially the lack of improvement in the testset results when the
number of trainingset runs is increased needs to be addressed, before we can move
to a dynamic simulation environment.

Further down the line we plan to investigate other values of n, user defined
token alphabets and more advanced clustering algorithms which will be able to
add new clusters and in which each cluster would have an independent radius.
Also, we hope to be able to adapt our system for use with the test set provided
by the TREC conference series.

References

[1] William B. Cavnar. N-gram-based text filtering for trec-2. In D.K. Harman,
editor, Overview of the Second Text REtrieval Conference (TREC-2), volume
500-215 of Special Publications, pages 171–179. National Institute of Standards
and Technology (NIST), 1994.

[2] T. de Heer. The application of the concept of homeosemy to natural language
information retrieval. Information Processing & Management, 5(18):229–236,
1982.

[3] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, third edition, June 1996.

[4] C.J. van Rijsbergen. Information Retrieval. Butterworths, second edition,
1979.

[5] S. Schmidt and B. Teufel. Full text retrieval based on syntactic similarities.
Information Systems, 13(1):65–70, 1988.

[6] Johannes Cornelis Scholtes. Neural Networks in Natural Language Processing
and Information Retrieval. PhD thesis, Universiteit van Amsterdam, 1993.

[7] Daniel R. Tauritz, Joost N. Kok, and Ida G. Sprinkhuizen-Kuyper. Adaptive
information filtering using evolutionary computation. Information Sciences,
122(2–4):121–140, February 2000.

[8] Daniel R. Tauritz and Ida G. Sprinkhuizen-Kuyper. Adaptive information
filtering algorithms. In David J. Hand, Joost N. Kok, and Michael R. Berthold,
editors, Advances in Intelligent Data Analysis, Third International Symposium,
IDA-99, volume 1642 of Lecture Notes in Computer Science, pages 513–524.
Springer-Verlag, 1999.

[9] Daniel R. Tauritz and Ida G. Sprinkhuizen-Kuyper. Adaptive information
filtering: improvement of the matching technique and derivation of the evolu-
tionary algorithm. Technical Report 99-04, Leiden University, 1999.

