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Abstract: A method is presented to solve location problem of PSO-SOC, which is 
characterized as Minimum Concave-cost Multi-commodity Flow (MCMF) problem. Core 
idea of proposed solution procedure is the exploitation of network representation (NR). It is 
found that despite the solution is approached by an aggregate flow, our network 
representation could derive disaggregate flows, especially for those which deal with diverse 
cost functions among each commodity, such as production cost and revenue. In addition, our 
NR could deal with the situation where total supply is not in balance with total demand. The 
other characteristic of proposed solution procedure is that location decision of MCMF-NR is 
not represented by the binary number, as employed on most of location model. Location 
decision is represented by the flow on links associated to fixed-cost of facility. General 
heuristic algorithm related to Destination Spanning Tree development  is suggested to solve 
the MCMF-NR, and an illustrative example is also discussed.   
 
Key Words: Public Service Obligation State-owned Company (PSO-SOC), location model, 
minimum concave cost multicommodity flow (MCMF) problem, network representation. 
 
 
1. INTRODUCTION  

 
One of strategic issues concerns with those who are engaged in the planning and operation of 
physical distribution system is the determination of the best sites of distribution facilities. The 
importance of locating facilities has inspired many researchers to elaborate various model 
formulations and solution approaches ranging widely in terms of mathematical and 
computational complexity.   
 
This research is a part of series of research on distribution system of State-owned Company 
(SOC). The focus of primary research is on developing model of determining location of 
distribution facilities of PSO (Public Service Obligation) - SOC. Preliminary stage of primary 
research concerns  with  the identification of the characteristics of distribution system of 
PSO– SOC. It is found that product differentiation is the distinctive attribute of PSO-SOC’s 
distribution system. Product differentiation means that products are not differentiated merely 
by type of product, but they are also differentiated based on the type of user of the products. 
In terms of user, products are categorized as commercial and subsidized (public) product. In 
the context of demand satisfaction, commercial and subsidized products are treated 
differently. Subsidized demand must be fully satisfied by the supply from all the possible 
plants, no matter possible profit  the company could take . In contrast, commercial products, 
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which are more profitable in nature, are satisfied just in case of excess capacity of plants 
exists. 
 
The other aspect identified in the preliminary stage is the diversity of production cost of each 
plant due to the lack of raw materials in some plants and various performance of production 
machines. This problem becomes particular if it is related to demand differentiation stated 
above. In term of optimization of network distribution, we have to search which combination 
of production cost and transportation cost that would give the maximum profit regarding the 
position of the both kind of users, as well as the plants and warehouses. Trade-off between 
production cost, distribution cost and revenue, becomes important to be considered in the 
optimization to maximize profit.     
 
Based on such preliminary research, system analysis is done and mathematical formula of 
PSO-SOC’s Location Model is proposed. Its form is a modification of models developed 
earlier. Production cost and transportation cost, as well as fixed cost of facility and inventory 
holding cost are optimized simultaneously to attain maximum profit. Transportation cost and 
production cost follow the principle of economies of scale. Selling price is included as 
representation of revenue. Three-stage distribution channel is proposed in which it consists of 
set of plants, consolidation centers, distribution centers and retailers as the end users. 
 
The formula of proposed model is described as follows and its related network is illustrated in 
figure 1:   
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Subscripts: Sets : 
• p  : indicate the Plants                                          • P    : Set of plants 
• c  : indicate the Consolidation Centers                                        • C    : Set of consolidation centers 
• d  : indicate the Distribution Centers                                                                                • D    : Set of distribution centers 
• r  : indicate the Retailers  • R    : Set of retailers 
• m : indicate the Products • M  : Set of products 
• p(m)  : indicate the plant p ∈ P that     
              produces product-m 

• MM s ∈ : Set of subsidy (public) products 
• MM c ∈  : Set of commercial products 

 
Decision Variables: 
• cX  =  1 if  Consolidation Center - c  is opened , 0 otherwise     
• dY   =  1 if  Distribution Center - d  is opened , 0 otherwise  
• cmp )(α  is quantity of product-m that flow from Plant p(m) to Consolidation   Center-c 
• cdmβ   is quantity of product-m that flow from Consolidation Center-c to Distribution  

Center-d   
• drmγ       is quantity of product - m that flow from Distribution Center-d  to Retailer-r 
• dmp )(δ  is quantity of product - m that flow from Plant p(m) to Distribution Center-d 
 
Input Parameters: 
• rmρ  is the selling price of the product-m at retailer - r 
• pcu  is  the distance from Plant-p to Consolidation Center-c 
• cdv  is  the distance Consolidation  Center-c to Distribution Center-d 
• drw  is  the distance from Distribution Center-d  to Retailer-r 
• pdz  is  the distance from Plant p(m) to Distribution Center-d 
• dmS  is stock level in Distribution  Center- d 
• dmIC  is unit inventory holding cost of product-m  in Distribution Center - d 
• cFC   is fixed cost of facility of Consolidation Center - c  
• dFD  is fixed cost of facility of Distributor Center - d 
• drmω  is per-mile cost to ship a unit of product-m from Distribution Center-d to Retailer-r  
• rmλ    is  demand  of product-m  in Retailer-r 
• )(mpCp  is  the capacity of plant-p to produce product-m 
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• dCd   is the capacity of Distribution Center-d  
• cCc  is the capacity of Consolidation Center-c  
 
Input Functions: 
• [ ] CcPppc ∈∀∈∀Φ ,,. :  is the cost  per mile for transporting product-m from Plan-p to 

Consolidation Center-c ( a concave function of total volume)  
•  [ ] DdCccd ∈∀∈∀Ψ ,,. :  is the cost  per mile for transporting product-m from Consolidation 

Center-c to Distribution Center-d ( a concave function of total volume)  
• [ ] DdPppd ∈∀∈∀ ,,.ξ :  is the cost  per mile for transporting product-m from Plan-p to 

Distribution Center-c ( a concave function of total volume)  
• [ ] Ppmp ∈∀,.)(η :  is the cost per ton for producing product-m in plant-p  
 
 

 
 

Figure 1 Example of Proposed (Original) Distribution Network 
 
 
2. PROPERTIES OF PROPOSED MODEL 

 
In order to develop solution procedure of proposed model, we focus on properties of the 
proposed model. It can be explained as following: 
 Due to consideration of the economies of scale on transportation cost as well as 

production cost, cost per unit of flow decreased as the quantity of product delivered (or 
produced) increased. Consequently, it leads to the concave total cost function (Zangwill, 
1968). Economies of scale in transportation cost  could utilize the existence of 
consolidation centers (CC’s), in which products from some plants could be consolidated 
in CC and sent together  to the distribution centers (DC’s)  by certain vehicle in a more 
economic way. Surely, we have to compare such cost in alternative way, that is 
transporting products directly from plant to distribution centers, whereas in our proposed 
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model there is no consolidation activities between DC’s and retailers. In addition, small 
fully occupied vehicles are usually used between those nodes. Hence, there is no 
economies of scale between DC’s and retailers , and it is assumed that the transportation 
cost between those nodes to be linear. Furthermore, fixed cost of facility, that is the fixed 
cost to open both consolidation centers and distribution centers, is a constant. It does not 
depend on the amount of flow passing through it itself.  Mathematically, such cost 
depends only on binary variable [0,1] which shows whether associated warehouse is 
opened or not. The cost which deals with the variable component of cost of facility, such 
as handling cost, is assumed to be included in transportation cost. In addition, for the 
simplicity, inventory holding cost is designed as a linear function of amount of product 
handled in each warehouse. All the assumptions associated to the form of cost function  
of the proposed model are not rigid. It is possible to replace linear cost function by the 
concave one, and conversely. Moreover, revenue is characterized with linear function.   
Revenue depends linearly on the amount of products sold and its associated selling price. 
Based on the characteristics of its components, the proposed objective function simply 
could be presumed as a concave cost function.   
 

 The other essential attribute of the proposed model is that the model is set to be utilized 
to handle multi-commodities. As described above, the term ‘multi-commodity ‘ refers to 
both types of products and types of users of the products. In the context of user 
satisfaction, both types of user, namely commercial and public users, are treated 
differently. This consideration is represented by flow requirement denoted in equation (4) 
and (5) as equality and inequality function for public demand and commercial one 
respectively. 

  
 The total amount of products supplied by each plant and total amount of flow held by 

either distribution center or consolidation center are limited to its each capacity.  Unlike 
the nodes, it is assumed that all links are not restrained by their capacity.   

 
 Finally, as its properties described above, our proposed model could be classified as 

Minimum Concave-cost Multi-commodity Flow (MCMF) problem.  
 

 
3. PRIOR RELATED STUDIES ON SOLUTION DEVELOPMENT 
 
In this session some papers are reviewed to map out the preceding research works related to 
the concave cost function. Some reviews focus on the solution methods of the minimum 
concave cost minimization problem, while the others focus on those of location problems, 
particularly associated with the attribute of concave cost function.  
 
Zangwill (1968) characterized key mathematical difficulty in analyzing concave cost 
minimization problem comes from the existence of the enormous number of local optima in 
the search space. Optimum point x* may be a relative minimum and not a global minimum. 
The value of x* may be minimized the objective function over the intersection of the feasible 
region and a neighborhood of x*, but x* may not minimize the objective function over the 
entire feasible region.  He proposes some theorems that explicitly characterize the extreme 
points for particular single commodity network. Although concave cost function can be 
minimized through exhaustive search of all the extreme points of the convex feasible region, 
such an approach is impractical for all but the simplest of problems. 
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Gallo, et al (1979) found that due to the concavity of the cost function and the network 
complexity, finding optimal solutions is often an exceedingly hard task. For this reason, it is 
necessary for the existing methods to make use heuristic procedures for finding or improving 
local optima. They propose a Branch and Bound method to solve minimum cost flow problem 
on an un-capacitated single source single commodity multiple destination network.   
 
Most approaches in solving concave cost minimization problem are based on traditional 
mathematical programming techniques (such as linear approximation, lagrangean relaxation, 
the sub-gradient method, the branch-and-bound method and dynamic programming), included 
such research works described above. Some algorithms have been developed to improve the 
solution efficiency, particularly to overcome the problem on searching enormous number of 
local optima to find global one. Several meta-heuristic algorithms have recently been 
developed, with a traditional local search as the core, combined with high–level meta-
strategies for jumping out of the local optima found in the neighborhood searches, thus 
finding a better solution  (Osman et al, 1996). Some examples of recent meta-heuristics 
include the Simulated Annealing (SA), the Genetic Algorithm (GA), Tabu Search (TS), the 
Great Deluge Algorithm (GDA) and Threshold Accepting (TA). The following description 
explains some research works which based on such approaches. 
 
Yan, et. al. (1999) argue that simplification of concave cost function into linear one in order 
to facilitate problem solving may not reflect actual operations, which generally results in 
decreased operational performance. They employ the technique of simulated annealing and 
threshold accepting to develop several heuristics that would efficiently solve concave cost 
transportation network problems.  
 
Yan, et. al. (2005) propose global search algorithm for solving concave cost transshipment 
problems. They employ TA, GDA and TS to develop four efficient local search algorithms, 
which can be compared with the proposed global search algorithm. Efficient methods for 
encoding, generating initial population, selection, crossover and mutation are proposed, 
according to the problem characteristics.  
 
Fontes & Goncalves (2007) found that there is no simple criterion for deciding whether a 
local minimum is also a global minimum. He proposes a hybrid approach on single source un-
capacitated network which combine Genetic Algorithm with a local search.  
 
The following research works are particularly related to the location problem in which their 
objective functions take form of concave function.   
 
Lin (2002) carries out a research in which its goals of developing a location model for multi-
product and multi-echelon distribution systems where there are significant economies of scale 
in the transportation movements, particularly between the plants, consolidation centers and 
the distribution centers. The objective function of his model is to minimize transportation 
cost, facility fixed-cost as well as the inventory cost and penalty cost. The solution procedure 
developed is a greedy heuristic. The greedy heuristic iterates between locating DC’s given a 
collection of CC’s and locating CC’s given a fixed of DC’s. 
 
Dupont, L. (2008) introduces a new type of facility location model, in which the global cost 
incurred for each established facility is a concave function of the quantity delivered by this 
facility. He introduces some properties of an optimal solution and derive heuristic algorithms 
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and a branch and bound method from these properties. He proposes un-capacitated facility 
location problem (UFLP) which characterized by single commodity and single stage network.  
 
 
4. NETWORK REPRESENTATION AS AN APPROACH OF SOLUTION 
 
As it is commonly known that minimum concave cost flow problems are categorized as NP-
hard (Larsson et al, 1994), we propose heuristic approach as the solution procedure.  The 
theorems, as well as algorithm developed by Gallo et. al. (1979) are utilized as core ideas of 
our heuristics approach. We adopt Gallo’s procedure due to its simplicity, particularly when it 
is compared to the other techniques, such as Genetic Algorithm, Simulated Annealing and 
Tabu Search. Such techniques need to derive intricate or empirical probability value when it 
deals with  combinatorial problems, whereas Gallo’s makes use of branch and bound method 
by introducing simple parameter which is called penalty. Furthermore, our proposed method 
elaborate the inherent network characteristics in distribution as well as location problems.  
 
Gallo proposes that in solving minimum concave cost flow problems (𝑃𝑃), we may restrict 
ourselves to extreme flows of 𝑋𝑋, whereas  𝑋𝑋  are defined as feasible set of solution of P and 
their vertices are to be focused further for the optimal solution of 𝑃𝑃. This approach is coming 
from the definition of  𝑃𝑃 , that is 𝑃𝑃 is defined as  a concave minimization problem bounded 
with low-bound constraints. Furthermore, he proposes that there is a one-to-one 
correspondence between the set of extreme flows and all trees of the network under 
consideration of 𝑃𝑃. In other words, the solution of  𝑃𝑃  corresponds to destination spanning tree 
(DST) of associated graph of distribution network of P. 
 
In term of multi-commodity, we refer our solution procedure to the theorem of Zangwill 
(1968). He proposes that, in fact, solving the aggregate model of minimum concave cost 
multi-commodity flow (MCMF) problem solves the disaggregate model of such problem.  

   
Since destination spanning tree, as our solution approach, substantially deals with network 
structure,  then we interpret our model as network representation based problem. We propose  
network representation, of which nodes and links represent any attributes of cost, revenue, 
quantity of flows and any other representations of the complex attribute denoted by equation 
(1) ~ (17). By this approach, it is expected that the solution of our model could adopt and 
exploit the Gallo’s algorithm concerning of minimum concave cost flow problem, particularly 
of destination spanning tree problem.  
 
Considering the formulas denoted in equation (1) ~ (17), the following description of stepwise 
approach is then proposed to extract the properties of model and lead to solution of the model.  

 
1) Development of  Network Representation   
Based on the proposed physical network, as denoted in figure 1, network representation of the 
optimization problem is proposed. Some dummy links and nodes are added to the original 
network to represent production cost, transportation cost, fixed cost of facility as well as 
revenue. For simplicity, linear inventory holding cost function is designed by incorporating 
such cost on fixed cost of facility and transportation cost function. Part of inventory holding 
cost which covers the cost of holding some mandatory constant amount of products could be 
incorporated in fixed cost of facility, while the cost of handling some variable amount of 
products could be incorporated on the transportation cost. This simplification is viable due to 
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the concurrence of concave function of transportation cost and the linear form of the 
inventory holding cost.  
Some dummy links and nodes are also included to represent revenue and points of sales of 
commercial product which are permitted to deal with in Consolidation Centers (CC) and 
Distribution Centers (DC).  
In order to guarantee the equivalency of the amount of total supply and total demand, we add 
either of Excess Supply Control Sub Network or Excess Demand Control one into our basic 
network representation, depends on which condition exists at the beginning of the 
optimization process. Surely, those sub-networks are not required when supply and demand 
are in balance. One example of network representations is shown in figure 2. Furthermore, the 
figure explains the followings:  
 

 
 

Figure 2 Network Representation of Proposed Model 
 

- Links between node  𝑃𝑃𝑝𝑝𝑝𝑝− 𝑃𝑃𝑝𝑝    ( p and m indicate the plants and products, respectively) 
represent production cost function to produce product-m in plant-p. 

- Links between  𝑃𝑃𝑝𝑝 − 𝐶𝐶𝐶𝐶𝑐𝑐  ,𝑃𝑃𝑝𝑝−𝐷𝐷𝐷𝐷𝑑𝑑  ,𝐶𝐶𝐶𝐶′𝑐𝑐−𝐷𝐷𝐷𝐷𝑑𝑑   , as well as  those of between  𝐷𝐷𝐷𝐷′𝑑𝑑 − 𝑅𝑅𝑟𝑟    
(c, d and r indicates the consolidation centers, distribution centers and retailers, 
respectively) represent transportation cost function between plant-p and consolidation 
center-c, plant-p and distribution center-d, consolidation center-c and distribution center-d, 
as well as distribution center-d and retailer-r,  respectively. 

- Links between 𝐶𝐶𝐶𝐶𝑐𝑐 − 𝐶𝐶𝐶𝐶′𝑐𝑐  and 𝐷𝐷𝐷𝐷𝑑𝑑 − 𝐷𝐷𝐷𝐷′𝑑𝑑  represent fixed cost of facility of associated 
consolidation center and distribution center, respectively.  

- Links between 𝐶𝐶𝐶𝐶′𝑐𝑐 − 𝑅𝑅𝑟𝑟𝑟𝑟  ,𝐷𝐷𝐷𝐷′𝑑𝑑 − 𝑅𝑅𝑟𝑟𝑟𝑟  , as well as 𝑅𝑅𝑟𝑟 − 𝑅𝑅𝑟𝑟𝑟𝑟  represent revenue from  
product-m  which are sold  in consolidation center-c and distribution center-d , as well as in 
retailer-r. 

- Links between 𝑃𝑃𝑝𝑝𝑝𝑝 −  𝑅𝑅𝑚𝑚′  represent cost to eliminate some amount of production of 
product-m in plant-p due to the excess of supply. 

- Links between 𝑃𝑃𝑚𝑚′ −  𝑅𝑅𝑟𝑟𝑟𝑟𝑠𝑠   and 𝑃𝑃𝑚𝑚′ −  𝑅𝑅𝑟𝑟𝑟𝑟𝑐𝑐  represent cost of “unsatisfied demand” on 
product-m of subsidy  and  of commercial in  retailer-r due to the excess of demand. 
 

2) Network Valuation 
This step values all nodes and links with their related functions. Each link of network 
representation is to be valued as its associated cost function as well as revenue  designation. 
All nodes are valued with its associated flow requirement (𝜋𝜋𝑖𝑖) and these values should be in 
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disaggregate form (that is, flow requirement of each node for each type of product). However, 
we consider the quantity of products flow over network representation as an aggregate flow of 
all types of products. Due to the cost function on each link associated to production cost and 
each link associated to revenue are set exclusively to certain product, the aggregate flow over 
such links can be assumed as disaggregate flow. From this point, it can be understand that the 
dissagregate value of   𝜋𝜋 in each node associated to both kinds of links is similar to its 
aggregate value.   
Flow requirement of node  𝑃𝑃𝑝𝑝𝑝𝑝  is set as production capacity of plant-p to produce product-m. 
Flow requirement of node 𝑅𝑅𝑟𝑟𝑟𝑟𝑠𝑠  and 𝑅𝑅𝑟𝑟𝑟𝑟𝑐𝑐  is set as demand of retailer-r on product-m subsidy or 
m-commercial. In addition, flow requirement of node 𝑃𝑃𝑚𝑚′  is set as total amount of demand on 
product-m that should be reduced in case of excess demand and 𝑅𝑅𝑚𝑚′   is set as total amount of 
product-m that should be reduced in production in case of excess supply.  Since the rest of 
nodes are functioned as transshipment points, consequently its flow requirement is set as zero 
for each of products.  
As stated in equation (9) and (10), the total link-in flow in each of transshipment point is 
limited by its node capacity. However, in network representation, we release those 
requirements in order to catch as much as possible flow entering the node. It is expected that 
the optimal flows will show the real requirement on the size of the warehouses that should be 
opened.   
Regarding demand satisfaction, particularly of public demand (see equation 4 & 5), which is 
becoming important in case of Excess Demand, we set extremely high unit cost function to 
the links of excess demand control sub-network that related to nodes of subsidy (public) 
demand. It means that such a high “unsatisfied-demand cost” will avoid unfulfillment of 
public demand.     
 
3) Network Assignment 
As the network representation and its associated link and node values are determined, the 
original problem of equation (1) ~ (17) simply could be expressed as Minimum Concave cost 
Multi-commodity Flow – Network Representation (MCMF-NR) problem. Consequently, the 
objective function and its constraints are changed. Nevertheless, the transformation warrants 
that both problems are correspond. Mathematical programming of the MCMF-NR then 
becomes: 
 
min  𝑍𝑍 ( 𝑥𝑥𝑖𝑖𝑖𝑖 ) =  ∑   𝜑𝜑𝑖𝑖𝑖𝑖(𝑖𝑖 ,𝑗𝑗 )∈𝐴𝐴 (𝑥𝑥𝑖𝑖𝑖𝑖 )                                                                              (18) 
 
subject to: 
 
            ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 −  ∑ 𝑥𝑥𝑙𝑙𝑙𝑙𝑗𝑗 =  𝜋𝜋𝑙𝑙  ,       ∀  𝑙𝑙 ∈ 𝑁𝑁                                                 (19)          
            𝑥𝑥𝑖𝑖𝑖𝑖  ≥ 0 ,                               ∀ ( 𝑖𝑖 , 𝑗𝑗) ∈ 𝐴𝐴                                                           (20)   
                             
where: 
 
            𝜋𝜋𝑙𝑙 =  ∑ 𝜋𝜋𝑙𝑙𝑙𝑙𝑚𝑚∈𝑀𝑀   ,               ∀ 𝑙𝑙 ∈ 𝑁𝑁                                                                 (21)                        
            𝜋𝜋𝑙𝑙 = 0  ,                                 ∀ 𝑙𝑙 ∉ 𝐷𝐷𝐷𝐷  ,∀ 𝑙𝑙 ∉ 𝑆𝑆𝑆𝑆                        (22)  
 
          For Excess Demand Case:      
           𝑆𝑆𝑆𝑆(𝑖𝑖) = {(𝑖𝑖) ∈ 𝑁𝑁 ∶ 𝑖𝑖 = 𝑃𝑃𝑝𝑝𝑝𝑝 ∪ 𝑃𝑃𝑚𝑚′ , ∀ 𝑝𝑝 ,∀ 𝑚𝑚 }  and  
          𝐷𝐷𝐷𝐷(𝑖𝑖) = {(𝑖𝑖) ∈ 𝑁𝑁 ∶ 𝑖𝑖 = 𝑅𝑅𝑟𝑟𝑟𝑟𝑠𝑠  ∪  𝑅𝑅𝑟𝑟𝑟𝑟𝑐𝑐  ,∀ 𝑟𝑟 ,∀ 𝑚𝑚}            (23) 
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          For Excess Supply Case:   
          𝑆𝑆𝑆𝑆(𝑖𝑖) = �(𝑖𝑖) ∈ 𝑁𝑁 ∶ 𝑖𝑖 = 𝑃𝑃𝑝𝑝𝑝𝑝  ,∀ 𝑝𝑝 ,∀ 𝑚𝑚  � and      
          𝐷𝐷𝐷𝐷(𝑖𝑖) = {(𝑖𝑖) ∈ 𝑁𝑁 ∶ 𝑖𝑖 = 𝑅𝑅𝑟𝑟𝑟𝑟𝑠𝑠  ∪  𝑅𝑅𝑟𝑟𝑟𝑟𝑐𝑐 ∪ 𝑅𝑅𝑚𝑚′ ,∀ 𝑟𝑟 ,∀ 𝑚𝑚}                 (24)  
   
          For  supply and demand in balance case : 
           𝑆𝑆𝑆𝑆(𝑖𝑖) = {(𝑖𝑖) ∈ 𝑁𝑁 ∶ 𝑖𝑖 = 𝑃𝑃𝑝𝑝𝑝𝑝 , ∀ 𝑝𝑝 ,∀ 𝑚𝑚} and   
           𝐷𝐷𝐷𝐷(𝑖𝑖) = {(𝑖𝑖) ∈ 𝑁𝑁 ∶ 𝑖𝑖 = 𝑅𝑅𝑟𝑟𝑟𝑟𝑠𝑠  ∪  𝑅𝑅𝑟𝑟𝑟𝑟𝑐𝑐 ,∀ 𝑟𝑟 ,∀ 𝑚𝑚}                                              (25)   
 
 
  Subscripts: Superscripts : 
• p  : indicate the Plants                                          • s : indicate the subsidy / public products 
• r  : indicate the Retailers • c : indicate the commercial products 
• m : indicate the Products  

  
Sets :  
• N    : Set of nodes of network representation 
• A    : Set of links of network representation 
• Sc  :  Set of source nodes of network representation 
•  Ds  : Set of destination nodes of  network representation 
• M  : Set of products 

 
Decision Variables : 
• 𝑥𝑥𝑖𝑖𝑖𝑖   is aggregate flow on link i  to  j   
 
Input Parameters : 
• 𝜋𝜋𝑙𝑙𝑙𝑙     :  is  flow requirement of node-l  on product-m 
 
Input Functions: 
• 𝜑𝜑𝑖𝑖𝑖𝑖  (. ) , ∀ (𝑖𝑖 , 𝑗𝑗 ) ∈ 𝐴𝐴  : is the link cost  function of link i-j  
  
Regarding Gallo and Zangwill theorems, our MCMF-NR problem could be solved by 
considering the extreme points of feasible set of MCMF-NR, in which they correspondence to 
spanning tree. Optimality of total cost function (equation (18)) is evaluated through searching 
of the extreme flows which are corresponding to Destination Spanning Tree (DST) which 
gives the minimum value to the objective function. 
 
The assignment process is based on the characteristics of concave cost network flow 
problems, that is if flows are assigned to arcs when adjacent nodes have a greater supply or 
demand than other nodes, then the cost may be reduced. In addition, the total cost tends to be 
reduced if the arc flows tend to be zero or the allowed for maximum amount. In other words, 
an all-or-nothing assignment rule should help to reduce transshipment costs. Combinatorial 
problem of MCMF-NR will be solved by branch and bound procedure, in which the 
partitioning is based on the inclusion of subsets of arcs. 
 
Due to the transformation from MCMF to MCMF-NR, the location decision variables 𝑋𝑋𝑐𝑐  and 
𝑌𝑌𝑑𝑑  of the original problem have to be eliminated. Moreover, the decision to open or close one 
facility (that is transshipment warehouse) depends on the link flow of the associated link 
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representing its fixed cost of facility. Small amount of such link flow could be an indication 
for closing such warehouse, and conversely.     
 
4) Scenario Testing  
At this level, a set of scenarios on distribution system can be tested to elaborate properties of 
the proposed model. Some models of distribution system, that is distribution network, are 
exercised as part of optimality search and learning phase of various properties of the model.  

 
 

5. THE ALGORITHM 
 

According to the step-wise approach described in section 4, the following general algorithm is 
suggested : 
Step 0: (Initialization) Given a network 𝐺𝐺 = (𝑁𝑁,𝐴𝐴) of MCMF-NR, then set the unit cost at 
the current flow of each link. If a link has no flow, then its flow is set to be one to 
approximate the link cost.  
Step 1: (Set Tree) Choose one destination node-j of set 𝐷𝐷𝑠𝑠. Start from 𝑗𝑗 find possible path that 
connects destination node-𝑗𝑗 to one of source node-𝑖𝑖 and it forms a tree of  𝐺𝐺.  
Step 2: (Flow Assignment) Assign the maximum amount of flow that can be sent from source 
node-i to destination node-j, that is, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = min(𝑟𝑟𝑟𝑟𝑖𝑖  , 𝑟𝑟𝑟𝑟𝑗𝑗 )  , where 𝑟𝑟𝑟𝑟𝑖𝑖   is the remaining 
supply for node- 𝑖𝑖 and  𝑟𝑟𝑟𝑟𝑗𝑗   is the remaining demand for node-𝑗𝑗. Deduct  𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  from source 
node- 𝑖𝑖 and destination node- 𝑗𝑗 , and update the link flow along the path between i   and  j.  
Step 3:  (Z-Value) Compute  the value of  𝑍𝑍.  Let Z* = Z be the value of local optimum which 
corresponds to tree - T*.  
Step 4:  (Finalization) If  all destination node has been chosen, then STOP; otherwise go to 
step 1.  

 
 

6. ILLUSTRATIVE EXAMPLE 
 
We demonstrate our proposed approach on network representation to solve the problem of 
location decision on a small example with two plants, one consolidation center, two 
distribution centers and two retailers. The physical distribution network is as shown in    
figure 1. Figure 3 indicates network representation of our problem. Due to this example is 
designated as excess demand problem, we add dummy plant 𝑃𝑃𝐴𝐴′ to accommodate “unsatisfied 
demand” on product A and dummy plant 𝑃𝑃𝐵𝐵′ to accommodate those of product B. Definitely, 
we must not eliminate demand of subsidy product,  hence we set extremely high unit cost on 
link 𝑅𝑅1𝐴𝐴

𝑠𝑠 −  𝑃𝑃𝐴𝐴  and 𝑅𝑅2𝐴𝐴
𝑠𝑠 −  𝑃𝑃𝐴𝐴. Furthermore, we set unit cost of links of commercial products 

associated to 𝑃𝑃𝐴𝐴′ and 𝑃𝑃𝐵𝐵′ similar to its selling price. This notion means that the higher the 
selling price is, the lesser the possibility of the demand unsatisfied.  
 
Plant 1 produces product A only, while plant B produces product A and B. Demands of 
retailer 1 consist of product A of subsidy and product A of commercial one. Demands of 
retailer  2  consist  of  product  A  of  subsidy,  product  A   of   commercial  and product B of 
commercial. The  number  in  the  bracket   denotes plant  capacity,  included  the capacity  of 
dummy plant 𝑃𝑃𝐴𝐴 and 𝑃𝑃𝐵𝐵,  as well as demand on retailer node. Those number also represent the 
flow requirement  of each node. In our NR model, capacity of the warehouse is not limited. 
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Cost functions of links between 𝑃𝑃𝑝𝑝𝑝𝑝 − 𝑃𝑃𝑝𝑝  is set as production cost function of each product-m 
in plant-p. Those links form concave function. Cost functions of links between 𝑃𝑃𝑝𝑝 −
𝐶𝐶𝐶𝐶𝑐𝑐  ,𝑃𝑃𝑝𝑝−𝐷𝐷𝐷𝐷𝑑𝑑  ,𝐶𝐶𝐶𝐶′𝑐𝑐−𝐷𝐷𝐷𝐷𝑑𝑑    are  set  as  transportation  cost  function  and those are in concave  
 

 
 

Figure 3 Network Representation of Illustrative Example 
 

 
function , while transportation cost function between and 𝐷𝐷𝐷𝐷′𝑑𝑑 − 𝑅𝑅𝑟𝑟  is set as linear function.  
In this example , it is assumed that the concave cost function of transportation cost is not   
limited by the vehicle capacity. Furthermore, fixed cost of facility of  𝐶𝐶𝐶𝐶𝑐𝑐  and 𝐷𝐷𝐷𝐷𝑑𝑑  are set as a 
fixed number and those number are assumed to be similar for all the warehouses. Links 
represent revenue ( 𝑅𝑅𝑟𝑟 −  𝑅𝑅𝑟𝑟𝑟𝑟𝑠𝑠  and 𝑅𝑅𝑟𝑟 −  𝑅𝑅𝑟𝑟𝑟𝑟𝑐𝑐 ) form linear function. Those are a function of 
quantity of flow and selling price. We set similar selling price for all subsidy products, no 
matter the location of the retailer is , whereas the selling prices of commercial ones are set in 
variety.  
 
Using the algorithm of section 5, manually we enumerate all link flows of some possible 
destination spanning trees (DST) and its associated objective function. The red lines of figure 
3 show one of destination spanning tree and its associated flow. From the assignment, we can 
see that the demand on product A of commercial in retailer  𝑅𝑅1  should be reduced 100 unit, 
while the demand on product B of commercial in retailer 𝑅𝑅2 should be diminished by 50 unit.   
These reductions is coming from the problem of excess demand.  
 
The decision to open or close certain warehouse depends on the amount of flow on link 
representing its fixed cost of facility. In our example, it is likely that 𝐶𝐶𝐶𝐶1 , 𝐷𝐷𝐷𝐷1  and 𝐷𝐷𝐷𝐷2  are 
opened due to its significant link flows.  
 
 
7. CONCLUSION 
 
Regarding mathematical programming of Location Model that we have proposed on our 
previous research work, we examine the properties of the model and find that it could be 
classify as Minimum Concave-cost Multicommodity Flow (MCMF) problem. To solve the 
problem, we make use network representation to simplify the problem. Consequently, our 
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original problem is converted into MCMF-Network Representation problem. Despite the 
solution of the proposed model is approached by an aggregate flow, our network 
representation could derive disaggregate flows, especially for those which concern with 
production cost and revenue. Flow associated to each of both parameters could not be 
aggregated due to the diverse production cost (or selling price) among each commodity. In 
addition, our network representation could deal with the situation where the total supply is not 
in balance with total demand. The other notable conclusion of this research work is that 
location decision of MCMF-NR is not represented by the binary number, as employed on 
most of location models. Location decision is based on link flows associated to fixed-cost of 
facility. Based on proposed network representation, the MCMF-NR problem is solved 
through heuristic procedure, in which the core idea is finding the destination of spanning tree. 
General algorithm is suggested and it then needs to be explored thoroughly, particularly based 
on the algorithm proposed by Gallo (1979). This research work should be followed by the 
numerical case  in order to validate the model. Eventually, it is realized that this research 
work is not intended to focus on the sophistication of MCMF solution. It is focused on the 
implication of  the usage of network representation as an alternative approach of location 
model of  PSO-SOC.  
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