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Abstract

Investors often wish to insure themselves against the payoff of their portfolios falling below a
certain value. One way of doing this is by purchasing an appropriate collection of traded securities.
However, when the derivatives market is not complete, an investor who seeks portfolio insurance
will also be interested in the cheapest hedge that is marketed. Such insurance will not exactly
replicate the desired insured-payoff, but it is the cheapest that can be achieved using the market.

Analytically, the problem of finding a cheapest insuring portfolio is a linear programming
problem. The present paper provides an alterngtoantfolio dominanceapproach to solving the
minimum-premium insurance portfolio problem. This affords remarkably rich and intuitive insights
to determining and describing the minimum-premium insurance portfolios.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Portfolio insurance guarantees a minimum payoff or floor on the downside while capturing
the upside. The desired insured payoff can be replicated by holding a riskless asset and fidu-
ciary call options. Alternatively, it can be replicated by holding the portfolio and protective
put options.

When derivative markets are not complete, the desired insured payoff need not be mar-
keted and a perfectly insuring portfolio may not be available. However, there always exist
tradable portfolios that pay at least as much in every state of the world as the desired payoff.
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These portfolios are candidates for portfolio insurance when markets are not complete. The
price of such asuper insuringportfolio is its insurance-premium. Therefore, an investor
who seeks portfolio insurance would be interested in the cheapest hedge that combines
available securities, even though it need not exactly replicate the desired insured payoff.
That is, an investor will strive to purchase a portfolio whose payoff dominates the desired
insured payoff and which has the lowest insurance-premium. Such a portfolio is termed a
minimum-premium insurance portfolio

The problem of finding a minimum-premium insurance portfolio is a standard linear pro-
gramming problem. This paper presents an alternative approach to solving the minimum-
premium insurance portfolio problem in a general setting. This is done by taking advantage
of the order theoretic structure of portfolio dominance—whereby a portfolio dominates
another portfolio if it pays at least as much in each state of the world. As we shall see, the
portfolio dominance approach affords remarkably rich and intuitive insights to determining
and describing minimum-premium insurance portfolios.

The principal insight of this paper is that we can always obtain a minimum-premium
insurance portfolio by looking at portfolio dominance over a restricted number of states of
the world. In particular, its analysis focuses on the structure of portfolio dominance over as
many uncertain states as available securities.

Technically, the argument goes as follows. When markets are complete, it is easy to
determine the portfolio that replicates a desired insured payoff, since in such a setting there
are as many states of the world as the available (non-redundant) securities. In terms of
portfolio dominance, this portfolio is the least upper bound of the underlying portfolio and
the floor!

In contrast, when markets are not complete there are more states in the world than available
securities and the desired insured payoff need not be marketed. In such a case, we construct
a number of different notions of portfolio dominance by discarding enough states of the
world. For instance, if there arg securities, then we can say that a portfolio dominates
another portfolio if it pays at least as much in the fifsstates of the world. Likewise, a
portfolio dominates another portfolio if it pays at least as much in thelagates of the
world. Now for every such restricted notion of portfolio dominance, we can calculate the
least upper bound of the underlying portfolio and the floor giving us a finite number of
candidate portfolios. The main result of this paper asserts the following:

One of the finite number of the least upper bounds or candidate portfolios of the underlying
portfolio and the floor must be a minimum-premium insurance portfolio.

A characterization of investors that demand portfolio insurance has been presented in
the classical article dfeland (1980)where it is assumed that option markets are complete
and, therefore, any desired insured payoff can be perfectly replicated through the purchase
of traded securities. Clearly, an investor that demands insurance in a complete market also
demands insurance in the case of an incomplete derivatives market. However, if she cannot
perfectly replicate the desired insured payoff, then why would she be interested in the
“exotic” insurance studied in the present paper? Why characterize the cheapest hedge?
Why the minimum cost criterion?

1 Here, the matrix of non-redundant contingent claims is non-singular and the replicating portfolio can be
calculated by taking the inverse value of the payoff matrix at the desired insured-payoff.
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The replication of derivatives in constrained markets using the minimum cost criterion
has been the subject of many articles in the literature. For insthiagde and Uppal (1994)
use the minimum cost criterion to construct optimal hedging strategies in the presence of
leverage constraints. Their work determines the strategy that minimizes the initial cost of
hedging given leverage constraints. They argue that the criterion of minimum cost has sev-
eral advantages. First, for constrained institutions that need to hedge liabilities, this approach
is equivalent to maximizing profit. Second, the minimum cost approach also determines the
maximum price that a constrained investor would be willing to pay for a contingent claim for
exact portfolioinsurance. Thatis, itis the maximum price that an investor is willing to pay for
a non-traded Over-The-Counter portfolio insurance. Third, the authors show how the mini-
mum cost criterion is related to utility maximization in the presence of leverage constraints.

The minimum cost criterion is by now a well studied in the literature on hedging and option
pricing under constraints. For exampledirisinghe et al. (1993tudy minimum-premium
hedging in the presence of transactions costs. More@madie et al. (1998use the
minimum cost criterion to determine the cheapest portfolio that dominates an option in the
presence of extremely general constraints. Our analysis is motivated by the issues considered
in these papers.

The cheapest hedge problems under portfolio constraints lend themselves comfortably
to the realm of linear optimization (see for instai¢a&ik and Uppal, 1994and to convex
as well as to stochastic optimization approaches (see for inskatideinghe et al., 1993
andKaratzas and Kou, 1996, 1998

The order theoretic approach taken in this paper affords a new and intuitively appealing
characterization of the cheapest hedge. The idea is simple: portfolio dominance captures
an important mathematical aspect of options—the building blocks of hedging strategies.
Indeed, under the portfolio dominance approach an option is simply a vector lattice operation
in the portfolio spacé. Generally, when markets are not complete portfolio dominance
has no lattice structure. Fortunately, every “pseudo-complete” market defines a coarser
ordering that has a vector lattice structfrand generates its own “put options” and “calll
options.” The main idea of this paper is that the cheapest hedge can always be constructed
using these new “options.”

The portfolio dominance approach has yielded several other results on portfolio trading.
See for instance the work &@rown and Ross (1991ho extend Ross’ classical result
(Ross, 197%Hon the role of options in completing markets (see @seen and Jarrow,
1987. Hedging in the non-generic case in which portfolio dominance has a vector lattice
structure is studied iAliprantis et al. (2000)Possibly the most successful use of vector
ordering methods in economics is in general equilibrium theory. Indeed, the order theoretic
properties of commodity spaces—in particular their vector lattice properties—have proven
crucial for the development of the Arrow—Debreu—McKenzie general equilibrium model.

2 For an underlying security with replicating portfolig the call option at strike pricé is replicated by the
portfolio (& — k)*, wherek is the riskless portfolio paying in each state of the world and the lattice operation
(0 — k)T is taken in the space of portfolios. Similarly, the put option at strike grisareplicated by the portfolio
(k—6)".

3 In fact, it is shown inAliprantis and Tourky (in presshat generically when there are less than half as many
assets as states of the world not a single non-trivial option can be replicated.

4 Under this ordering the portfolio space is callesthmimal lattice subspace
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The structure of this paper is as follows. The model Séetion 2 The main result regard-
ing the minimum-premium insurance portfolio is state&attion 3Section 4llustrates the
results with several examples. The mathematical background needed for establishing the
main result is presented Bection A.lof the Appendix A Section A.2studies the concept
of portfolio dominance, while the proof of the main result of this work iSaction A.3

2. Minimum-premium insurance portfolio

This section begins with a brief exposition of portfolio insurance in the standard state-space
assets markets model, see for example the modétegs (1976andMagill and Quiinzi
(1995) We then look at hedging when markets are complete. Using the insights gained from
the case of complete markets we extend the analysis to the case of incomplete markets.
We consider the two-period securities model. There is a finite nusibéstates of the
world. Agents trade/ < § non-redundant securities, ro, ..., ry in period-zero whose
period-one payoffs are state contingent claims. Therefore, we allow for incomplete markets
in which the number of no-redundant securitieis smaller than the number of statesAs
usual, theasset returns matrigor thepayoff matriy R is theS x J matrix whose columns
are the available no-redundant (i.e. linearly independent) security vectors:

ri(1) ro() ... r;Q

r1(2 2 ... rj2
R =

r1(S) ra(S) ... ryj(S

Portfolios are linear combinations of the available securities. A portfolio is therefore
represented by a vector B . Portfolios are considered as column vectors and the payoff
of a portfoliod is R6.

A state contingent claim, which is a vectort?, is said to be anarketed payofif it
lies in the asset span (i.e. the rangé) = (R) of the asset returns matrig in RS; in
which case, there is a unique portfolio (called theplicating portfolig of the available
securities whose payoff is the state contingent claim. We shall assume that the riskless bond
1=(,1,...,1) is marketed.

We shall also say that a portfolibsuper replicatesa state contingent claim € RS if
RO > x.Thatisp pays atleast as much in each state.asportfolio 6 (perfectly replicates
a state contingent claim € RS over a set of statesif RO(s) = x(s) for everys € I.

If the asset span equals the entire space of contingent claims {i.e i), then markets
arecompleteWhenJ < S the markets arsncompleten which case some state contingent
claims cannot be replicated by a portfolio.

We shall restrict our study tarbitrage-freesecurity prices. That is, we restrict our
attention to vectorg € R’ of security prices that give a non-zero positive vajue > 0
to any non-zero portfoli® with a positive payoffRé > 0. A priceq € R’ is arbitrage
free (respectivelyweakly arbitrage fregif ¢ - 6 > 0 (respectivelyy - 6 > 0) whenever the
portfolio 6 satisfiesRd > 0 (respectivelyR6 > 0).
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2.1. Portfolio insurance

Theinsured payofbf a portfoliod = (61, 6, ..., 0;) atafloork € Ris a state contingent
claim that captures the upside of the portfolio and insures against any downside below the
floor. In other words, the insured payoff is the state contingent claim

i max[zjj'=l ri(1)6;, k} ]

nﬁaX{E:{zlij(Z)Gj,k}
max R0, k} = o

i max[ZjJ-=1 ri(8)0;, k} i

wherek = k1 is the riskless bond payirigin each state of the world. In a complete market
the insured payoff of a portfolio is the contingent claim that can be replicated by holding
the payoff of the portfolio and a put option with a strike prigeor it can be replicated by
holdingk and a call option on the portfolio with a strike priceThe basic problem is that
when markets are incomplete the insured payoff need not be a marketed payoff.

2.2. Minimum-premium insurance portfolios

Once again we consider a portfolioand a floork. Any portfolio n whose payoffRy
dominates the insured payoff méRé, k} in each state is viewed as Brsurance portfolio
There are many such portfolios. The cost of such a portfolio isnifiErance-premiunSo,
if ¢ is a securities price, then the insurance-premium associated with an insurance portfolio
n is g - n. We are, therefore, interested imanimum-premium insurance portfol{or a
cheapest hedge portfo)iof 6 at the floork, which is the least costly portfolio whose payoff
dominates the insured payoff 6fand the flook. That is, a minimum-premium insurance
portfolio is a solution to the following minimization problem:

(MP) ming -n
st.:neR/, Rn> RO, andRn >k

A solution to this minimization problem always exists. As a matter of fact:
The solution set of the minimization problem (MP) is a non-empty, convex and compact
subset oR”.

3. Portfolio dominance and the cheapest hedge solution

In this section, we shall sketch briefly the basic ideas behind our solution to the hedging
problem. As mentioned before, our solution is based on the notion of portfolio dominance
that is related to the lattice structures of the spaces.

We shall say that a portfoli® dominatesa portfolion if R6 > Rn, in which case we
write @ > 7. The portfolio dominance relation makesR’ a partially ordered vector space.

We shall denote by the (pointed convex) cone generated>byi.e.

C={0eR’:6>0}.
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Now for any two portfolio® andn we writed v n to mean the least upper bound of
the set{0, n} relative to>. That is, the portfoli@ v¢ n, if it exists, has the property that
Oven=60andd ven =nandifu =6 andu > n, thenu > 0 ve 7.

Whenever markets are complete, one can calculate a unique portfolio that is a minimum-
premium insurance portfolio for any arbitrage free securities price. However, when markets
are not complete the minimum-premium insurance portfolio depends on the prevailing price.
Nevertheless, as we shall see, the incomplete markets case is quite similar to the case of
complete markets. The details follow.

3.1. Complete markets

Assume for now that markets are complete. That is, assume that the payoff Ri&rix
aJ x J matrix. Recall that we have fixed a portfooand a floork. When markets are
complete, it is easy to calculate a perfect hedge, or a portfolio that replicates the insured
payoff of 6 at floork.

Indeed, if the portfoliac replicatesk (i.e. if R« = k), then sincer is invertible the
insured payoff is replicated by the portfolio:

0* =0 ve k = R-Imax(Ro, k}.

The portfolio6* is clearly a minimum-premium insurance portfolio for any arbitrage free
price. In particular, it is independent of the prevailing arbitrage free security prices. That is,
we have the following result.

Theorem 1. If markets are complete, then for any arbitrage free price the unique minimum-
premium insurance portfolio is replicated by the portfdio’¢ «, which existgand is the
call option on the portfoli® at strike pricek andk bondsl.)

3.2. Incomplete markets

Assume now that the market is incomplete. We shall see that discardingsserhstates
of the world allows us to use a procedure for calculating a minimum-premium portfolio
insurance as though the market is complete. We shall describe this method next.

For any collection/ of J elementary states |&; be theJ x J matrix whose rows are
the rows of the payoff matri corresponding to the states hfFor instance, if there are
three securities and four states then

ri() r2(1) r3(D)
Raza = | r@ r?3)
ri4 r2(4) r34)

If R; is invertible, then we say tha; (or evenl) defines gpseudo-complete market
Since the rank oR is J there always exists at least one pseudo-complete market.

Before proceeding further, let us introduce some further notation. If a set of states
I = {51 < s2 < --- < sy} defines a pseudo-complete market and a portfolio, then we
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letd; = (b, Os,, . .., Bs,). If we viewd; as a column vector, then we shall dengi@; by
R0, thatis,R;0 = R;0;.

Now eachpseudo-complete mark&; generates a new notion of portfolio dominance
> by definingd >; n wheneverR;6 > R;n. It turns out that not only this portfolio
dominance relation-; partially orders the portfolio spad®’ but it also induces a lattice
ordering. That is, for evergseudo-complete mark&y its portfolio dominance cone

Ci={eR :0>;0

is a lattice cone—which is also a super-con&€of.e. C C C;. This means that iff andd
are two portfolios, then the ;-supremum of the two portfoliasv;  exists and is given by
Ovin= R;lmax{Rle, R;n}. Assuming thatRx = k, for each pseudo-complete market
R; we let

N1 =6 ViK =Ry "maxR0, k).

If 6 is any portfolio andk is a floor price, then g@otentially insuring portfoliois any
portfolio of the formn; satisfyingRn; > max{ R0, k}. We shall denote the finite collection
of all potentially insuring portfolios of at the floork by Py &, i.e.

Pox = {n € RY : n =y, forapseudo- complete markeR; andRn > RO V k).

Clearly, there is a finite number of potentially insuring portfolios that are calculated
independently of the arbitrage free security price.

The remarkable property is that one of the potentially insuring portfolios is a minimum-
insurance premium portfolio. This is the main result of this paper and it will be stated next.
Its proof is quite involved and it will be presented3$ection A.3of the Appendix A

Theorem 2 (The cheapest hedge theorerfr any portfoliod, any arbitrage pricey, and
any floork we have the following

1. There exists at least one potentially insuring portfélia; « that is a minimum-premium
insurance portfolio fov at floor k.

2. A minimum-premium insurance portfolio/; « is the i.e. potentially insuring portfolio.
Thatisqg - (0 vik) <g-nforall n € Pyy.

3. The portfolion* = 0 v « exists if and only iPg x consists of one portfolig*, which
is automatically a minimum-premium insurance portfolio for any arbitrage free price

The third statement in the theorem is an extension of the main resdliprantis et al.
(2000) which shows that a price independent minimum-premium insurance portfolio
insurance exists for any portfolio—floor pair if and only if the portfolio dominance cone
is a lattice cone; i.e. it generates a vector lattice on the portfolio space.

Let us conclude this section with a final remark. There is an intuitively appealing way of
identifying the potentially insuring portfolios:

A portfolio is a potentially insuring portfolio if and only if it super replicates the insured
payoff and perfectly replicates the insured payoff over d sdtJ states for whiclr; is a
pseudo-complete market.
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4, lllustrative examples
The cheapest hed@deorem Zan be reformulated as follows.

Theorem 3. For any portfoliod, any arbitrage free price, and any floork we have the
following:

1. There exists at least one potentially insuring portfolio that is a minimum-premium
insurance portfolio fop at floor k.

2. A minimum-premium insurance portfolio can be obtained by solving the finite minimiza-
tion problem

(FMP) ming -n
st.:nePox

3. If Py x consists of one portfolio, say*, thenn* is automatically a minimum-premium
insurance portfolio

That is:for any arbitrage free price, the cheapest potentially insuring portfolio is a mini-
mum-premium insurance portfolim other words, we have reduced the minimum-premium
insurance portfolio problem (MP) to the following minimization problem over a finite set:

min ¢ -n
s.t. : nisapotentially insuring portfolio

This section presents some illustrative examples of the preceding result. With this in
mind, leté be a portfoliok a floor, andg an arbitrage free price. Moreover, for each ket
of J states, leRR; be theJ x J matrix whose rows are the rows gfdetermined by. Now
consider the following steps:

1. For each invertibl&; find the portfolio
n1 = Ry maxRé, k),

and form the collectiorPy j of all potentially insuring portfolios of at the floork.

2. If Py consists of one portfolio, say*, then we are done. The portfolig is the only
minimum-premium insurance portfolio for any arbitrage free price.

3. If Py, contains more than one portfolio, then the least costly portiplio Py ;. with
respect to the price is a minimum-premium insurance portfolio.

We are now ready to present three examples. The firstexample is an example of acomplete
market.

Example 1 (A complete market). Suppose that there are four states of the world and that
the market has the following non-redundant securities:

1. Atreasury bond with payoff = (1,1, 1, 1).
2. A corporate bond with payofD, 1, 1, 1).
3. A share with payoff0, 1, 2, 4).



C.D. Aliprantis et al./Journal of Mathematical Economics 37 (2002) 269-295 277

4. A call option on the share with a strike price of 3.
That is, the security mdx0, 1,2, 4) — 3,0} = (0,0, 0, 1).
Therefore, the asset returns matRixs

1 00O

11

1 2

1 4

[ S =Y
» O O

Keep in mind that the payoff of any portfolibis R6.
Now consider the portfolié = (1, 2, 3, 0). The insured payoff on a portfolidat a floor
k = 10 is the contingent claim

1 10 10
max{ R0, 10} = max 6 , 10 = 10
9 10 10
15 10 15

This contingent claim is obviously marketed and is the payoff of the portfolio

1 0 0 010 10

R -1 2 -1 0]]10 0
6* = R~*maxR6, 10} = =

0 -1 1 0|10 0

0 2 -3 1][15 5

Clearly, for any arbitrage free securities prgade portfoliod* is the unique minim-premium
insurance portfolioFig. 1 provides a graphical illustration of this example.

Example 2 (Incomplete markets with only one potentially insuring portfolio). We consider
the market in the previous example. But now we suppose that the call option is not available.
Thus, the market is described by the returns matrix

1 00

[ =

1
1
1

~N R

Consider the portfoli®@ = (1, 2, 3). The insured payoff on the portfoli& at a floor
k = 10 is once again the contingent claim

1 10 10

6 10 10
max RO, 10} = max , =

9 10 10

15 10 15
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Payoff

Payoff of portfolio
""" Insured payoff
= Floor

States

Fig. 1. When markets are complete the insured payoff can be replicated by a portfolio containing 10 treasury bonds
and five call options.

This contingent claim is not marketed since as we saw in the previous example it is the
payoff of a portfolio using the unavailable call option.

However, we can calculate (at most) four important portfolios by looking at the four
3 x 3 matrices whose rows are taken fr&dnThese are the matrices:

"1 0 07 1 0 07
Ra23=|1 1 1|, Ra2e=|1 1 1],

1 1 2] 1 1 4,

"1 0 07 101 17
Razsa=|1 1 2|, Reszsy=|11

1 1 4] 1 1 4]

Notice thatR 34 is a singular matrix. Therefore, we restrict our attention to the
remaining three pseudo-complete markets and obtain the following three portfolios:

10
n1,23 = R(_lflz’g)ma){R(l,Z,S)ev 10}=1| 0 |,
0
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10
5
77(1,2,4)=R(_l,l274)max{R(1,2,4)9,10}= 3,
5
L 3
10
— R} Rasaf. 10y = |
N13.4) = Rq34Max{R1340,10} = 5
L 2

From these portfolios only(1 2,4y has a payoff greater than the insured payoff efith
floor 10. That is,

10
10 10
. 10
9 = Rn(1’2!4) = 35 >
3 10

Therefore, for any arbitrage free securities pricehe portfolio n(1,2.4) is the only
minimum-premium insurance portfolio. Therefore, we have found a solution that is
independent of the arbitrage free security prices. This example is illustrakeg. i

Payoff

Payoff of portfolio
Payoff of minimum—premium
insurance portfolio

Floor

States

Fig. 2. When the call option is not available the insured payoff cannot be replicated. However, the unique

minimum-premium insurance portfolio contains 10 treasury bonds, a short sale of one- and two-thirds of the
corporate bond, and one- and two-thirds of the share.
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Example 3 (Incomplete markets with price dependent insurance). Consider a market with
the payoff matrix

N
O O r N
o w G’ Bk

and, once again we consider the portfdlie= (1, 2, 3).
The insured payoff on the portfolidat a floork = 10 is the contingent claim

8 10 10

18 10 18
max{R0, 10} = max , =

10 10 10

1 10 10

This contingent claim is not marketed.
Next, we can calculate (at most) four portfolios by looking at the fowr 3 matrices
whose rows are taken froR. These are the matrices:

12 1 12 1
Ri23=|1 1 5|, Raz2e=|1 1 5],
1 0 3 (10 0
1 2 1] (1 1 57
Raszse=|1 0 3|, Ress=|10
10 0] 1 0 0]

2
1 8
n123) = Ry zmMaxRa230,10} = | 3 |,
8
3

N1,24 = R(_l’lz’4)max{R(1,z,4)9, 10} = 9 |,
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» [
. ~ =
s ~ S
= \ £
(=T
\
\
\
\
10 / b4
States States
Payoff of portfolio

Payoff of minimum—premium
insurance portfolio

Floor

Fig. 3. In this example the insured payoff which is a butterfly-spread cannot be replicated. However, there are two
choices for portfolio insurance; and the choice depends on the prevailing securities prices.

N1.3.4) = R(_1’13,4)max{R(1)3‘4)0, 10}=| 0O

n@34 = Rp3MaXR2340,10} = | 8

Notice that the portfolios 1,2 4) andn 2,3 4) have a payoff greater than the insured payoff
of 6 at floor 10. (sedig. 3). That s,

10 10
18 18

Rn,2,4) = 1=
” 15§ 10
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and
26 10
18 18
Rne3ae = 1012110
10 10

Now let us take three arbitrage free prices.
1. Letg = (L1, 1) =312 1+ 5115 + 3(1,0,0). From

q-N@a24 = 108 <q-ne34 =18

we see that the minimum-premium insurance portfolio for the priten 1.2 4).
2. For the arbitrage free securities price

g=(4112 = 3121+ 3115 +(103)
we have
q-n124=60+3 and q-npz4 =48

Thusg-n@.2,.4) > q-n2,3,4), and s0)(2,3 4 is the minimum-premium insurance portfolio
for the priceg = (4, 1, 12).

3. For the pricey = (11,5,25) = 2(1,2,1) +6(1,0,3) +2(1,0,0) + (1, 1,5), we get
q - na24 = q-1ne34 = 150. Therefore, both portfolios are minimum-premium
insurance portfolios for this pricg.
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Appendix A. Background and proofs
A.1l. Mathematical preliminaries

We present here the basic concepts and results concerning cones in finite dimensional
spacesthatare needed to prove the maintheorem of this paper. The generic finite dimensional
vector space will b&” .

Recall that gpointed convex coner simply acong is a non-empty subsét of R/ such
that:

1. K+ K CK,
2. «K C K for eacha > 0, and
3. KN(—K) ={0}.



C.D. Aliprantis et al. / Journal of Mathematical Economics 37 (2002) 269-295 283

Every conek induces a vector space ordeg (or <x) onR’ by definingx >x y (or
y <k x)whenever —y € K. The vectors ok are precisely the vectors satisfying-x 0
and (if there is no other cone under consideration) they are referregésitise vectorse
also writex > g 0tomeanx >k 0 andx # 0. For each vector € K, theK-order interval
{y e R/ :0 <x y <k x}willbedenoted [0x]k,i.e.[0,x]x = {y e R/ : 0 <g y <k x}.

A coneK is said to begeneratingif R/ = K — K, i.e. if every vector inR’ can be
written as a difference of two vectors k. The following result is well known and we state
it for completeness.

LemmaA.l. A cone inR’ is generating if and only if it has an interior point
Thedual coneK’ of a conek is defined by
K'={ge@®/Y=R’:q-x=>0forallx € K}.

The members oK’ are calledpositive linear functionals
Regarding dual cones, we have the following basic duality result.

Theorem A.1 (Duality theorem).If K is a closed generating cone R, then

1. The dual con&X”’ is also a closed and generating cone
2. The dual cone oK’ coincides withK , i.e, K = K" = (K')’.

In particular, we have:

() x >k yifandonlyifg - x > ¢ - y foreachg € K’, and
(b) g1 =k g2 ifandonly ifgy - z > g2 - z foreachz € K.

Proof. It should be clear thak’ + K’ € K’, K’ € K’ for eacha > 0, and thatk’ is

a closed subset &”. To see thak’ is a cone, ley € K’ N (—K'). Then,g - x > 0 and
g -x < 0both hold for allx € K. Thatis,q - x = 0 for eachx € K. SincekK is generating,
it follows thatg - x = O for allx € R”, i.e.q = 0.

Clearly,K € K”. To see thaK = K" is indeed true, assume by way of contradiction
thatK is a proper subset &”. So, there exists somee K” such thatc ¢ K. Sincek is
closed and convex, it follows (from the separation theorem) that there existsenie’
and some real numbersuch thaly - y > ¢ > ¢ - x for eachy € K. SincekK is a cone,
we getc < 0andg -y > Oforally € K. This impliesq € K/, and sag - x > 0, which
contradictsy - x < ¢ < 0. HenceK = K”.

Finally, we show thak ' is generating, i.e. th&’ = K’ — K’. To see this, assume that
someg € R’ satisfiesg - y = Oforally € K’ — K’. This impliesqg € K" N (=K") =
KN (—K) = {0}, i.e.q = 0. Thus, the closed vector subspate- K’ is dense irR’, and
consequenthR’/ = K’ — K. O

A vectorg € (R’)' = R’ is said to bek -strictly positive(or simply strictly positive,
denotedy > O, if x > 0 impliesq - x > 0. The strictly positive vectors will play the
role of the arbitrage free prices.
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There are two more notions related to strict positivityklfs a cone in a vector space
then a vectox € K is said to be:

(a) internal, if for eachy € X there exists someg > 0 such thatr + oy € K for all
la| < o, and

(b) an order unit or simply aunit, if for eachy € X there exists some > 0 such that
Y =k ox.

For the dual of a closed and generating conginall these notions coincide.

LemmaA.2. Foraclosedand generating caki@nd someg < K’ the following statements
are equivalent.

1. ¢ is K-strictly positive.
2. g is an interior point ofK”.
3. g is aninternal point oK.
4. g is an order unit ofK’.

Moreover, the interior ofK’ is non-empty—and so the collectigik’)” of all strictly
positive vectors is dense K’'.

Proof. Notice first that fronTheorem A.JandLemma A.1we know that K’)° (the interior
of K’) is non-empty. This easily implies thak’)” is dense ink’.

(1) = (2) Letgq be a strictly positive vector and assume by way of contradiction that
g ¢ (K')". Since(K’)" in non-empty and convex, there exists (in view of the separation
theorem) some non-zero vectoe R’ suchthay-x < p-xforall p € (K’)". Since(K’)"
isdenseirk’, itfollows thatg-x < p-x holdsforallp € K’. Takinginto accounttha’ isa
cone,weseethatx <0< p-xforall p € K. Thisimpliesx € K” = K,andsoc > 0.
But then, the strict positivity of impliesqg - x > 0, contrary tag - x < 0. Thusg € (K’)".

(2) = (3) Thisis obvious.

(3) = (4) Assume that in internal point ofK’ and letp € R’. Pick somex > 0
such thayy + a(—p) € K’. This impliesp <k’ (1/a)q, and sq; is an order unit.

(49 = (1) Fix an interior vectorp in the dual conek’. Also, choose a symmetric
neighborhood’ of zero suchthap +V € K’. Fromp +v € K’ for eachv € V, it follows
that—p <k v <gs p foreachv € V,i.e.V C [—p, plk’- Sinceq is an order unit, there
exists somer > 0 such thatvg >g/ £p, and hence(l/a)[—p, plx’ € [—q, qlk’- SO, if
we letW = (1/a)V,thenW C [—q, q]lk’, and thusg + W C [0, 2p]lx’ < K'. This shows
thatg is an interior point ofK”.

Now let x >x 0 and assume by way of contradiction tat x = 0. If r € K’ is
arbitrary, then there exists sorhe> 0 such that-ir € W. This yieldsq + Ar € K’, and
s00< (g £ Ar) -x = £Ar - x. This impliesr - x = 0 for all r € K’, and consequently
r-x = 0forall» e R’. Thereforex = 0, which is impossible. This contradiction shows
thatg - x > 0, and sqy is strictly positive. a

LemmaA.3. LetK be a closed and generating coneRin. If q is a strictly positive vector,
then a closed subset A of K is compact if and only if the set of real numbetrs= {q - a :
a € A} is bounded
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Proof. Let A be a closed subset & such thaty - A is bounded, wherg is a strictly
positive vector. Since (according kemma A.3 ¢ is an interior point ofK’, there exists
an open neighborhood of zero such thag + V < K’. Now let p € R’ be an arbitrary
vector. Choose some > 0 such that-(1/A\)p € V, and sqgg & (1/1)p € K'. Therefore,
qEt(/M)p =g 00or—rqg <k’ p <k’ Ap. This—and the fact that- A is bounded—imply
that the sep - A is bounded for each € R’. ConsequentlyA is a bounded subset BF .

SinceA is also closed, it must be a compact set. O

Corollary A.1. If K is a closed and generating coneRY, then thek -order intervals
of R’ are compact

Proof. Let [0, x]x = K N (x + K) be an order interval. Sinck is closed, it should be
obvious that [0x] x is also closed. Now fix some vectgre (K’)” and notethat < ¢ -y <
q - x for eachy € [0, x]g, i.e. the sey; - [0, x]x is bounded. ByLemma A.3 the order
interval [0, x]g is compact. O

Now let K be a cone iR’. The K-supremum of two points, y € R/, if it exists, will
be denoted: v y. We shall say thak is alattice coneif for any two pointsx, y € R’
the supremum Vv y exits. An immediate consequence of the basic dudlitgorem A.1
is the following.

Lemma A.4. A closed and generating coneRY is a lattice cone if and only if its dual
coneK’ is likewise a lattice cone

A non-zero vectox in a conek is called aK -extremal vectoif 0 <g y <g x implies
y = ax for somea > 0. The half-lineL(x) = {ax : « > 0} generated by & -extremal
vectorx is called aK -extremal ray(or simply anextremal ray of K.

LemmaA.5. For a conek in R’ we have the following

1. If K is a lattice cone, theX has(aside of scalar multiplgexactlyJ extremal vectors
(which are necessarily linearly independgtitat generate the coné.

2. If K is generated by linearly independent vectors &, then K is a lattice cone
and(aside of scalar multipleéghese linearly independent vectors are the only extremal
vectors ofK .

In other words K is a lattice cone if and only if there exigtlinearly independent vectors
e1,e2,...,eyin K that generateX, i.e,,
J
K = inei ‘A >0 foralli=1,2,...,J
i=1
Moreover, wherK is a lattice cone, the half rayk(e1), L(e2), ..., L(ey) are the only
extremal rays ok and for each pair of vectoss= Z{Zl Aie; andx = ZE’:l uie; we have
J J

x\/Ky=ZmaX{)»i,Mi}€i and x/\Ky=Zmin{)»i,Mi}€i~
i=1 i=1
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Recall that a non-empty convex subgebf a conek is said to be dasefor K if for
each non-zera € K with x # 0 there exist a unique vectére B and a unique scalar
A > 0 such thate = Ab. The following simple result follows easily from the definitions.

LemmaA.6. If B is a base for a con&, then(aside from scalar multipldghe extremal
vectors of K are precisely the extreme points of the convex.set B

Regarding the existence of bases we have the following reskileef(1957) For a proof
seeJameson (1970, Theorem 3.12.8, p. 144 and Corollary 3.12.9, p. 145)

LemmaA.7 (Klee). If K is a closed cone ifR”, then

() K has a compact base, and
(b) K coincides with the convex hull of its extremal vectors

The proof of the existence of our cheapest hedge will be based upon the following duality
result that is a special case of a resulfiiprantis and Tourky (2002)

Theorem A.2. Let K be a closed and generating conéi. Then, for any, y € R’ and
anyq € K’ we have
inf_ g-z= max [p-(x—y)+q-y]= max [p-x+(@—p) -yl
pel0.q] g/

IZKX,ZZKY pel0,g] g

Proof. Fixg € K’, and letx, y € R = (R’)”. By Corollary A.1, the K’-order intervals
of R/ = (R’)’ are norm compact. Now the desired formula follows frékiprantis and
Tourky (2002)(Theorem 7.6) applied to the partially ordered vector sgace (R’, K')
whose order dual i£™~ = (R, K). O

A.2. Portfolio dominance

In this section, we shall discuss the two-period securities model when thefestates
andJ < S non-redundant securities. The only information needed for our analysis is the
payoff matrix

r) r@ ... rjQd
ri(2 r22) ... rj(@
R = . . . . ’
ri(S) ra(8S) ... ryj(S)
wherery, ro, . .., ry are theJ non-redundant securities. As mentioned before stheow
of the matrixR will be denotedy, i.e.,q; = (r1(s), r2(s), ..., ry(s)).

We shall consider the matriR as a linear operatak : ® = R/ — RS, where® is
viewed as thgortfolio spaceandRS as the asset space. Since the rank of the ma&tii
J, the matrixR as an operator fronk’ to RS is one-to-one.
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Theasset spanr themarketed spacis the range of the operat®, and is denoted/ or
(R). Clearly, the operatoR : R/ — M is one-to-one and surjective. We always consider
the marketed spacy partially ordered by the closed con, = Ri N M.WhenM, is
lattice cone ofM, thenM is called dattice-subspacef R5.

Although the non-redundant securitieg r», ..., r; are not assumed to be positive
vectors, we shall impose the following technical conditiondén

Assumption. The coneM, is generating inV/,i.e.M = M, — M.

If the riskless bond is marketed, then it should be clear Miatis generating. Also, if
each security; is positive, then\_ is automatically generating. We are now ready to define
the portfolio cone.

Definition A.1. The portfolio cone is the cone in the portfolio space defined by
C={0c®=R :RI>0={#ecR’:¢q;-0>0 foreachs =1,2,...,J}.

That is, the portfolio con€ consists of all portfolios iR/ with non-negative payoff and

is the inverse image of the standard con&under the operataR, i.e.C = R‘l(Ri) =

R~Y(M). This easily implies thaf is a closed cone i®, and our basic assumption shows
that we have following.

Lemma A.8. The portfolio cone C is closed and generating

Recall that the vectors i®’ = (R’)’ are also known asecurity priceslf p € ®' and
0 € ©, thenp - 0 represents the value of the portfoliate pricegp. The prices in the dual
cone ofC are known as weakly arbitrage prices.

Definition A.2. Aweakly arbitrage free price is a price lying in the dual cone of the portfolio
coneC. That is, the weakly arbitrage free prices are the prices in

C'={qe® =R’ :¢q-06>0 foralld e C}.

Apriceq € C'is said to barbitrage freeif ¢ € C andd # 0implyg -6 > 0. Thatis, the
arbitrage free prices are tliestrictly positive vectors—which, according kemma A.2
they are precisely the vectors {6”)". Since(C’)" is dense inC’, we have the following
important property.

LemmaA.9. The cone of weakly arbitrage free pric€sis closed and generating and is
precisely the closure of the convex t)” of all arbitrage free prices

Specializing.emma A.4to C andC’ we have the following.

Lemma A.10. The three statements below are equivalent

1. The portfolio cone is a lattice cone
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2. The cone of weakly arbitrage free pric€sis a lattice cone
3. The marketed space M is a lattice-subspac®of

We now come to the notions of dominance by portfolios and prices.

Definition A.3. A portfolio 6 is said to dominate another portfolipif 6 >¢ n, i.e. if
RO > Rn.

Similarly, a weakly arbitrage free prigedominates another weakly arbitrage free price
pif g =¢ p, thatis, if for any portfolic® € C we haveg -6 > p - 6.

SinceR6 > 0 is equivalent taR - y > O forall y € Ri andR6 -y = 6 - R'y holds
(whereR! denotes the transpose of the maikix it follows that R'y belongs taC’ for each
y € RY. Thatis, we have the inclusioR'y : y € R{} € C’, where{R'y : y € R]}is
clearly the (closed) cone generated by the rows of the payoff mAtrikhe next results
informs that, in fact, we have equality.

LemmaA.11. The cone of weakly arbitrage free pric€sis precisely the cone generated
by the rows of the payoff matrix R. That is

S
C/={Rty:y€RJJr}= szqs A >0 foreachy:l,Z,...,S}.
s=1

Proof. LetC; ={R'y : y e Ri}. As noticed above(; is the closed (convex) subcone of
C’ that is generated by the rows of the payoff ma®ixf C; £ C’, then there exists some
g € C' such thaty ¢ C;. So, by the Separation Theorem, there exists séraeR”’ such
thatr -0 > 0 > ¢ -0 holds for allr € C1. In particular, we have, -6 > 0 for eachs, and so

0 € C. This impliesq - 6 > 0, which contradictg - 6 < 0. This contradiction establishes
thatC, = C'. O

The next result presents a connection between the extremal r&y/samid the rows of
the payoff matrixR. This is a basic result for our work.

Theorem A.3. The cone of weakly arbitrage free pric€senjoys the following properties

1. Every extremal ray of’ coincides with the half ray generated by some row ¢afd
soC’ has a finite number of extremal rgys

2. The numbet of all extremal rays o€’ satisfies/ < ¢ < S. In particular, C’ is a lattice
cone ifand only i¥ = J.

Pr oof.

1. Letq be an extremal vector @’ and letL(g) be its half-ray. ByL,emma A.11 there
exist row vectorsgy, , . . ., g5, Of the payoff matrixk and positive constantsy, . . ., ax
such thatg = Zle aiqs; .- From 0<¢r a1g5, <c¢’ q and the extremality of, there
exists some. > 0 such thatv1gs;, = Ag. Henceg = ugs, holds for somg: > 0, and
soL(q) = L(gs,)- This shows tha€’ has a finite number of extremal rays.
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2. Let? be the number of extremal rays 6f. By part (1), it follows that < S. Also, let
gsy» - - -+ 4s, eL rows of R that generate all extremal rays ©f.

By Lemma A.7 we know thaiC’ is the convex hull of its extremal vectors. This implies
that C’ is generated by the row vectays, . . ., g5, In particular, fromR’ = ¢’ — C’ it
follows that¢ > J. Otherwise, ift < J were true, then the vector spacé— C’ could not
be of dimensior/.

For the last part, notice first thatdf= J, then the vectors,,, ..., g;, must be linearly
independent. This implies that the co6é must be a lattice cone. On the other hand, if
C’ is a lattice cone, then it must have exactlextremal rays, in which case we infer that
L=1. O

We are now ready to discuss the existence of cheapest hedging portfolios.

Theorem A.4. For any portfolio and any arbitrage free pricg there exists a portfolio
0* such thatits payoff is positive, it is dominating and

g-0*= min ¢g-n= max p-6.
n>c6,n>c0 OEC/PSCM]

Proof. Fix a portfolio® and letqg be an arbitrage free price. Sin€ehas interior points,
there exists some; € C such thaty; >¢ 0. Now consider the convex set

A={neC:n=cH and g -n=<gq-n}.

Clearly,A is a closed subset @f andg - A is bounded. By emma A.3 the setA is compact.
Now, from#n1 € C andn1 >¢ 6, we see thaty € A. To complete the proof notice that

infg-n=inf -1,
neA 4 n=céb, nzcoq "
and then us&@heorem A.2and the compactness af |

Corollary A.2. Let#; and6d, be two portfolios, and leg be an arbitrage free price. Then
there exists a portfoli®* dominatingd; andé, such that

g-0*= min ¢g-n=_ max [p-61+(g—p)-06a].
n>cb1, n>cb2 0<c/p=crq

Proof. By Theorem A.4there exists some portfoliosuch that

€ = min = max - (61— 62).
1 n>c01—02, nzcoq 1 0<¢rp=crq P
Now if we let 6* = ¢ + 6, then it is easy to check that* satisfies the desired
properties. a

Any portfolio 6* dominating’; andg, satisfying the optimality equation Gforollary A.2
is known as &heapest hedging portfoli@r aminimum-premium insurance portfo)itor
61 and®, with respect to the arbitrage free prige
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In Aliprantis et al. (2000)it was shown that a unique minimum-premium insurance
portfolio exists for any pair of portfolios that is independent of the arbitrage free price if
and only ifC is a lattice cone. We can prove that result easily from our analysis here.

Lemma A.12 (Aliprantis—Brown—Werner).The following are equivalent

1. Each pair of portfolio®; andé, admits a unique minimum-premium insurance portfolio
6* that is independent of the arbitrage free price. That is, for each gaiand 6, of
portfolios there exists a unique portfolt' dominatingd; and 6> such that for each
arbitrage free pricey we have

S0 = min .
1 nzcb1, n=co2 1
2. The portfolio cone C is a lattice cone R’ or, equivalently, the marketed space M is a
lattice-subspace dgS.

In particular, if C is a lattice cone, then the unique portfadib that satisfies propertfl)
is the portfoliof* = 61 V¢ 6-.

Proof. (1) = (2) Assume that* has the stated uniqueness property. If some portiplio
satisfies) >¢ 01 andn >¢ 67, then we have - n > ¢ - 6* for each arbitrage free prieg
Since the arbitrage free prices are dens€’inve see thag - n > ¢ - 6* for eachg € C’.
By Theorem A.1lwe getnp > 6*, and this shows tha* = 6; v¢ 62.

(D)= (2) If C is a lattice cone, then it is easy to see that the portigtic= 61 V¢ 62
satisfies the properties stated(i. O

A.3. The proof offheorem 2

For any non-empty subsétof the index set of statg4, 2, ..., S}, let H; be the vector
subspace generatedi®f by the collection of the row vectofg;, : s € I}. Clearly, there is
a finite number of distinct vector subspaces of the féfm Let

n= J H.

{I.dimH;<J}

Thus, the set{ is a (finite) union of vector subspaces. As expected, the closed bas
an empty interior.

Lemma A.13. The setH is closed and has no interior points. In particular, the set of
arbitrage free prices not ifi{ is open and dense in the set of arbitrage free prices

Proof. Clearly, eachH; is a closed subspace Bf . Since dimH; < J implies H; =0,
it follows that# is a finite union of closed sets with empty interior. The conclusion now
follows from the following topological fact.

If Cq, Co, ..., Cy are closed subsets of a topological space such (tha:tz # holds for
each j then the closed set = U _1 Ci has an empty interior
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A proof of the preceding claim goes as follows. Assume that an interior point of
C = Uf-‘zl C;. Pick an open neighborhoad of x such thatv C C. Sincex is not an
interior point of C1, there exists some poirf € N such thatc; ¢ C1. Thus,x belongs to
the open sef¢, and so there exists an open neighborhtgaf x; such thatvy N Cy = @.
ReplacingN1 by N N N1, we can assume that; C N.

Similarly, sincex; is not an interior point o€, there exists some poink € N1 and an
open neighborhood/, of x; satisfyingN> € N1 andN2 N C2 = @. Proceeding this way,
we see that there exist pointg xo, . .., x; and open setd1, No, ..., Ny suchthak; € N;
andN; N C; =@ foreach 1<i < k, and

Ny CN_1C---CN2C N CNCC.
Now notice that
k k k
Q);éNkszﬂC=Nkﬂ<UCi):UNkﬂC,-QUNiﬂCizQ),
i=1 i=1 i=1

which is impossible. This contradiction completes the proof of the topological fact of
LemmaA.13
For the last claim observe that the set of arbitrage free pricgd)s satisfies

(€ = () NHEC [Ty NHEC (C) =C.

Since(C’)" is dense inC’, we infer that(C’)° N HC = C’. O
Recall that a subset = {s1, s2,...,s;} of the set of state$l, 2, ..., S} defines a
pseudo-complete markigthe J x J matrix R; with rows the vectorsy, , gs,., . .., gs, IS

invertible. In this case, we also say thgt is apseudo-complete market
The basic result needed to prolieeorem s the following.

Lemma A.14. If 6 is an arbitrary portfolio and q is an arbitrage free pricéhen there
exists a portfoli®®* such that

1. 6* dominate® and has positive payoff, i,&* >¢ 6 and6* >, O.
2. 0* solves the optimization problem

g-0*= min gq-n.
n>c6,n>c0

3. 0% = R,‘lmax{Rle, 0} for some pseudo-complete markgt

Proof. If 6 € —C, i.e. if & <¢ 0, then the conclusion should be obvious; the portfolio
0* = 0 does the job. So, we can suppose that —C. We shall assume first that the
arbitrage free priceg does not belong té{, i.e.q ¢ H.

By Theorem A.4there exists a portfoli6* that satisfiegl) and

g-9*= min ¢g-n= max p-0.
n=ct,n>c0 0<¢'P=¢q
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Sinced ¢ —C, it follows from 6* >¢ 6 and6* > 0 that6* >, 0. Consequently, the
strict positivity ofg impliesg - 6* > 0. Under the assumptian¢ H we shall verify next
that thiso* also satisfies (3).

Start by observing that since the order interval of security priceg][Q is compact,
there exists somg* € [0, ¢]¢’ such that

pf-0= _ max p-0. (@)

0<¢/P=cq
Fromp* <¢ ¢q,60 <¢ 6* and (2), we gep* - 0* < q - 0* = p* -0 < p* . 6*. Therefore,
p*0*=p*-0=q-6*>0. 2)

In particular, we have™* # 0.

Since p* € C’, there exist (in view of.emma A.1) a non-empty set of statds and
positive constant$a; : s € I1} such thatp* = Zsell asqs. We claim thatg; - 6 > 0
holds for eacly € I;. To see this, assume that for sosges I; we havey,, - 0 < 0. From
Z‘Ye,l as(gs-0) = p*-0 = q-0* > 0, it follows that/; must have at least two states. Now
notice that the inequalities

Yoo | 0= ) algs-0) > algs-0)=p*-0,

seli\{so} seli\{so} sely

and 0<¢ erll\{so} Asqs =c’ 25611 asqs = p* =c’ ¢ contradictEq. (1) So,q, -6 = 0
for eachs € I1.

From Eq. (2) we have} ; as(qs - 0) = > (o as(gs - 6%). Taking into account
thatd <¢ 6* is equivalent tag; - 0 < ¢, - 6* for eachs = 1,2,..., S, it follows that
gs -0 = g5 - 0* > 0 for eachs € I7. Therefore,

gs -9 = max{q, - 9, 0} for eachs € I. 3)

Next, notice thatp* € [0, g]¢r impliesqg — p* € [0,¢q]¢c/. If g — p* = 0, letl, =
@.1f g — p* >c 0, let I, be a non-empty subset 61, 2, ..., S} for which there ex-
ist positive scalar4g, : s € I} such thaty — p* = >, Bsqs. FromEq. (2) it
follows thatzse,2 Bs(gs - 0) = (¢ — p*) - 6* = 0. Sinced* >¢ 0 is equivalent to
gs - 0 > 0 for eachs, the latter impliesg, - 6* = 0 for eachs € Io. In particular,
from 6 <¢ 0* we infer thatg, - 0 < ¢, - 6 = 0 holds for alls € I,. This shows
that

gs - 0" = max{q; - 0, O} for eachs € I>. 4)
By assumptiog ¢ #. So, fromg = p* + (¢—p*) € Hyui,, itfollowsthatdimH;,yr, =

J. This guarantees the existence/dfnearly independent row vectors{g; : s € I3 U I2}.
Let 7 = {s1,s2,...,57} € I1 U I> be such aset af states for which the set of vectors
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{gs : s € I} is linearly independent. Frofags. (3) and (4)we see that

qsl ° 9* ma)({QSl : 9, 0} qsl ° 6 0
gs, - 0" max{gs, - 6, 0} gs, - 0 0
R0 = = = max ,
gs, - 0* max{g;, - 0, 0} gs, - 0 0
=max{R;0, 0}.

Finally, notice that the/ x J square matribx®; has rank/ and so it is invertible. Conse-
quently,6* = R,‘lmax{Rle, 0}, and the validity of(3) has been established.

Next, we consider the case € H. By Lemma A.13there exists a sequen¢g,} of
arbitrage free prices such thgt — ¢ andg,, ¢ H for eachn. By Theorem A.4for eachn
there exists a portfoli6* dominatingd with positive payoff satisfying

-9 = min -p = min - 9.
n=On = oo Osc/psc/qnp

By the preceding case, for eaglihere exists a sdf, of J states such that
0F = R;'max(R,,0.0}.

Since there is only a finite number of subsets of the set of thtés. . ., S}, we can assume
(by passing to a subsequence if necessary) that there exists a fixed sobsetndices
such thatl,, = I for eachn. This implies

0 = R 'max(R,0, 0} = 6*

for eachn. We shall show that* satisfies propertie€l), (2), and(3). Clearly, (1) and(3)
are satisfied automatically. So, to finish the proof, we must prove the validi) of

To this end, take any >¢ 0 satisfyingy >¢ 6. Then, we have, -n > ¢q-0,f = q-0* for
all n. Taking limits yieldsg - n > ¢ - 6*. This shows tha#* is a solution to the optimization
problem

min -7,
n=cé, ViZch 7

and the proof is finished. O
Corollary A.3. If 61 and6, are arbitrary portfolios and; is an arbitrage free pricgthen
there exists a portfolie* such that

1. 6* dominate®; andos.
2. 6* solves the optimization problem

q-0*= min g -n.
n=cb1, n=cb2

3. 0% = R,‘lmax{Rlel, R;6>} for some pseudo-complete marlgt



294 C.D. Aliprantis et al. / Journal of Mathematical Economics 37 (2002) 269-295

Proof. Considerthe portfoli@ = 61—02. Accordingtd_emma A.14here exists a portfolio
€* such that:

(a) ¢* dominate® and has positive payoff.
(b) €* solves the optimization problem

g-€“= min ¢g-p= max p-6.
n>cH,n>c0 OSc’PSC/q

(c) ¢* = R,‘lmax{Rle, 0} for some pseudo-complete market.
Now let0* = €* 4 6> and note tha@* satisfies propertiedl), (2), and(3). O

Finally, we are ready to prove the cheapest hetigeorem 2 Start by observing that
since the bond is marketed, there exists some portfdlipe R’ such thatRd, = k. By
Corollary A.3there exists some portfoli@* such that:

(i) 6* dominate® ando;.
(i) 6* solves the optimization problem

qg-0*= min gq-n.
n=ct,n=cbh

(i) 6* = R,‘lmax{RIG, R;01} for some pseudo-complete markt.
Next, consider the finite minimization problem:

(FMP) min g -n
st.:n € Pox,

wherePy  is the set of all potentially insuring portfolios éfat the floork, i.e.
Pox={n € R’ : n=n; small for some pseudo-complete marRgandRyn>R6 V k}.

From (i), (ii), and (iii), we see that the portfoli®* is a solution of the minimization
problem(FMP), and that any solution @fF MP) satisfies (i), (ii), and (iii). Now the validity
of all statements imTheorem Zollow from this equivalence.

References

Aliprantis, C.D., Tourky, R., 2002. The super order dual of an ordered vector space and the Riesz—Kantorovich
formula. Transactions of American Mathematical Society 354, 2055—-2077.

Aliprantis, C.D., Tourky, R., in press. Markets that do not replicate any optieeaomics Letters

Aliprantis, C.D., Brown, D.J., Werner, J., 2000. Minimum-cost portfolio insurance. J. Economic Dynamics and
Control 24, 1703-1719.

Broadie, M., Cvitanic, J., Soner, H.M., 1998. Optimal replication of contingent claims under portfolio constraints.
Review of Financial Studies 11, 59-81.

Brown, D.J., Ross, S.A., 1991. Spanning, valuation and options. Economic Theory 1, 3-12.

Edirisinghe, C., Naik, V., Uppal, R., 1993. Optimal replication of options with transaction costs and trading
restrictions. Journal of Financial and Quantitative Analysis 28, 117-139.

Green, R., Jarrow, R.A., 1987. Spanning and completeness in markets with contingent claims. Journal Economic
Theory 41, 202-210.



C.D. Aliprantis et al. / Journal of Mathematical Economics 37 (2002) 269-295 295

Jameson, G.J.0., 1970. Ordered Linear Spaces. Lecture Notes in Mathematics, Vol. 141. Springer, Heidelberg,
New York.

Karatzas, I., Kou, S.G., 1996. On the pricing of contingent claims under constraints. The Annals of Applied
Probability 6, 321-369.

Karatzas, I., Kou, S.G., 1998. Hedging American contingent claims with constrained portfolios. Finance and
Stochastics 2, 215-258.

Klee Jr., V.L., 1957. Extremal structure of convex sets. Archives Mathematics 8, 234—240.

Leland, H., 1980. Who should buy portfolio insurance. Journal of Finance 35, 581-594.

Magill, M.M., Quiinzi, M., 1995. The Theory of Incomplete Markets. MIT Press, Cambridge, MA.

Naik, V., Uppal, R., 1994. Leverage constraints and the optimal hedging of stock and bond options. Journal of
Financial and Quantitative Analysis 29, 199-223.

Ross, S.A., 1976. Options and efficiency. Quarterly Journal of Economics 90, 75-89.



	The cheapest hedge
	Introduction
	Minimum-premium insurance portfolio
	Portfolio insurance
	Minimum-premium insurance portfolios

	Portfolio dominance and the cheapest hedge solution
	Complete markets
	Incomplete markets

	Illustrative examples
	Acknowledgements
	Background and proofs
	Mathematical preliminaries
	Portfolio dominance
	The proof of Theorem 2

	References


