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Abstract—Markov network is a widely used graphical repre-
sentation of data in applications such as natural language and
computational biology. This undirected graph consists of nodes
and edges as attributes and its dependencies respectively. One
major challenge in a learning task involving Markov network
is to learn its structure, i.e. attribute dependencies, from data.
This has been the subject of various studies in the recent past,
which uses heuristics to estimate dependencies from data. In this
paper, we highlight the challenges of Markov network structure
learning, and review existing methods addressing these challenges.
In particular, we study the scalability of these heuristics over
streaming data where data instances are assumed to occur
continuously. Furthermore, we propose a new heuristic based on
clustering of features, consisting of attribute dependencies, that
can seamlessly update the model structure as new data arrive in a
stream. This clustering technique effectively reduces search space
and uses fewer number of features to generate a single model.
Weight learning and inference is performed at the end of each
data chunk consisting of data instances arriving within a fixed
time frame. We empirically evaluate the proposed heuristic by
comparing the CMLL score, on various datasets (both streaming
and non-streaming), with other state-of-the-art methods.

I. INTRODUCTION

Representation of classical machine learning models such
as SVM ignore dependence information among random vari-
ables in the data. Probabilistic graphical model is a framework
in which conditional independence among random variables
are represented by a graph. Markov network is one such
graph with undirected edges that compactly represents the joint
probability distribution specified by functions over cliques in
the graph. They are widely used in a variety of applications
including image processing [5], medical diagnosis [10], bio-
informatics [25], social networks [21] and natural language
processing [23]. Important machine learning problems when
using graphical models are inference, weight learning, and
structure learning. In this paper, we concentrate on structure
learning of a Markov network over a given dataset.

Most statistical techniques using a Markov network require
a domain expert to provide relevant network structure [2].
However, appropriate domain knowledge may not always be
available. Additionally, experts may make incorrect assump-
tions on interactions between random variables, which may
increase errors during inference. These challenges can be
addressed by learning the network structure, i.e. discovering
conditional independencies (or dependencies) between random

variables, from data. This problem is known as Structure
Learning.

Learning the structure of a Markov network can be seen
as a feature selection problem where each feature represents
the dependencies between a subset of random variables. In
particular, features are real-valued functions with variable as-
signments. The log-linear model of a Markov network enables
a feature selection algorithm where necessary features are se-
lected using the dataset. However, the search space for feature
selection is exponential in the number of random variables and
corresponding domain size [17]. When using a dataset with
large number of random variables, a scalable strategy which
cohesively reduce search complexity is warranted. Typically,
search strategies use heuristic scores between variables to ap-
proximate the dependencies. These include pseudo-likelihood,
information gain and support [24]. Scalability of a structure
learning algorithm depends on the search heuristic considered.

A traditional algorithm that requires a complete set of train-
ing data in memory for learning cannot be used when the size
of a dataset is much larger (or asymptotically unbounded) than
the memory size. Such datasets are seen in the form of a data
stream where data instances are continuously produced from
a data generation process. Examples of data streams include
telecommunication network, Twitter feed etc [1]. The problem
of limited computational space is typically addressed by using
online learning mechanisms which use disjoint sequential
subsets of data instances called data chunks that can easily fit
in memory [14]. These mechanisms use an incremental model
that is updated periodically to reflect the characteristics of the
data generation process learned from newer data instances.
Furthermore, recent studies [2] have shown superior perfor-
mance in inference when graphical models are used over data
streams. The absence of domain experts and need for scalable
learning heuristics motivates the problem of structure learning
over continuous data where a graphical model is periodically
updated by newer features learned from data chunks.

One major challenge in performing structure learning on
a series of data chunks is the ability to efficiently combine
features selected at each chunk to reflect the joint probability
of the data generation process. Here, we assume that the
feature generation and selection heuristic needs to be applied
at every chunk. If the heuristic explores a large number of
features at every chunk, this effectively slows down the data
stream. Therefore, these challenges need to be addressed while
designing a feature selection strategy.978-1-4799-7560-0/15/$31 c©2015 IEEE



Dependencies (or independencies) between random vari-
ables, learned from data, may not form an easily interpretable
model. However, they may capture the independencies accu-
rately for performing inference. A typical inference query used
in traditional data stream model is to perform classification [6],
[14], [15]. Here, a single query variable (namely a class
variable) is considered, with the rest as evidence variables.
In a similar scenario, a structure learning algorithm may be
designed to perform inference with a specific set of known
query variables. In these cases, a simple structure learning
mechanism such as probabilistic decision tree [12] can be effi-
ciently used to obtain features. On the contrary, the algorithm
scalability is affected when a large number of query variables
are present. In particular, a local model is built for each query
variable, and then merged to form global model of features. If
the query variables are unknown prior to model construction,
then local models are built for each variable in the data. This
can be computationally expensive, especially when using data
streams where this operation is performed on every data chunk.
Therefore, we need a computationally inexpensive method that
can methodically discover the network structure.

The aim of this paper is to study the behavior of existing
structure learning approaches when streaming data is used,
and compare their complexity while handling multiple data
chunks while performing model update with newly learned
features. Here, we assume that the feature selection process
is applied on each data chunk independently. Furthermore,
we propose a scalable feature selection strategy to perform
Markov network structure learning over streaming data. First,
we propose a new structure learning method designed to min-
imize computational cost of discovering new independences
between random variables. Second, we inculcate well-known
methods to deal with data streams for structure learning. The
main idea is to perform clustering of features in order to
generate more relevant features over small sets of data chunks,
and incrementally learn features along the data stream. In
particular, we first cluster the set of training data instances over
each data chunk. This produces cluster centroids that represent
a set of data instances having similar features. A data instance
in each cluster is considered as a feature. A set of features
are uniformly selected from each cluster proportional to their
size. The variable with largest (or smallest) support within a
corresponding cluster is dropped to form a new feature, which
is later combined with a global feature set to simulate model
update. This process is iteratively performed to allow smaller
length features to be eventually created. We call this method
as ClusterNet. The weighted features learned from current data
chunk are used as initial features to perform weight learning
while process subsequent chunks in the data stream.

It is evident that ClusterNet performs a bottom-up feature
generation by considered complete data instances initially as
features, and dropping appropriate variables at each iteration,
similar to GSSL [24]. However, the major difference is that
the features are constructed based on support for a variable
within the cluster rather than support from conjunction of
variables across all clusters. The intuition is to enable creation
of generalized features having a structure supported by features
with similar structures (features within a cluster is assumed to
have similar dependency structure). New features are created
within a cluster using a combination of previously generated
feature set and the new data instances of the current data chunk

under consideration. Therefore, each cluster represents a local
model. The set of features in each cluster is combined to form
a global model at the end of processing a data chunk. We
evaluate our method on various datasets by computing the
conditional marginal log-likelihood (CMLL) score since we
assume that the query variables are unknown prior to model
learning. This also forms a basis of anytime query model
during a streaming process where a learned model can be used
to answer any query given at a particular time.

The contributions of this paper are as follows:

1) We perform a comparative study of existing Markov
network structure learning approaches over streaming
data. To the best of our knowledge, this is the first
study performed in this setting.

2) We propose a new scalable structure learning ap-
proach, called ClusterNet, by using feature clusters
and randomized feature generation. We show a mech-
anism to incrementally update the learned model over
data streams.

3) We empirically evaluate ClusterNet by calculating the
CMLL score over various datasets typically used in
structure learning studies, and compare our results
with other state-of-the-art methods.

The paper is organized as follows. In Section II, we
discuss relevant background knowledge on Markov network
and structure learning. We then discuss the behavior of vari-
ous existing structure learning algorithms over a data stream
in Section III. We describe our proposed clustering based
structure learning method (called ClusterNet) in Section IV
with detailed illustration. ClusterNet is evaluated on multiple
datasets in Section V, where we present the empirical results.
Finally, we conclude our paper in Section VI.

II. PRELIMINARIES

A. Markov Network

A Markov network is an undirected graph G representing
the probability distribution of a dataset. Each random variable
X is denoted as a node in the graph, with edges representing a
relationship between two variables. A non-negative real-valued
function (called potential φ) is associated with each clique in
the graph [18]. The joint probability distribution is represented
by

P (X = x) =
1

Z

∏
k

φk(x{k})

where x{k} is the state of the variable x ∈ X appearing in
the kth clique, and Z is the partition function given by Z =∑
xεX

∏
k φk(x{k}).

Conditional probability of a set of variables Xq (query),
given the value of another disjoint set of variables Xe (ev-
idence), is evaluated accurately by methods such as Vari-
able Elimination. However, these algorithms have exponential
complexity. In particular, the computation of Z (also called
partition function) is known to be #P-Complete. Instead,
an approximate algorithm is employed to approximate the
probability distribution represented by the model. Sampling
methods such as MCMC (Markov Chain Monte Carlo) [8], in
particular Gibbs sampling, is typically used.



Weight learning optimizes a given log-likelihood or
pseudo-log-likelihood objective function by associating appro-
priate weights for each feature. This is an optimization function
whose optimal value is obtained by iterative techniques such as
gradient descent. Maximum-a-posteriori (MAP) estimates are
performed using gradient based or quasi-Newton optimization
methods.

B. Structure Learning

Weight learning is performed over a given Markov network
that encodes the independence (dependence) between vari-
ables. However, the network structure may be unknown. Char-
acteristics of independencies between random variables may
be displayed by a dataset generated in an i.i.d fashion from an
unknown probability distribution. The process of discovering
the knowledge about such independencies (or dependencies)
between variables from a set of data instances is known as
Structure Learning. The goal may be either to specifically
answer a certain type of queries such as in classification, or a
general structure that could answer any relevant MAP query.
In this paper, we develop a structure learning scheme that can
answer any MAP query for a dataset.

Structure learning can be seen as a two step process
i.e. feature generation and selection. Typically, the feature
generation process generates candidate features that can be
potentially included to form a Markov network. These features
are generated from the dataset in order to generalize the
structure of the network. On the other hand, feature selection
process determines the necessity to select these candidate
features to be used to construct the network. The necessity
is measured by a score i.e. either by improvement in log-
likelihood, independence tests or other heuristics such as
support. In particular, for every new feature considered for
selection, the log-likelihood score is calculated for the resulting
model. If it improves the score, then the feature is selected.
In case of the support heuristic, those features that have
similar attribute values from data are selected. The former
scoring mechanism is computationally intensive and inhibits
the scalability of structure learning algorithms. This makes the
support scoring mechanism attractive.

Most studies that follow this search-based technique ad-
dress the feature generation step using a top-down ap-
proach [16], [19] or a bottom-up approach [4], [17]. In a top-
down approach [19], the algorithm initially considers atomic
features (single variables). New candidate features are then
created by conjoining two existing features. Feature selection
is performed by checking whether the new feature improves
the model’s log-likelihood score. In particular, the candidate
feature with largest gain is added to the set of features.
This is iteratively performed till the model score does not
improve upon creation of new candidate features. On the other
hand, a typical bottom-up algorithm such as BLM [4] starts
by considering a complete data instance as a feature. New
candidate features are created by dropping attributes (variables)
in an existing feature. This generalized set of candidate features
are then selected by checking if it improves the model’s score.
The algorithm is iteratively performed till no improvement in
score is observed. These approaches have large search space
and are computationally intensive.

Yet another technique of structure learning involves the use
of local models. Studies such as [20] proposed a method that
learn one model per variable (local model), and then combine
them to form a single global model. Recently, a decision tree
based structure learning (DTSL) [12] was proposed. Here, a
probabilistic decision tree is constructed for each variable to
represent its conditional probability. Features are constructed
by traversing the variables from the root of the tree to its
leaves, and conjoining them. A union of all features are taken
to form a global model by ignoring the order of variables. [13]
proposes to combine BLM with DTSL.

Recently, Jan Van Haaren et al. [24] proposed a randomized
mechanism to learn the structure of the network. This bottom-
up learning mechanism randomly selects existing features
(starting from a list of complete data instances), and then
randomly drops a few variables in the feature to form a
new feature. Such a mechanism has been shown to perform
better than scoring based feature selection mechanisms on
some datasets. Further, the randomization is shown to reduce
computational time to a large extent. However, the algorithm
uses only a global model, which is iteratively grown by
addition of new features. In addition, it also uses a large
number of features.

In this paper, we discuss the operation of above tech-
niques while using a data stream. Furthermore, we propose
a new mechanism that combines the idea of local models
and randomized feature generation for developing a scalable
model suitable to perform inference over streaming data. In
particular, we utilize the clustering mechanism to generate
multiple clusters, each operating as a local model. This is
combined to form a global model at every iteration, and aids in
generating new features incrementally as new data instances
arrive in a stream. Unlike DTSL, we only generate clusters
initially. These are maintained throughout the algorithm. We
inculcate the idea of randomized selection of features from
each cluster. However, the selection is performed proportional
the cluster size unlike the uniform selection performed in
GSSL.

C. Stream Mining

A data stream typically consists of an ordered set of data
instances assumed to be generated in an i.i.d fashion. Most
data streams [6] such as sensor networks, telecommunication
networks and social networks generate data continuously. This
characteristic of streams can generate a large dataset within a
short period of time. In the case of a data mining application,
a machine learning algorithm initially trains a model, and
then uses it to perform inference on previously unseen data
instances. When considering a data stream, a desired prediction
algorithm should be incremental, low latency, one pass, fixed
memory, and have easy parameter adaptation [7]. Statistical
summaries are maintained using appropriate data structures.
Multiple methods have been proposed to maintain statistical
summaries [3], [6]. These are applied to solve problems such
as frequent counts, finding quantiles etc. In our proposed
approach, the summaries are the features generated in the al-
gorithm. For each chunk, we generate features in local models,
and combine them to form a set of global features. This global
feature set is maintained throughout the streaming process.
Typical stream mining techniques perform classification in



which the class label of each data instance is predicted by the
model. In this paper, we perform a generalized inference using
conditional marginal log-likelihood (CMLL) for comparative
purposes.

A non-stationary streaming process may exhibit drifts in
data distribution at certain time periods, affecting the quality
of a model [9]. These are typically known as concept drifts
in terms of data classification. Due to the nature of data
streams, data instances of unseen distribution may evolve
at a later time period. This requires model retraining using
newer data. Naturally, storing all data instance is practically
impossible. Therefore, an incremental learning model is used
whose parameters are periodically trained using a set of newer
data instances [22]. In our study, assume that newer structures
evolve over time while processing a data stream. These are
captured into a global model containing features learned from
previous data chunks. We address the need for incremental
learning by first periodically updating the feature set of the
global model, and learning weights from newer data chunks
by initializing the feature weights (features excluding those
learned from the current chunk) to those learned from previous
chunks.

III. STRUCTURE LEARNING OVER A DATA STREAM

In this section, we discuss the effects of using existing
structure learning methods over a data stream. In general, a
simple way to adopt the structure learning mechanism over a
data stream is perform feature generation and selection on each
data chunk. Features generated in each chunk are combined
together to form a global set of model features. These features
are used inference over the next chunk. Note that the feature
weights are learned using the current data chunk. In this paper,
we use this mechanism to discuss some structure learning
methods over streaming data.

A. Top-Down Approach

A top-down approach starts with atomic features. Since
each chunk can be assumed to contain all non-query variables,
the feature generation and selection mechanism will have to
explore the whole feature space. Chunk based technique only
reduces the size of the dataset, without reducing the number of
random variables in each data instance. Hence, for data having
large number of random variables, this approach will not be
suitable to perform stream mining.

B. Bottom-Up Approach (BLM)

Similar to top-down approach, the search mechanism for
bottom-up approach will also not scale enough to handle
streaming data since the search space is not reduced within
each data chunk. The feature generation and selection method
performs similar to that of a non-stream dataset within each
chunk of the streaming dataset since each complete example
is used to generate new features, and a scoring mechanism to
select an appropriate feature for the global model.

C. DTSL

A probabilistic decision tree streamlines the search criteria
in structure learning. However, they require one tree per vari-
able in the dataset. Within each chunk, the DTSL mechanism
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Fig. 1: Illustration of ClusterNet overview.

builds a set of trees whose size is equal to the number of
query variables, i.e. to represent the query variable Xi, given
all other variables, in P (Xi|X−Xi). Let n is the number of
variables, m is the number of training examples within each
chunk, and l is the domain size of each variable. If each split
has at least 1

k examples in its child, then the total complexity
for one tree is O(lmn logk(m)), and for the entire structure is
O(lmn2 logk(m)) [12]. This is repeated at every chunk, and
is quadratic in its variable size.

D. GSSL

This method uniformly chooses a feature from the existing
feature set, and drops an arbitrary number of variables to form
a new feature. The new feature is added to the global feature
set. At each chunk, this operation is repeated a finite number of
times (set by a threshold max). The new features generated
are added back to the global set at the end of each chuck.
Therefore, this technique can be efficiently used scale structure
learning over data streams. However, the uniform sampling
of features during feature generation can select features hav-
ing similar properties. Thus, new features generated may be
rejected by the feature selection algorithm if the global set
already contains the newly generated features. We address this
by using data clustering to group similar features and sample
according to their relative size.

IV. CLUSTERNET : CLUSTERING BASED MARKOV
NETWORK STRUCTURE LEARNING

In this section, we describe the process of feature genera-
tion and feature selection using clustering.

The ClusterNet structure learning process is illustrated in
Figure 1. A data chunk is formed using m data instances
occurring sequentially in the stream. The first chunk is used
to create a set of k clusters using complete data instances.
Centroids obtained from clustering is then fixed. After this
initialization, the ClusterNet algorithm converts the feature
vector of each data instance into a propositional form, and
assigns it to the cluster having the closest centroid (according
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Fig. 2: Initialization process of ClusterNet where data streams
are considered in chunks, and k-means is applied over it.

to Euclidean distance). These steps form the incremental
clustering at each cluster. It then generates a set of features
within each cluster by iteratively selecting an existing feature
and dropping one of its variable. Each newly created feature
is then assigned back to the same cluster. The set of features
within each cluster form a local model. Therefore, ClusterNet
combines the efficiency of randomized feature generation and
capture localized structural properties within each cluster.
This algorithm is performed iteratively, with replacement, to
generate more generalized features. Finally, feature weight
learning is incrementally performed using the current data
chunk. The learned weights are used to compute the CMLL
score using the data instances from the next chunk as test
dataset. This is repeated throughout at every instance when a
new data chunk is encountered.

We now discuss the initialization, feature generation and
overall algorithm execution in detail.

A. Initialization

Figure 2 illustrates the process of initialization. Data
instances from the first data chunk is considered. k-means
clustering is employed over these instances, within its fea-
ture space, to create k clusters. Here, Ci is shown to be
the corresponding cluster centroid of the ith cluster, where
i ∈ {1 · · · k}, with k = 4.

Each data instance in a cluster is converted to a proposi-
tional form, which is used a feature. In this paper, we assume
binary variables. Therefore, the value of the variable denoted
by 1 or 0, indicates the presence or absence of the variable

Instances V1 V2 V3 V4

1 0 1 1 0
2 1 1 0 1
3 1 0 0 1
4 0 1 0 1

TABLE I: Example dataset illustrating variables and corre-
sponding values

Instances Feature
1 V2 ∧ V3

2 V1 ∧ V2 ∧ V4

3 V1 ∧ V4

4 V2 ∧ V4

TABLE II: Initial set of features (propositional form) generated
from the example dataset.

in that feature. As mentioned in [24], we use the conjunction
of positive variables (having “true” value) as a feature. This
aids in specifying sparse domains effectively. For example,
consider the dataset shown in Table I as an example. There
are 4 variables denoted as V1, V2, V3 and V4. A data instance
has a value of 0 or 1 for each variable (denoted by a row). If a
domain is sparse, then majority of variables have a value of 0
for most data instances. Therefore, a feature corresponding to
each data instance can be expressed as given in Table II. We
consider all training examples from each chunk and convert
them into the propositional form. These features are then
assigned to the appropriate cluster in the model, corresponding
to the data instance through which it is formed. The initial set
of features are stored as a separate list in these clusters.

B. Feature Generation

Algorithm 1 illustrates the process of feature generation
(genFeatures) within each cluster. First, random variables
with highest and least support are calculated in a given cluster.
Support for every variable is calculated by counting the number
of data instances having true value for that variable in the
initial feature set. A variable with the largest count indicates
highest support, denoted as VH . This is calculated using
calcSupportHigh(). Similarly, a variable with the smallest
count indicates least support, denoted as VL. This is calcu-
lated using calcSupportLow() For example, from Table II,
VH = V2 since most data instances have V2 = 1, and VL = V3
since most data instances have V3 = 0.

Each cluster maintains two sets of feature lists (or sets).
One set of features contain the initial feature set generated
by the initialization procedure. The next set of features are
those created during feature generation process. We refer to
the first set as Initial Feature Set (Finit), and the latter set
as New Feature Set (Fnew). The selectFeatureSet procedure
probabilistically chooses a feature set (Finit or Fnew) from
which a feature is to be selected for feature generation, using
a weight threshold denoted by w. We generate a fixed number
of features (or samples) across all clusters at this stage. This is
denoted as α. However, the number of features generated per
cluster may vary. For a given cluster, s indicates the number
of samples needed to be generated. This value is proportional
to the cluster size (which is given by |Finit| + |Fnew|) with
respect to the fixed number of features.



Algorithm 1: genFeatures : Feature Generation Algo-
rithm

Data: Data stream Chunk
Input: Cluster Initial Features Finit, Cluster New

Features Fnew, Number of Samples s, Weight w
Result: List of new features Fcand

1 begin
2 VH = calcSupportHigh()
3 VL = calcSupportLow()
4 for i ∈ (1 . . . s) do
5 F = selectFeatureSet(Finit, Fnew, w)
6 f ← selectFeature(F )
7 fh ← dropSupportHigh(f, VH)
8 fl ← dropSupportLow(f, VL)
9 Fcand ← {fh, fl}

Next, a feature within the chosen feature set is selected
uniformly at random. If VH = 1 exists in the chosen feature,
then the variable is dropped to create a new feature (performed
using dropSupportHigh(·)). Similarly, if VL = 1 exists,
then another feature is created by dropping VL (performed
using dropSupportLow(·)). This creates two new features.
For example, let the randomly chosen feature be V1 = 1∧V2 =
1 ∧ V3 = 1. If VH = V2, then a new feature V1 = 1 ∧ V3 = 1
is created by dropping V2. Similarly, if VL = V3, then another
feature V1 = 1∧V2 = 1 is created. This generates the candidate
features, denoted by Fcand.

C. Approach

Algorithm 2 illustrates the overall structure learning pro-
cess in ClusterNet. After the initialization step (shown in lines
7), the cluster centroids are fixed throughout the algorithm
(while processing subsequent chunks). The data from each
chunk is converted to the propositional form to represent a
set of features. For each feature, cluster having the closest
centroid to the corresponding data instance is computed. The
feature is then added to the cluster’s Finit feature set. The
feature generation and step is performed as shown in lines
15 through 22. Here, new features are generated using the
genFeatures(·) procedure (Algorithm 1) within each cluster.
First, the proportion of samples to be generated within a given
cluster c is computed using compProportion. This provides
the number of samples sc to be generated as a proportion of α.
The weight w is computed as shown in line 20. The value of
the weight increases with the number of iterations. This aids
in sampling Finit more in the initial stages, and then Fnew
more at the later stages in the iteration in genFeatures. Such
a scheme enables the formation of smaller features as new
features are generated at every iteration. The candidate feature
F ccand is obtained, F ccand∪F cnew is performed to update F cnew.
This feature generation process is repeated multiple times. In
particular, if there are n random variables in the dataset, the
iteration is performed n times so that more generalized fea-
tures having lesser variables are generated. Finally, the global
feature set Fglobal is updated using updateGlobalFeatures
procedure. This updated global feature set is used for weight
learning using the data instances from the current chunk. More-
over, we learn weights incrementally by using the previously
learned weights of existing features as their corresponding

Algorithm 2: Overview of ClusterNet algorithm
Data: Data stream
Input: Number of Clusters k, Number of Features α
Result: CMLL Score

1 begin
2 Initialize data chunks
3 i = 0
4 subScore = 0
5 while Chunki+1 exists do
6 if i = 0 then
7 Perform k-means on Chunki
8 else
9 Fglobal ← getGlobalFeatures()

10 cmll← compCMLL(Chunki, Fglobal)
11 subScore← subScore+ cmll

12 Fall ← toPropositionForm(Chunki)
13 for f ∈ Fall do
14 Assign f to closest Cluster’s Finit
15 for j ∈ {1 . . . n} do
16 for each cluster c do
17 if |F cinit| 6= 0 then
18 sc ← α× compProportion(c)
19 {F cinit, F cnew} ← c
20 w ← n−j

n
21 F ccand ←

genFeatures(Finit, Fnew, sc, w)
22 F cnew ← F cnew ∪ F ccand

23 Fglobal ← updateGlobalFeatures()
24 Fglobal ← learnWeights(Fglobal, Chunki)
25 i = i+ 1

26 Output Score = subScore
i

initial weights in the current weight learning process. The
initial weights of newly learned features, i.e. features from
Fnew added to Fglobal, is assigned 0. This essentially forms a
incremental learning mechanism. The weighted global feature
list is used to compute the CMLL score using computeCMLL
while using the data from next chunk. The algorithm outputs
average CMLL score over all chunks processed.

Overall, the algorithm performs a fixed number of iterations
to generate new features when dropping a single variable.
However, the number of iterations within each cluster depends
on its feature size. The newly created features are added to
the clusters at the end of the inner for-loop. Therefore, this
may increase the feature count within the cluster for further
creating newer features. Unlike [24], the feature selection
process is embedded within the generation process as no
duplicate features are retained.

D. Asymptotic Complexity

When the first chunk Chunk0 is encountered, the k-
means clustering algorithm is performed over the data instance
within the chunk. The overall complexity of this algorithm
is O(mknr) where m is the number of training examples,
n is the number of variables, k is the number of clusters



Dataset Number
of variables

Number
of instances

MSNBC 17 388,434
KDDCup 2000 64 234,954

Plants 69 23,215
MSWeb 294 37,711
WebKB 839 4,199

Reuters-52 889 9,100
20-Newsgroups 1058 18,821

TABLE III: Dataset Characteristics

and r is the number of iterations required to converge. The
feature generation process within each cluster generates a
maximum of α number of features. The support calculation
takes O(Mp) times, where Mp is the number of features
within cluster p ∈ {1 . . . k}. The total computation within
each cluster is O(α + Mp). This is asymptotically equal
to O(|Fmax|), where |Fmax| = max(α + Mp, |Fglobal|).
Therefore, the complexity for all clusters is O(k|Fmax|). The
complexity of assigning each candidate feature to closest
cluster is O(k|Fmax|). Therefore, the overall complexity of
the algorithm is O(mknr + (n ∗ k ∗ |Fmax|)). It should be
noted that the size of Fmax, i.e. |Fmax|, can be significantly
less than the feature set size of GSSL algorithm since we do
not keep all generated features in memory, and the features
are spread across multiple clusters. At the end of each chunk,
the feature selection is performed.

V. EMPIRICAL RESULTS

In this section, we show our empirical evaluation of Clus-
terNet on multiple datasets, and compare the results with other
existing approaches.

A. Experiments

We perform multiple experiments using the same datasets
as [24]. Table III lists the real-world datasets.

All previous structure learning methods are performed
over static data (non-streaming). In order to provide a fair
comparison, we perform experiments using various values of
k, i.e. using different number of clusters, using both streaming
and non-streaming settings. In the non-streaming case, only
one chunk is considered to contain all data instances in the
data set. On the other hand, we divide the dataset into 10
chunks in the streaming case. We also fix the number of
samples per iteration to be 1000. Depending on the size of each
cluster, samples or features are selected from each cluster for
generating candidate features. If a candidate feature is unique,
it is added to the new feature list.

The CMLL score is calculated as follows [24]. A chunk
is considered from the data stream. This is used to generate
features. Weight learning is performed using this chunk to
obtain feature weights. The next chunk of data instances are
considered as test set. Conditional marginal log-likelihood
(CMLL) is calculated by evaluating the best model using
this test set. The test set is divided into four disjoint sets of
variables. While one set a query set Q, the rest is considered
as evidence set E. CMLL is computed using

CMLL(X = x) =
∑
i∈Q

logP (Xi = xi|E) (1)

Dataset CMLL Score
GSSL

(Non-Stream)
DTSL

(Non-Stream)
ClusterNet

(Non-Stream)
ClusterNet
(Stream)

MSNBC -1.29 -4.30 -1.29 -1.77
KDDCup 2000 -1.61 -2.19 -0.59 -2.54

Plants -2.58 -9.06 -2.60 -3.25
MSWeb -11.50 -8.37 -14.31 -61.89
WebKB -140.66 -151.18 -146.38 -152.55

Reuters-52 -109.62 -83.29 -130.33 -137.48
20-Newsgroups -157.54 -140.72 -157.89 -162.76

TABLE IV: CMLL Score on various datasets

Dataset Number of features
GSSL (A) ClusterNet (B) % Fraction (B/A)

MSNBC 491,885 35,367 7.19
KDDCup 2000 373,041 37,329 10

Plants 690,390 54,551 7.9
MSWeb 149,689 32,104 21.44
WebKB 2,738,782 52,054 1.9

Reuters-52 2,514,634 55,189 2.19
20-Newsgroups 3,037,720 61,483 2.02

TABLE V: Number of features obtained

The overall score is computed by averaging the the score of
four iteration, each consisting of a set considered as query
variables once. We use the Libra toolkit’s [11] Gibbs sampler
to compute these marginal probabilities. A burn-in of 100 sam-
ples are employed, and the probability if computed using the
next 1000 samples. We compare the result of our experiment
with GSSL [24] and DTSL [12] structure learning methods
only since [24] show that these two methods perform superior
to BLM [4] and other top-down approaches.

B. Results

The results of the empirical evaluation are given in Ta-
ble IV. The scores show that the non-stream version of Clus-
terNet performs equivalently to other existing approaches in
most datasets. In particular, the ClusterNet CMLL score on the
KDDCup 2000 dataset performs the best. This dataset contains
moderate number of variables with large number of data
instances. This provides sufficiently large number of iterations
that can create generalized features, and have more number
data instances per chunks. This may provide better clusters and
feature localization than uniformly random selection of feature
over the entire dataset as performed by GSSL. Naturally, the
approach is better than DTSL in 4 out of 7 cases since the com-
bination of clustering with randomization provides a platform
for broader search and localization criteria. Further, Table V
shows the number of features obtained using ClusterNet. When
compared to GSSL, ClusterNet uses significantly less number
of features resulting in similar scores. The table shows the
fraction of features ClusterNet uses when compared to GSSL,
to illustrate the significance. For example, consider the 20-
Newsgroup dataset. Table IV shows that the CMLL scores of
GSSL and ClusterNet are −157.54 and −157.89 respectively.
The difference between these two scores is 0.35. However,
Table V indicates that ClusterNet only uses 2.02% of features
in comparison with GSSL to obtain a similar CMLL score.

Finally, all scores presented here on ClusterNet are ob-
tained with k = 100. We found that with higher magnitude of
k value, the score does not vary significantly. However, with
lower value of k, the score significantly varies. This may be



due to the number of variables in each dataset. With lower k,
the number of clusters is significantly less than the number of
variables. This may restrict the formation of varied features in
the feature generation stage. On the other hand, the ClusterNet
approach under-performs compared to DTSL and GSSL on
datasets such as Reuters-52. This may be due to large number
of variables and small dataset size.

In the case of the data stream setting, ClusterNet score
obtained is lower than that of the batch (non-stream) approach.
This is expected since we evaluate the stream by using chunks
and average all chunk scores. This decreases the over model
score on each dataset.

It is important to note that the computational complexity
of ClusterNet is greater than that of GSSL since GSSL only
rely on randomization. However, since we do not perform
independence tests or compute conditional probabilities at
every iteration for feature selection, the algorithm is faster than
BLM and DTSL. Furthermore, during streaming, we greedily
generate new features at every chunk. This is added to the
global feature list. However, we found that the number of new
features added at the later part of the stream is significantly less
compared to the initial part of the stream. This is expected as
features with different combinations of variable values could
occur initially, and might repeat after a few chunks. The time
of feature generation can be reduced by selectively determining
if newer features need to be created. We leave this for future
work.

VI. CONCLUSION

In this paper, we perform a comparative study of various
Markov network structure learning methods. In particular, we
first study the behavior of existing structure learning techniques
while operating with a data stream. We discuss various issues
and complexities that would affect the streaming process while
using these heuristic approaches. Furthermore, we propose a
scalable structure learning approach for easy model update
in a data stream. Instead of using a single global model for
feature generation, we propose a new method (called Clus-
terNet) to perform structure learning by combining clustering
of features with randomized feature generation. We argue that
clustering aids in generating localized structure using similar
data instances. Our empirical evaluation shows similar score
as compared to competing methods, while using significantly
less number of features. This is illustrated on various datasets.
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