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ABSTRACT. The configuration spaces of arachnoid mechanisms are analyzed in
this paper. These mechanisms consist of k branches each of which has an arbitrary
number of links and a fixed initial point, while all branches end at one common
end-point. It is shown that generically, the configuration spaces of such mecha-
nisms are manifolds, and the conditions for the exceptional cases are determined.
The configuration space of planar arachnoid mechanisms having k branches, each
with two links is analyzed for both the non-singular and the singular cases.

1. INTRODUCTION

Mechanisms and robots consist of links and joints, the actuation of which causes
them to move. The type of a mechanism is described by an abstract graph which
corresponds to its links and joints, and a specific embedding of this graph in the
plane or in 3-space is called a configuration of the mechanism. The collection of
all such embeddings forms a topological space, called the configuration space of the
mechanism. For example, the configuration space of a planar mechanism with
revolute joints consisting of n rods arranged serially is the n-torus.
In recent years, there has been interest among mathematicians in the study of

such spaces, which are of importance in motion planning – that is, moving a
mechanism from one given position to another, taking into account various con-
straints (see for example [MT2]). The topological properties of the configuration
space provide insight into practical questions in planning such motions (see [F])
and analysis of some mechanical singularities (see [NM], and [ZFB]).
The main focus had been set on the configuration spaces of a type of mecha-

nism called polygonal linkage, which is simply a concatenation of links and hinged
joints forming a closed chain. A substantial amount of mathematical literature
on polygonal linkage’s configuration space has accumulated: Kamiyama , Tezuka
and Toma studied Euler characteristics in [K], and homology groups in [KT, KTT];
Trinkle and Milgram constructed a handle-body surgery in [MT1]; and in [Ho],
Holcomb studied a special parallel graph mechanism called multi-polygonal link-
ages, which are three free branches identified at their initial and terminal vertices.
In this paper we analyze a type of mechanism called arachnoid which, to the best

of our knowledge, has never been dealt with in the literature. This kind of mecha-
nism consists of multiple branches each of which has an arbitrary number of links
and a fixed initial point, while all branches end at a common end-point (this type of
mechanism resembles some parallel robots which are in practical use). It is shown
that generically, the configuration spaces of such mechanisms are manifolds, and
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the conditions for the exceptional cases are then determined. The configuration
space of planar arachnoid mechanisms having k branches, each with two links is
fully analyzed, while for the non-manifold cases we analyze the singular configu-
rations.
We now introduce some notation and terminology to describe such mechanism

types, and in particular the arachnoid mechanisms which are the subject of this
note:

1.1. Definition. For a mechanism M in Rd, a branch (L,x) of multiplicity n is a
sequence L = (`1, . . . , `n) of n positive numbers, together with a point x ∈ Rd. We
think of L as the lengths of n concatenated rods, having revolute (i.e., rotational)
joints at the meeting point of every two consecutive rods, and at the fixed initial
point x, called the base point of the branch.
A branch configuration V = (v1, . . . ,vn) for a branch (L,x) then consists of n

vectors in Rd with the given norms ‖vi‖ = `i (i = 1, . . . n).

Since the configuration space of a branch (L,x) is independent of the order of
the set `1, .., `n (up to homeomorphism), we can (and shall) assume `1, .., `n to be
in descending order.

1.2. Definition. An arachnoid mechanism consists of k branches

(L,X ) = ((L(1),x(1)), . . . (L(k),x(k)))

with multiplicities n(1), ..., n(k). We think of this as a linkage of branches connected
by a single revolute joint at their common end point (whose location is not fixed).
An arachnoid mechanism configuration for (L,X ) thus consists of a set

V = (V (1), .., V (k))

of branch confiurations for L having a common end point y = x(i) +
∑n(i)

j=1 v
(i)
j

(i = 1, .., k).
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FIGURE 1.1. An arachnoid mechanism with k = 3, multiplicities 2.

1.3. Definition. For an arachnoid mechanism (L,X ):
(1) A branch configuration V = (v1, . . . ,vn) is aligned (with direction w) if each

vector v1, . . . ,vn is a scalar multiple of w.
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(2) A configuration V = (V (1), .., V (k)) of (L,X ) is called a t-node if it has
t aligned branch configurations with directions wi1 , . . . ,wit respectively,
which are linearly dependent; otherwise V is called generic.

1.4. Definition. The collection C = C(L,X ) of all configurations V for (L,X )
is called its configuration space. It is topologized as a subspace of the appropriate
Euclidean space. The space of all such common endpoints y will be called the work
space W = W(L,X ) for (L,X ). The work map Φ : C → W assigns to each
configuration V its common endpoint y.

Organization. In section 2 we show that the configuration space of a generic arach-
noid mechanism (L,X ) is a manifold. In section 3 we study planar arachnoid
mechanisms for which each branch has 2 joints, and give an explicit formula for
the toplogical type of C = C(L, Xc) in the generic case. Finally, in section 4, we
analyze the singularities of C for such planar arachnoid mechanisms in the non-
manifold case.

2. GENERIC ARACHNOID MECHANISMS IN Rd

First, we show that, generically, the configuration space of an arachnoid mecha-
nism is a manifold:

2.1. Theorem. Let (L,X ) be an arachnoid mechanism in Rd with k branches of mul-
tiplicities n(1), ..., n(k), respectively. If all configurations of (L,X ) are generic, then its
configuration space C is a smooth closed orientable manifold of dimension d(N−k+1)−N ,
where N =

∑k
i=1 n(i).

Proof. We can identify C = C(L,X ) as the pre-image of a certain function G :
Rd(N−k+1) → RN , where G is defined as follows:
For each n ≥ 1 let gn : (Rd)n → Rn−1 be defined

gn(v1, . . . ,vn) := (|v2 − v1|2, . . . , |vn − vn−1|2),
where |u| := (

∑d
i=1 t2i )

1/2 is the length of a vector u = (t1, . . . , td) ∈ Rd. Now for
each branch L(i) = (`

(i)
1 , .., `

(i)

n(i)) of L, let (v
(i)
1 , . . . ,v

(i)

n(i)) be position vectors of the
ends of the n(i) links of a branch configuration, where v

(i)
0 = x(i) (the given base

point for this branch). Since in an arachnoid mechanism all branches end at the
same point u ∈ Rd, we have v

(i)

n(i) = u for all 1 ≤ i ≤ k. Thus we have N − k + 1

different vectors {v(i)
1 , . . . ,v

(i)

n(i)}k
i=1, and we define

G(v
(1)
1 , . . . ,v

(k)

n(k)) := (gn1(v
(1)
0 , . . . ,v(1)

n1
), gn2(v

(2)
0 , . . . ,v(2)

n2
), . . . gnk

(v
(k)
0 , . . . ,v(k)

nk
)),

so that C = G−1(~̀) for ~̀ := (`
(1)
1 )2, .., (`

(1)

n(1))
2, . . . (`

(k)
1 )2, .., (`

(k)

n(k))
2). By the Regular

Value Theorem (see [Hi, I, Thm. 3.2]), C will be a smooth manifold if ~̀ is a regular
value of G – that is, dG has maximal rank.
Note that (after applying elementary row and column operations), dG has the

following N × dN Jacobian matrix:
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dG = 2




A(1) B(1) 0
A(2) B(2)

... . . .
A(k) 0 B(k)




where each (n(i) × d)-block A(i) is:

A(i) =




v
(i)

n(i) − v
(i)

n(i)−1

0
...
0




and B(i) is:




v
(i)

n(i)−1
− v

(i)

n(i) 0 0 . . . 0 0

v
(i)

n(i)−1
− v

(i)

n(i)−2
v

(i)

n(i)−2
− v

(i)

n(i)−1
0 . . . 0 0

0 v
(i)

n(i)−2
− v

(i)

n(i)−3
v

(i)

n(i)−3
− v

(i)

n(i)−2
. . . 0 0

0 0 0 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . v

(i)
2 − v

(i)
1 v

(i)
1 − v

(i)
2

0 0 0 . . . 0 v
(i)
1 − v

(i)
0




an n(i) × d(n(i) − 1) matrix which can be thought of as the Jacobian matrix for a
corresponding closed n(i)-branch. Note that Rank(B(i)) ≤ n(i), and B(i) has less
than full rank only when all vectors v

(i)

n(j)−1
− v

(i)

n(j) are collinear for 1 ≤ j ≤ n(i)

– so that the i-th branch is aligned. In this case Rank(B(i)) = n(i) − 1, and the
non-zero row w(i) := v

(i)

n(i) −v
(i)

n(i)−1
of A(i) is precisely the direction of the branch.

We can thus divide the matrix dG horizontally into two blocks: (A,B), where

A :=




A(1)

...
A(k)


 and B :=




B(1) 0
B(2)

. . .
0 B(k)


 ,

and the rank of dG is then given by:

(2.1) Rank(A,B) = Rank(A) + Rank(B)− dim(Col(A) ∩ Col(B)).

Denote by I the set of all indices i for which the i(th) branch is aligned, so that
Rank(B) = N − |I|. Thus if I = ∅, then dG has maximal rank. If |I| 6= 0, let
AI be the sub-matrix of A consisting of the blocks A(i) with i ∈ I . Its rows are
therefore spanned by the directions {w(i)}i∈I of the aligned branches. Observe
that Rank(A) − Rank(AI) is the dimension of the subspace of Col(A) consisting
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of columns whose entries vanish in the rows indexed by i ∈ I . Since the blocks of
B indexed by i 6∈ I have full rank, we see that

dim(Col(A) ∩ Col(B)) ≤ Rank(A)− Rank(AI)

(in fact, equality holds). By (2.1):

Rank(dG) ≥ Rank(AI) + Rank(B) = N − |I|+ Rank(AI),

which means that dG has full rank unless |I| > Rank(AI). The latter implies that
the directions of the aligned branches are linearly dependent – that is, we have a
k-node configuration.
Note that C = G−1(~̀) is in fact orientable when dG has maximal rank, since in

that case it induces an isomorphism between the normal bundle ν to C in Rd(N−k+1)

at any point and the “normal bundle” to {`} ↪→ RN . Thus ν (the complement to
the tangent bundle TC in Rd(N−k+1)) is orientable, so TC is, too. Finally, C
is compact since it is a closed subset of the free configuration space, which is a
N -torus. ¤

2.2. Remark. For an arachnoid mechanism in R3, the matrix dG will be singular
for a 2-node configuration (two aligned branches along one line); a 3-node config-
uration (three aligned branches contained in one plane); or a 4-node configuration
(four aligned branches).

3. PLANAR MECHANISMS

¿From now on we restrict attention to arachnoid mechanisms (L,X ) in the ¿plane
(that is, d = 2).

3.1. The work space. In this case, each vector vj in a branch configuration V (of
multiplicity n) is determined by its argument θj (since ‖vj‖ = `j), and V can thus
be identified with a point (θ1, .., θn) in the n-torus

Tn = S1 × . . .× S1

︸ ︷︷ ︸
n

.

Thus if ν = n(1) + . . . + n(k), then C(L,X ) ⊆ Tν =
∏k

i=1 Tn(i) .
Given such an arachnoid mechanism, we can describe the work space W as fol-

lows: for any branch L = (`1, . . . , `n), let β(L)min denote the minimal value of
|∑n

j=1 εj`j|, where εj = ±1 for each 1 ≤ j ≤ n; and let β(L)max :=
∑n

j=1 `j (the
maximal value). The work space W = W(L,x) for the branch L with base point
x (without any constraint on the end point) is then an annulus bounded by circles
of radius β(L)min and β(L)max, respectively.
If L = (L(1), ..., L(k)), with multiplicities n(1), ..., n(k), and X = (x(1), ...,x(k)),

the work space for (L,X ) is W =
⋂k

i=1 W (i), where W (i) = W (L(i),x(i)).
Each component of W is a curvilinear polygon P (not necessarily convex), whose
edges Edge(P ) are arcs of the annuli boundary circles ∂W (i), and whose vertices
Vertex(P ) are intersection points of such arcs.
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3.2. The configuration space. The configuration space for any branch L = (`1, . . . , `n)
and base-point x is an n-torus Tn, with work map φ : Tn → W .
Note that the fiber φ−1(z) over any point z ∈ Int W is the configuration space

for the closed chain with links `0, `1, . . . , `n, where `0 := z − x. This configuration
space has been analyzed in [HR]. On the other hand, if z is on the boundary of the
annulus W , then φ−1(z) is evidently discrete, and in fact consists of a single point
(unless it is on the inner circle, and β(L)min can be written as |∑n

j=1 εj`j| in more
than one way).
If L = (L(1), ..., L(k)), with multiplicities n(1), ..., n(k), and X = (x(1), ...,x(k)), its

configuration space is the pullback

C(L,X ) = {(τ1, . . . , τk) ∈
k∏

i=1

Tn(i) | φ1(τ1) = . . . = φk(τk) ∈ W}.

3.3. Example. Consider an arachnoid mechanism consisting of three branches,
each of multiplicity 2, as in Figure 1.1.
The workspace for each free branch is an annulus; let us assume that the three

annuli intersect in the shaded lens-shaped component P in Figure 3.1.

Annulus 2

β α

Annulus 3Annulus 1

FIGURE 3.1. Polygonal intersection

Now consider an interior point y ∈ Int(P ): in the corresponding configurations
in the fiber Φ−1(y), each of the three branches can be in one of two positions
(branch configurations), usually termed “elbow up” (u) and “elbow down ” (d),
so for each branch we have a copy of S0 = {u,d}. Thus the fiber consists of
eight points uuu,uud, . . . ,ddd, thought of as the product S0 × S0 × S0. Thus
Φ−1(Int(P ) is simply an eight-fold cover of the interior of the lens.
On the other hand, if y is on the edge α of P , which is in the outer boundary of

the first annulus, the first branch is completely extended, identifying its u and d
positions, thus collapsing the first S0 to a single point, and generally identifying
the copy of α in C indexed by u ∗ ∗ with the copy indexed by d ∗ ∗, for ∗∗ ∈
{uu,ud,du,dd}.
Similarly, the copy of β in C indexed by ∗ ∗ u is identified with that indexed by
∗ ∗ d. Therefore, the fiber of y ∈ α∩β consists of two points. Note that the second
S0-factor never collapses, so C is of the form S0×M – i.e., C has two components,
each isomorphic to M.
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To evaluate the Euler characteristic of M, note that it is obtained from four 2-
gons (the lens-shaped intersection in W) by identifying their 8 edges pairwise (as
explained above), identifying the “top” vertex in all the 2-gons to a single point,
and similarly for the “bottom” vertex. Thus χ(M) := V − E + F = 4− 4 + 2 = 2,
so M is a 2-sphere, and C ∼= S2 t S2.

3.4. Invariants of annulus arrangements. An annulus (i.e., pair of concentric cir-
cles) in the plane is determined by (x, βmin, βmax), where x ∈ R2 is the center and
0 < βmin < βmax are the radii. Consider a system

〈(x(1), β(1)min, β(1)max); . . . ; (x(k), β(k)min, β(k)max)〉
of k such pairs (with distinct centers), and let W denote the intersection of all
the corresponding anulli; this may have several connected components V1, . . . , Vt.
What we have in mind, of course, is the collection of boundary circles for the work
space of branches of an arachnoid mechanism.
The boundary ∂V of each component V of W is a curvilinear planar polygon,

not necessarily connected; let α := α(V ) denote the number of components of
∂V contained in the interior of its convex hull conv(V ). We set

γ := γ(V ) =

{
1 if conv(V ) is a disc
0 otherwise.

be wholely contained in the interior of some of the annuli; denote the number
of such annuli by β := β(V ) (0 ≤ β(V ) ≤ k), and let the c-invariant of V be
c(V ) := 2β . Finally, the g-invariant of V is:

g(V ) := 1− 2k−β−3(|Vertex(V )| − 2|Edge(V )|+ 4 + 2γ − 4α).

3.5. Theorem. Let (L,X ) be a planar arachnoid mechanism with k branches, each of
multiplicity 2, and assume that the configuration space C = C(L,X ) has no node con-
figrations; then C decomposes as the disjoint union of the pre-image under Φ of the com-
ponents of the workspace W , and for each such component V , Φ−1(V ) consists of c(V )
closed orientable surfaces of genus g(V ).

A special case of this Theorem appears in [E].

Proof. As in example 3.3 above, Φ−1(V ) is obtained from the 2k curvilinear polyg-
onal “tiles” (i.e., copies of V , corresponding to the “elbow up/elbow down” po-
sition of each branch), by identifications of those edges which correspond to the
k − β “relevant” branches. Since we know from Theorem 2.1 that (each compo-
nent of) C is a closed orientable 2-manifold, its type (genus) is determined by the
Euler characteristic, which may be computed by calculating how many identifica-
tions we have for each vertex or edge of Φ−1(V ).
To orient Φ−1(V ), choose an orientation for some (fixed) tile H0. Every other

tile H of Φ−1(V ) differs from H0 in exactly τ of the k possible “elbow up/elbow
down” positions, and we reverse its orientation (relative to that of H0) if and only
if τ is odd. ¤
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FIGURE 3.2. Work and configuration space intersections of two branches

3.6. Remark. As noted in §3.1, the workspace W was obtained by repeatedly inter-
secting annuli, which are the workspaces of the individual branches. If we concen-
trate on the annulus A of the first branch, say, then generically the annuli for each
of the remaining branches will interesect with A in one of the six shaded patterns V
in the first row of Figure 3.2. In each case we obtain a certain subset φ−1(V ) of the
2-torus T2 which is the configuration space for the first branch, where φ : T2 → A
is the work map for the first branch.
Note that when we further intersect V with a third annulus, the pattern may be

more complicated; in particular, three-fold intersections need not be connected, as
illustrated by Figure 3.3, which shows the subset of the 2-torus associated with the
workspace of Figure 1.1 (without indicating the identifications).

Annulus 1

Annulus 3

FIGURE 3.3. Subset of T2

4. SINGULAR CONFIGURATION SPACES

While the analysis of the configuration space C = C(L,X ) of a mechanism in the
non-manifold case is in general difficult, for a planar arachnoid mechanism with
branch multiplicity 2 the description of Theorem 3.5 can actually be extended to
singular points, corresponding to the node configurations.

4.1. Proposition. Let (L,X ) be a planar arachnoid mechanism with k branches, each of
multiplicity 2, and let V be a node configuration in C = C(L,X ). Then V has an open
neighborhood in C which is a wedge of 2q−ε 2-dimensional discs with common center V ,
where q is the number of aligned branches, ε = 1 if the aligned branches have a common
direction, and ε = 2 otherwise.

Proof. Let v := Φ(V) be the common end-point of the k-branches in V , and let
U be an small disc containing v in the workspace W . Since v is necessarily in the
boundary of a curvilnear polygonal component of W , then P , the boundary of U
near v, consists of arcs of the boundary circles of the annuli.
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(1) When all of the q aligned branches have a common direction, the centers
of the corresponding annuli must be collinear, and P is an arc e of a single
boundary circle of such an annulus. Note that Φ−1(Int(U)) intersects the
component of V in 2q disjoint discs, which are identified pairwise along
Φ−1(e) so as to yield 2q−1 discs whose only common point is V ∈ Φ−1(v).

(2) Otherwise, P must consist of two arcs e1, e2 of distinct boundary cir-
cles (whose centers are not collinear with v). Again Φ−1(Int(U)) inter-
sects the component of V in 2q disjoint discs, but now every four of them
(corresponding to the four “elbow up/elbow down” positions of the two
branches associated to e1 and e2, respectively) are identified in Φ−1(U) ⊂
C along Φ−1(e1) and Φ−1(e2), forming the four quadrants of a new disc
– where again V is the only point in common. This yields a total of 2q−1

discs. 2
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