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In this work we study two partial differential equations that constitute second- and third-order
approximations of water wave equations of the Korteweg – de Vries type. In particular, we first study
previous results concerning the derivation of solitary wave solutions of the second-order approxima-
tion. We then use a simple assumption and find new solitary wave solutions for both equations.
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1. Introduction

As it is well known, the Korteweg – de Vries (KdV)
equation

ut + ux + αuux + β uxxx = 0

represents a first-order approximation in the study of
long wavelength, small amplitude waves of inviscid
and incompressible fluids. If one allows the appear-
ance of higher-order terms in α and β , more compli-
cated wave equations can be obtained. Two such equa-
tions, including second- and third-order terms, were
proposed in [1] and have, respectively, the form

ut + ux + αuux + β uxxx + α2ρ1u2ux

+ αβ (ρ2uuxxx + ρ3uxuxx) = 0
(1.1)

and

ut + ux + αuux + β uxxx + α2ρ1u2ux

+ αβ (ρ2uuxxx + ρ3uxuxx)+ α3ρ4u3ux

+ α2β (ρ5u2uxxx + ρ6uuxuxx + ρ7ux
3) = 0.

(1.2)

Equation (1.1) was examined analytically and nu-
merically in [2 – 4] and it was found that, although it
is non-integrable in general, it still possesses solitary
wave solutions, which, for small values of the parame-
ters α and β , behave like solitons. New wave solutions
of both equations (1.1) and (1.2) were also examined
numerically in [5]. Equation (1.1) was further exam-
ined in [6 – 8] where new wave and periodic solutions
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were found. A numerical study of a new wave solution
was also presented in [9].

In this paper we first show that all the known solitary
wave solutions of equation (1.1) embed in the general
category

u(x, t) =
b0 + b1eξ + b2e2ξ

a0 + a1eξ + a2e2ξ , (1.3)

where

ξ = b(x− ct),

and ai, bi, b and c are free or determined parame-
ters. Consequently, we use a simple assumption which
reveals new solitary wave solutions for both equa-
tions (1.1) and (1.2).

For simplicity, we set α = β = 1 in (1.1) and (1.2);
thus we obtain

ut + ux + uux + uxxx

+ ρ1u2ux + ρ2uuxxx + ρ3uxuxx = 0
(1.4)

and

ut + ux + uux + uxxx + ρ1u2ux + ρ2uuxxx

+ ρ3uxuxx + ρ4u3ux + ρ5u2uxxx

+ ρ6uuxuxx + ρ7ux
3 = 0.

(1.5)

This is equivalent with applying the transformation

u(x, t) =
1
α

w(X ,T ) =
1
α

w

(
1√
β

x,
1√
β

t

)
.
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2. Previous Results

Let us begin with the solution of (1.1) proposed
in [9]. This solution has the form

u(x, t) = a1 + a2Λ(x,t)+ a3Λ(x,t)2, (2.1)

where

Λ(x, t) =
−absech2ξ

b2 −ac(1− tanhξ )2 ,

ξ =
√

a
2

(kx−ωt),

(2.2)

and

a =
b2

4c
, (2.3)

while parameters ai and ω depend on the free parame-
ters ρi, b, c and k.

Because of relation (2.3), function Λ(x,t) in (2.2)
can be written in a more simple form, namely

Λ(x, t) =
bsech2ξ

c(tanhξ −3)(tanhξ + 1)
=− b

c(2 + e2ξ )
.

Thus, solution (2.1) can also be written in a more sim-
ple form, i. e.

u(x, t) =
b0 + b1e2ξ + b2e4ξ

(2 + e2ξ )2
.

The above function embeds in the general cate-
gory (1.3), since it consists only of even powers of eξ .
Moreover, it is easy to verify that all the solitary wave
solutions that appear in [3, 5 – 8] embed in the same
category, as they consist of specific combinations of
hyperbolic functions. The only exceptions are two un-
bounded solutions that appear in [7], which have the
form

u(x, t) = c1 ± c2
sechξ

1± sechξ
+ c2

tanhξ
1± tanhξ

and

u(x, t) = c1 ± c2
cschξ

1± cschξ
+ c2

cothξ
1± cothξ

;

thus both are of the form

u(x, t) =
b0 + b1eξ + b2e2ξ + b3e3ξ + b4e4ξ

e2ξ (a0 + a1eξ + a2e2ξ )
.

3. New Solutions

In what follows we will be interested only in the
case that the solitary wave has zero background, i. e.

lim
ξ→±∞

u(x, t) = 0.

Motivated by the study presented in [10] we first as-
sume that (1.4) admits a solitary wave solution of the
form

u(x, t) =
∂2

∂x2 f (x, t),

where

f (x, t) = a0 log(1+a1eξ +a2e2ξ ), ξ = b(x−ct),

i. e.

u(x, t) =
a0b2eξ (a1 + 4a2eξ + a1a2e2ξ )

(1 + a1eξ + a2e2ξ )2
. (3.1)

Consequently, we substitute (3.1) in (1.4) and equate
to zero the coefficients Ak of ekξ , k = 0, . . . ,10.

Relations A0 = A10 = 0 imply c = 1 + b2, while re-
lations A1 = A9 = 0 imply

a2 =
1

24
a1

2[12−a0(1 + b2(ρ2 + ρ3))]. (3.2)

Then, relations A2 = A8 = 0 yield

ρ1 =
{

72−a0(1 + b2(ρ2 + ρ3))

· [18−a0(1 + b2(3ρ2 + 2ρ3))]
}
{2a0

2b2}−1,

and relations A3 = A7 = 0 yield three different solu-
tions for ρ2, i. e.

(i) ρ2 =
30−a0(5 + 8b2ρ3)

14a0b2 ,

(ii) ρ2 =
6−a0(1 + b2ρ3)

a0b2 ,

(iii) ρ2 =
12−a0(1 + b2ρ3)

a0b2 .

We exclude cases (ii) and (iii), since they lead to wave
solutions of the form (1.3), with b0 = b2 = 0. Finally,
relations A4 = A5 = A6 = 0 imply three different solu-
tions for a0, namely

(i) a0 =
6

1−4b2ρ3
, (ii) a0 =

18
3 + 2b2ρ3

,

(iii) a0 =
46

3 + 2b2ρ3
.



V. Marinakis · New Solitary Wave Solutions in KdV Equations 229

As before, cases (ii) and (iii) are excluded.

Thus, we conclude with the following results:

ρ1 = 3ρ3(4b2ρ3 −1), ρ2 = −2ρ3,

and (1.4) admits the solitary wave solution

u(x, t) =
24a1b2eξ

[
4(1−4b2ρ3)+ 4a1(1−7b2ρ3)eξ + a1

2(1−7b2ρ3)e2ξ
]

[
4(1−4b2ρ3)+ 4a1(1−4b2ρ3)eξ + a12(1−7b2ρ3)e2ξ

]2 ,

where

ξ = b(x− (1 + b2)t),

and ρ3, a1, b remain free.
Obviously, the above solution is new, since

form (3.1), that was initially assumed, is more general
than (1.3). Of course, one could assume more general
forms, i. e.

u(x, t) =
eξ (b0 + b1eξ + b2e2ξ )
(1 + a1eξ + a2e2ξ )2

(3.3)

or

u(x, t) =
eξ (b0 + b1eξ + b2e2ξ )

1 + a1eξ + a2e2ξ + a3e3ξ + a4e4ξ . (3.4)

However, this would lead to a much more complicate
system, due to the nonlinear terms that appear in (1.4).

We now turn to (1.5) and follow the same procedure.
Thus, we substitute (3.1) in (1.5) and equate to zero
the coefficients Ak of ekξ , k = 0, . . . ,14. This yields the
following results:

ρ1 =
126−3a0(11 + b2(13ρ2 + 12ρ3))+ 2a0

2(1 + b2(ρ2 + ρ3))(1 + b2(3ρ2 + 2ρ3))
3a02b2 ,

ρ4 = −2[6−a0(1 + b2(ρ2 + ρ3))][30−a0(5 + 2b2(7ρ2 + 4ρ3))]
3a03b4 ,

ρ5 = −2[6−a0(1 + b2(ρ2 + ρ3))][12−a0(2 + b2(5ρ2 + 2ρ3))]
9a02b4 ,

ρ6 =
[6−a0(1 + b2(ρ2 + ρ3))][24−a0(4 + b2(7ρ2 −2ρ3))]

9a02b4 ,

ρ7 = − [6−a0(1 + b2(ρ2 + ρ3))][6−a0(1 + b2(ρ2 −2ρ3))]
6a02b4 ,

and (1.5) admits the solitary wave solution

u(x, t) =
a0b2eξ (a1 + 4a2eξ + a1a2e2ξ )

(1 + a1eξ + a2e2ξ )2
,

where

ξ = b(x− (1 + b2)t),

a2 is given by (3.2) and ρ2, ρ3, a0, a1, b remain free.

4. Concluding Remarks

In this paper we have used a simple assump-
tion and have found new solitary wave solutions for
equations (1.4) and (1.5), that represent, respectively,
second- and third-order approximations of the unidi-
rectional water wave propagation, in the short ampli-
tude α and long wavelength limit β . The procedure
followed is quite simple, since it consists only of alge-
braic manipulations, which can be easily carried out by
the use of any computer algebra program.
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Since many of the solitary wave solutions of vari-
ous partial differential equations consist of combina-
tions of hyperbolic functions, we believe that initial
assumptions, such as (3.1), (3.3), and (3.4) (or even
more general), could be used to reveal new solutions.
Of course, this could often lead to a very complicate

system. On the other hand, such assumptions can be
used even when the equation is non-integrable, thus we
cannot use one of the powerful tools that integrability
implies, such as Lax pair representation or Bäcklund
transformations.
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