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Linear Stability Analysis of the
Herringbone Groove Journal
Bearings in Microsystems:
Consideration of Gas Rarefaction
Effects
The dynamic performance of the herringbone groove journal bearings (HGJBs) with the
effects of gas rarefaction taken into account is considered for applications in microsys-
tems. Two important parameters (the Knudsen number Kn and the tangential momentum
accommodation coefficients, TMACs or the accommodation coefficients, ACs) that affect
gas rarefaction significantly are considered. Small variations in film thickness and pres-
sure from the equilibrium state are substituted into the transient modified molecular gas
lubrication (MMGL) equation, which considers effects of gas rarefactions with the Poi-
seuille and Couette flow rate correctors. The gas film in the rotor-bearing system is
modeled as stiffness and damping elements with coefficients dependent on the exciting
frequency. The dynamic coefficients are then obtained by solving the linearized MMGL
equations. The equations of motion of the rotor as well as the dynamic coefficients are
performed for the present linear stability analysis. Due to the exciting frequency-
dependent nature of the dynamic coefficients, an iterative method with the golden section
technique is introduced in the linear stability analysis of rotor-bearing systems. The
critical mass parameters and the related threshold speed are computed and discussed.
The results of this study prove that HGJBs in microsystems can operate at concentric
conditions at very high speeds.
�DOI: 10.1115/1.3201872�

Keywords: linear stability analysis, MMGL, Knudsen number, tangential momentum ac-
commodation coefficient
Introduction
Due to the better dynamic performance and self-sealing charac-

eristics in concentric or nearly concentric operating conditions �1�
f herringbone groove journal bearings �HGJBs�, they are widely
sed in rotating disk-spindles and are of potential use in micro-
ystems. The bearing surfaces with grooves are applied to pump
he lubricant inward. The use of HGJBs can also generate the
adial stiffness at the concentricity of rotors. Plain journal bear-
ngs are not operating in concentric conditions due to null radial
tiffness. Moreover, the use of gas bearing has the feature in op-
rating in quite lower noise, high speed, and high temperature.
hey are used to realize better and feasible features as compared
ith the current conventional ball bearings and oil-lubricated
earings.

In modeling the gas lubrication film in HGJBs, the continuum
ow approach with compressible Reynolds equation is utilized as

he governing equation. Due to the complexity of herringbone
onfigurations and the gap discontinuity, numerical analysis is
eeded to solve the compressible Reynolds equation. The finite
lement method �FEM� �1–3� is a good candidate to treat this
onfiguration with complexity. The effect of groove location and
he effect of rotating or stationary herringbone groove on the dy-
amic characteristics of the bearing system are discussed by solv-
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ing the compressible Reynolds equation and the equations of mo-
tion of the rotor simultaneously in the time domain �2�. On the
other hand, the compressible Reynolds equation is linearized by
the method of perturbation under the conditions of small varia-
tions in film thickness and pressure in the frequency domain �3�.
The lubricating gas film is modeled as the dynamic coefficients
�4,5� �stiffness and damping coefficients�. The dynamic perfor-
mance of herringbone groove journal bearings is better than that
of plain journal bearings, especially at concentric or nearly con-
centric operating conditions. The pressure distribution in HGJBs
comes from the relative motion �rotation� between the bearing and
rotor surfaces. The resulting load capacities and dynamic coeffi-
cients may induce an eccentric and/or unstable operating state.
The linear stability analysis on hydrodynamic gas bearings was
first introduced by Lund �4�. The dynamic coefficients were also
obtained by using the orbit method �5�.

Due to the improvement in manufacturing techniques and the
requirement of high speed and low noise characteristics, the size
of bearings tends to decrease. In the applications of microsystems,
the clearance in bearings decreases further. The continuum mod-
eling �the compressible Reynolds equation� is questionable as the
clearance is comparable to the mean free path of gas molecules
�which is dependent on the operating conditions such as pressure
and temperature, 65 nm at standard ambient temperature and pres-
sure �SATP�� �6–8�. The compressible Reynolds equation should
be corrected and extended to consider the effects of gas rarefac-
tion. The developed models include the continuum model as its
special case for small Knudsen numbers �an indicator of gas rar-
efaction, which is defined as the ratio of the mean free path to the

characteristic length�. Four flow regimes are classified according
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o the Knudsen number: the continuum flow �Kn�0.01�, the slip
ow �0.01�Kn�0.1�, the transition flow �0.1�Kn�10�, and

he molecular flow �Kn�10�. As the Knudsen number is greater
han 0.01, the no-slip condition for a fluid on the solid boundary is
uestionable. The gas-lubricated journal bearings for self-acting
as-lubricated plain journal bearings with slip-flow effects are
onsidered �9�. Later, the modified Reynolds equation with the
rst-order slip-flow model �the accommodation coefficient �AC�

s set to be 0.8� is applied on analyzing the microelectromechani-
al system �MEMS�-based microrotating machinery �10�. The dy-
amic coefficients are obtained by solving the linearized modified
eynolds equation in the frequency domain. The same model is
lso applied to the analysis of air foil bearings in micropower
ystems �11�. However, the above analyses are restricted to plain
ournal bearings operating in the slip-flow regime �0.01�Kn

0.1�.
As the Knudsen number increases further �increases in mean

ree path or decreases in characteristic length�, the flow regime
elongs to the transition flow and/or free molecular regime. The
GL equation with Poiseuille flow rate correctors is proposed for

n arbitrary Knudsen number �12�. However, this equation is lim-
ted for some specific ACs �symmetric molecular interaction, �1
�2=�=0.7, 0.8, 0.9, and 1.0�. To extend the limitation of the
GL equation, databases on Poiseuille and Couette flow correc-

ors �6,7� are obtained numerically as functions of the inverse
nudsen number and asymmetric ACs ��1��2�. Thus, the
MGL equation is proposed, which is valid for an arbitrary
nudsen number and 0.1���1.0. The AC, which is a measure
f the fraction of air molecules that interact with solid boundaries
n a diffusive manner ��=1 for diffuse reflections and �=0 for
pecular reflections�, has been determined experimentally to be
alid between 0.2 and 0.8 �13,14�.

In the frequency domain analysis of HGJBs, the dynamic coef-
cients are always introduced as indicators of the dynamic perfor-
ance of the system. The dynamic coefficients are dependent on

he exciting frequency. Due to this frequency-dependent nature, it
akes more time solving the critical mass and critical whirl fre-
uency for further linear stability analysis. The linear stability
nalysis of foil bearings �15�, gas bearings in micro-via drilling
pindle system �16�, micro-rotor-bearing systems �17�, and slot-
estricted gas journal bearings �18� is discussed. The slip-flow
ffects are considered in Ref. �18�. However, the effects of gas
arefaction include two parameters: the Knudsen number and the
ccommodation coefficients. No article related to linear stability
nalysis on HGJBs with Kn and AC taken into account was found.
he present analysis uses the MMGL equation, which is appli-
able for arbitrary Knudsen numbers and ACs as the governing
quation for HGJBs in microsystems. The dynamic coefficients of
he gas film are obtained by solving the linearized MMGL equa-
ions. The equations of motion of the rotating part are considered
imultaneously to discuss the stability performance. The stability
ap of the critical �threshold� mass and frequency parameters as

unctions of bearing numbers and ACs are discussed.

Theory

2.1 Governing Equations. The coordinate system, geometry,
nd orientation of the grooves with respect to the bearing mid-
lane are illustrated in Fig. 1. The grooved journal is the station-
ry part and the bushing is the rotating part. The dimensionless
MGL equation, which is applicable for arbitrary Knudsen num-

ers and AC conditions by introducing the Poiseuille �7� and Cou-

tte �6� flow rate correctors, in the �-Z coordinate is expressed as
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�PH3�P

��
Qp� +
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�Z
�PH3�P

�Z
Qp� = �

��PHQc�
��

+ �
��PH�

�T

�1�

where H�=h /c� is the dimensionless film thickness, P�=p / pa� is
the dimensionless pressure of the gas film, QP�D ,�1 ,�2� is the
Poiseuille flow rate corrector, QC�D ,�1 ,�2� is the Couette flow
rate corrector, �=6�	rr

2 / pac2 is the bearing number, �
=12�	rr

2 / pac2=2� is the squeeze number, D�=D0PH� is the in-
verse Knudsen number, 	r is the rotating angular frequency, � is
the viscosity of lubricant, r is the radius of the shaft, c is the
concentric clearance, pa is the ambient pressure, p is the pressure,
and h is the film thickness of the lubricating film.

Under dynamic conditions, the dimensionless film thicknesses
for well-aligned rotor-bearing systems are expressed as

H��,T� � H0 + 
H = H0��� + 
X�T�cos � + 
Y�T�sin � �2�

H0��� = 1 + � + �0 cos�� − 0� �3�

where �0=e0 /c is the eccentricity ratio and � is the groove depth
��=0 on the ridge and �=cg /c in the groove�.

The pressure variations due to film thickness variation are ex-
pressed as

P��,Z,T� � P0��,Z� + 
P��,Z,T� �4�

where H0��� and P0�� ,Z� are the film thickness and pressure dis-
tribution operating at steady-state position �ex0

,ey0
�, respectively.

The flow rate correctors can also be expressed as

Qp = �Qp�0 + � �Qp

�P
�

0


P + � �Qp

�H
�

0


H �5�

Qc = �Qc�0 + � �Qc

�P
�

0


P + � �Qc

�H
�

0


H �6�

where D0= pac /��2RT0 and the related derivatives are

� �Qp

�P
�

0

= � �Qp

�D
�

0

D0H0, � �Qc

�P
�

0

= � �Qc

�D
�

0

D0H0

� �Qp

�H
�

0

= � �Qp

�D
�

0

D0P0, � �Qc

�H
�

0

= � �Qc

�D
�

0

D0P0 �7�

The substitution of the perturbed form in Eqs. �2�–�7� in the
MMGL equation �Eq. �1�� results in one steady-state and four
first-order equations. The steady �zeroth-order� equation is ex-

Fig. 1 Geometry of herringbone grooves
pressed as
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	P0H0

3

�

�P0

��
�Qp�0
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�

�Z
	P0H0

3

�

�P0

�Z
�Qp�0


=
1

2

�

��
�P0H0�Qc�0� �8�

nd the first-order equation is expressed as

1

�

�

��
� �P0

��
P0H0

3	� �Qp

�P
�

0


P + � �Qp

�H
�

0


H

+

�P0

��
�3P0H0

2
H + H0
3
P��Qp�0 +

�
P

��
�P0H0

3��Qp�0�
+

1

�

�

�Z
� �P0

�Z
P0H0

3	� �Qp

�P
�

0


P + � �Qp

�H
�

0


H

+

�P0

�Z
�3P0H0

2
H + H0
3
P��Qp�0 +

�
P0

�Z
�P0H0

3��Qp�0�
=

1

2

�

��
P0H0	� �Qc

�P
�

0


P + � �Qc

�H
�

0


H

+

1

2

�

��
�Qc�0�P0
H + H0
P� +

�

�T
�P0
H + H0
P� �9�

he periodic pressure boundary conditions are used in the circum-
erential direction. Also, we have the boundary conditions on the
wo sides �L=0,1� as P0=1 and 
P=0.

Taking the Laplace transformation, the film thickness variation
an be expressed as


H̄��,s� = 
X̄�s�cos � + 
Ȳ�s�sin � �10�

nd the Laplace transformation of pressure variation becomes


P̄��,Z,s� = G1��,Z,s� · 
X̄�s� + G2��,Z,s� · 
Ȳ�s� �11�

here Gn�n=x ,y� are complex functions to be determined and the
arameter s is, in general, complex �s=�+ j�, �=0, j=�−1, and
=	 /	s�. In the following derivation, �=0 is used in the deter-
ination of the threshold of instability.
The substitution of Eqs. �5�–�7� and Eqs. �10� and �11� in Eq.

9� results in four first-order equations, i.e.,

�

��
	P0H0

3

�

�Gi

��
�Qp�0
 +

�

�Z
�P0H0

3

�
	 �Gi

�Z
�Qp�0
�

=
�

��
�P0H0

2
�	� �Qc

�P
�

0

Gi + � �Qc

�H
�

0

ci

+

�

��

�Qc�0

2
�P0ci + H0Gi� −

�

��
� �P0

��

P0H0
3

�
	� �Qp

�P
�

0

Gi

+ � �Qp

�H
�

0

ci +
3

H0
ci +

1

P0
Gi�Qp�0
�

−
�

�Z
� �P0

�Z

P0H0
3

�
	� �Qp

�P
�

0

Gi + � �Qp

�H
�

0

ci +
3

H0
ci

+
1

P0
Gi�Qp�0
� + j� · �P0ci + H0Gi� �12�

here cx=cos �, cy =sin �, and the boundary conditions are Gi
0 at the boundaries.

2.2 Modeling of Gas Film. The load capacities of the gas
lm could be obtained by integrating the pressure distributions
ver the bearing surfaces and be expressed as W=�Wx

2+Wy
2,

here

Wx =l/r2�

�P − 1�cos � d�dZ �13�

0 0
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Wy =
0

l/r
0

2�

�P − 1�sin � d�dZ �14�

The force of the gas film acting on the rotor surface can be mod-
eled with the dynamic coefficients Kij and Dij �i=x ,y and j=x ,y�,
i.e.,

Fx = − 
P cos � dZd� = s · Dxx
X̄ + s · Dxy
Ȳ + Kxx
X̄

+ Kxy
Ȳ �15�

Fy = − 
P sin � dZd� = s · Dyx
X̄ + s · Dyy
Ȳ + Kyx
X̄

+ Kyy
Ȳ �16�

where M =mc	r
2 / par2, Dij =dijc	r / par2, Kij =kijc / par2, F

= f / par2, i, j=x ,y, and n=x ,y. Therefore, we have the dynamic
coefficients as follows:

Kij = real part of �− ciGjdZd�� �17a�

and

� · Dij = imaginary part of �− ciGjdZd�� �17b�

The rotor-bearing system is modeled with two degrees of free-
dom, i.e.,

MẌ = − Fx, MŸ = − Fy �18�

2.3 Linear Stability Analysis. The stability prediction
method is mainly from Lund �4�. In order to perform the theoret-
ical analysis of stability, the equations of motion using the dy-
namic coefficients in the frequency domain are written as

	Ms2 + Dxxs + Kxx Dxys + Kxy

Dyxs + Kyx Ms2 + Dyys + Kyy

�
X0


Y0
�esT = 0 �19�

The determinant has to be zero to satisfy the nontrivial solution,
i.e.,


 = �Ms2 + Dxxs + Kxx Dxys + Kxy

Dyxs + Kyx Ms2 + Dyys + Kyy
� = 0 �20�

or

M2s4 + �Dxx + Dyy�Ms3 + �Kxx + Kyy + DxxDyy − DxyDyx�Ms2

+ �KxxDyy + KyyDxx − KxyDyx − KyxDxy�s + �KxxKyy − KxyKyx�

= 0 �21�

At the threshold of instability, we can obtain the two equations of
the form by introducing s=0+ j ·� into Eq. �21� and splitting the
equation into real and imaginary parts, i.e.,

M =
KxxDyy + KyyDxx − KxyDyx − KyxDxy

�2�Dxx + Dyy�
�22�

�Kxx − �2M��Kyy − �2M� − �2DxxDyy − KxyKyx + �2DxyDyx = 0

�23�

Since the dynamic coefficients are exciting frequency-dependent,
the mass and frequency parameters obtained from Eqs. �22� and
�23� should be introduced into Eq. �21� to check if all the roots
have a nonpositive real part and to check if one of the roots is s
=0+ j ·�. The thresholds of instability are then plotted as we ob-
tain the two parameters iteratively under specific operating condi-

tions. As any real part of the four roots in Eq. �21� is positive, the
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ystem is unstable. The stability map can help the designer to have
he system operating in the stable region. To judge which region is
table in the stability plot, it is necessary to discuss the effects of
ass and frequency parameters on the real part of s.
From the chain rule in calculus, we can introduce the determi-

ant as


 � 
0 + � �


i � �
�

0

· ds + � �


�M
�

0

· dM �24�

t threshold 
=
0=0, we have

� ds

dM
�

0
= � ��

�M
�

0

+ j� ��

�M
�

0

= � �


�M
�

0

/j� �


��
�

0

�25�

n addition, we can derive the numerator and denominator as

� �


�M
�

0

= − �2�Kxx − Kyy� + 2�4M − j�3�Dxx + Dyy� �26�

� �


��
�

0

= 2�− �KxxKyy − KxyKyx − �4M2� − � · j�2M�Cxx + Cyy��

�27�

he real part of �ds /dM�0 becomes �19,20�

� d�

dM
�

0
=

1

2
�4�Dxx + Dyy��2�DxxDyy − DxyDyx�

�KxxKyy − KxyKyx − �4M2�2 + �2�4M2�Dxx + Dyy�2

�28�

he threshold is obtained from �=0. On the stability map �e.g., M
ersus ��, the two regions split by the threshold line can be
udged as stable or unstable by the substitution of the parameters
M and �� and by relating Kij and Dij into Eq. �28�. If
d� /dM�0�0, it means as M increases, the system becomes
table. Otherwise, the system becomes unstable as M increases.

Results and Discussion
Following the solver developed in Ref. �21�, the partial differ-

ntial equations �PDEs� �Eqs. �8� and �12�� of the present prob-
ems are solved by FEM mapped quad mesh that consists of 800
lements and 16,905 degrees of freedom. The grid density is
oubled to check for the precision requirement. The convergence
or relative errors within 10−5 is achieved for each grid. The com-
arison of dimensionless load capacities, attitude angles, and stiff-
ess coefficients with those by Faria �3� is proposed in our previ-
us paper in Ref. �21�. Good agreement between the numerical
cheme and Faria �3� are found, as all the relative errors are
maller than 0.1%.

It is hard to find the stability map of HGJBs to compare with.
ost of the papers treat the dynamic coefficients as excitation

requency-independent, even though they are excitation
requency-dependent. To validate the correctness of the present
tability map, the stability analysis of foil bearings by Vleugels et
l. �15� without bearing compliance is compared with the present
esults. The plain journal cases are analyzed by setting the groove
epth=0 �cg=0� and flow rate correctors=1 �QP=QC=1� in the
resent simulation. However, the “cavitation” type boundary con-
itions in Ref. �15� were used for the nonfixed top foil. The di-
ensionless critical mass parameters are plotted as functions of

earing numbers at low eccentricity ratio ��=0.3�, as shown in
ig. 2�a�. The comparison seems marginally acceptable. The dis-
repancy comes from the boundary setting �cavitation boundary�
n foil bearings �15�. As the top foil is, in general, not fixed to the
exible element, it could lose contact with the flexible element
hen a subambient pressure is reached. The Reynolds cavitation
oundary conditions �15� �P=1, �P /��=0 at �=�b� were used at
he part of the foil to avoid subambient pressure. In addition, the

imensionless load capacities and stiffness coefficients are also

41705-4 / Vol. 131, OCTOBER 2009
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Fig. 2 „a… Comparison of dimensionless critical mass param-
eters with those by Vleugels et al. †15‡, „b… comparison of di-
mensionless load capacities with those by Vleugels et al. †15‡,
and „c… comparison of dimensionless stiffness coefficients

with those by Vleugels et al. †15‡
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ompared, as shown Figs. 2�b� and 2�c�, respectively. We find
ome discrepancies in the dimensionless load capacities and direct
tiffness coefficients. The discrepancy for the dimensionless criti-
al mass parameter comes from the discrepancy of cross stiffness
oefficients and dimensionless load capacities. Most of the dis-
repancy comes from the setting of cavitation boundary condi-
ions in Ref. �15�.

3.1 Effects of Eccentricity Ratios. Understanding the effects
f groove geometry and operating conditions on HGJBs is impor-
ant on the design of HGJB systems. The geometry and operation
onditions for the present analysis are listed in Table 1. The data
hown in Table 1 is for simulation purpose. The present research
ainly focuses on studying the effects of Kn and AC on the sta-

ility performance of a rotor-bearing system and on solving the
roblem of frequency-dependent dynamic coefficients �stiffness
nd damping� of the gas film in the equations of motion. Although
he present data in Table 1 are hard to realize in today’s manufac-
uring technology, it is but helpful to discuss the gas rarefaction
ffects �Kn and AC� on the system by solving the modified Rey-
olds equation. In addition, the molecular mean free path in-
reases as the temperature increases. Thus, the gas rarefaction
ffects become especially significant as the operation temperature
ncreases �10�. Therefore, the gas rarefaction is of importance
ven in the present manufacturing technology. The present model
s of potential use as the manufacturing technology improved
urther.

As shown in Fig. 3, the critical mass parameters �MC� and
elated frequencies ��� are plotted as functions of bearing num-
ers for various eccentricity ratios at the groove depth ratio ��

Table 1 Basic geometric parameters of HGJBs

Length of the bearing 2�10−4 m
Radius of the rotor 1�10−4 m

Clearance of the bearing 2�10−7 m

g Groove depth 2�10−7 m
Gas viscosity 1.8�10−5 Pa s
Groove angle 30 deg

g Groove number 8

g Groove width ratio 0.25
Eccentricity ratio 0

a Ambient pressure 0.101 MPa

ig. 3 Stability map plotted as functions of bearing numbers

or various eccentricity ratios

ournal of Tribology
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=cg /c=2.5�. In the region of bearing number ��1, the effects of
the eccentricity ratio are significant. The critical mass parameter
increases as the eccentricity ratio decreases. In the region of bear-
ing number ��1, the effects of eccentricity on the critical mass
parameters almost diminish. The critical mass parameter increases
as the bearing number increases. Even the eccentricity ratio af-
fects the critical mass parameters slightly. We have a higher criti-
cal mass parameter operating at a higher eccentricity ratio; or we
can state that the system is more stable for operating conditions at
a low eccentricity ratio with a low bearing number ���1�, or at
a high eccentricity ratio with a higher bearing number ���1�.
The change in the eccentricity ratio also affects the minimum film
thickness, and thus the inverse Knudsen number �Dmin
=D0PHmin� at minimum film thickness Hmin=1−�. The bearing
number is defined at the nominal clearance �c�. Also, we have
larger threshold frequencies for lower eccentricity ratios at bear-
ing numbers around ��0.4. We have lower threshold frequencies
for lower eccentricity ratios at bearing numbers around ��0.4.
The reverse point for a critical mass parameter and a threshold
frequency is around �=1 and 0.4, respectively.

3.2 Effects of Groove Depth Ratios. To discuss the effects of
the groove depth ratio ��=cg /c� on the stability map, the dimen-
sionless critical mass parameters and threshold frequencies are
plotted as functions of bearing numbers for various � at concen-
tric conditions ��=0�. The results in Fig. 4 show that the system is
more stable for a lower groove depth ratio at the region of bearing
number ��30. At the region of bearing number ��30, the sys-
tem is slightly stable for a higher groove depth ratio as compared
with those for a low groove depth ratio. The reverse point for a
critical mass parameter and related threshold frequency occurs
around �=30 and 0.4, respectively.

3.3 Effects of Groove Number. In Fig. 5, the effects of the
groove number on the stability map are plotted. It seems that the
groove numbers are of little effect on the stability map except for
the threshold frequency at high bearing numbers. Although the
groove number affects the load capacities, it has a little effect on
the critical mass in the stability map at concentric operating con-
ditions.

3.4 Effects of Gas Rarefactions. Two parameters, the Knud-
sen number �Kn� and the accommodation coefficients ��1 ,�2�, are

Fig. 4 Stability map plotted as functions of bearing numbers
for various groove depth ratios
used to reflect the effects of gas rarefaction on the stability map.
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hey are important indicators of gas rarefaction. The effects of
as rarefaction increase as the AC decreases or Kn increases. As
hown in Figs. 6�a�–6�c�, the stability maps are plotted as func-
ions of inverse Knudsen numbers �D0=��h /2�=�� /2Kn0� for
arious groove depth ratios at bearing numbers �=1, 10, and 100,
espectively. We can see that the critical mass parameter and the
elated threshold frequency increase asymptotically as D0 in-
reases. As D0 increases further, the gas rarefaction decreases. The
ontinuum flow modeling is more feasible in that region. The
everse point of D0 at which the values of threshold frequencies
everses for various groove depth ratios decreases as the bearing
umber increases. Moreover, the reverse point of D0 at which the
alues of critical mass parameters reverses for various groove
epth ratios decreases as the bearing number increases. The re-
ults in Figs. 6�a� and 6�b� show that the system is more stable for
smaller groove depth ratio or a larger D0. A larger D0 means
ore continuum flow. The critical mass parameter increases as-

mptotically to a constant as D0 increases further to the con-
inuum flow region. At bearing number �=10, we can find a
imilar trend as compared with that at �=1. However, different
rends are found in Fig. 6�c� at �=100. The system is more stable
or a low groove depth ratio at a lower D0. Moreover, the system
s more stable for a high groove depth ratio at a higher D0.

To discuss the effects of ACs on the stability map, the dimen-
ionless critical mass parameters are plotted as functions of ACs
or various combinations of ACs, as shown in Figs. 7�a�–7�c�, for
=1, 10, and 100, respectively. In the combinations of �1 ,�2,

urface 1 is rotating and surface 2 is stationary. From the Poi-
euille flow rate corrector QP�D ,�1 ,�2�, we have the symmetric
roperties, i.e., QP�D ,�1 ,�2�=QP�D ,�2 ,�1�. From the Couette
ow rate corrector QC�D ,�1 ,�2�, we have the asymmetric prop-
rties QC�D ,�1 ,�2�+QC�D ,�2 ,�1�=2. The AC on the sliding
urface �surface 1, �1� affects the load capacity more significantly
s compared with the AC on the stationary surface ��2� �21� does.
rom Figs. 7�a�–7�c�, the critical mass parameter increases as gas
arefaction effects decrease. That is, the stability region increases
s gas rarefaction decreases �� or D0 increases�. As the flow is
ore continuum �gas rarefaction effects decreases�, the stability

egion increases. It is necessary to include the effects of gas rar-
faction in the analysis of microsystems. For low bearing cases
�=1�, as shown in Fig. 7�a�, the critical mass parameter obtained
rom the combinations of �1 ,�2 is almost the same as that from

ig. 5 Stability map plotted as functions of bearing numbers
or various groove numbers
2 ,�1. As the bearing number increases, the critical mass param-
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Fig. 6 „a… Stability map plotted as functions of inverse Knud-
sen numbers for various eccentricity ratios for �=1.0, „b… sta-
bility map plotted as functions of inverse Knudsen numbers for
various eccentricity ratios for �=10, and „c… stability map plot-
ted as functions of inverse Knudsen numbers for various ec-
centricity ratios for �=100
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ters increase further. The AC on the sliding surface affects the
ritical mass parameter significantly as the bearing number in-

ig. 7 „a… Stability map plotted as functions of ACs for various
ombinations of ACs at �=1.0, „b… stability map plotted as
unctions of ACs for various combinations of ACs at �=10, and
c… stability map plotted as functions of ACs for various com-
inations of ACs at �=100
reases, i.e., MC�� ,1��MC�1,��.

ournal of Tribology
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4 Conclusion
The linear stability analysis of herringbone groove journal bear-

ings is proposed by solving the linearized MMGL equation and
the equations of motion of the rotor. The frequency-dependent
nature of the dynamic coefficients makes it difficult to solve for
the linear stability analysis of the system. The effects of groove
depth ratios, groove numbers, bearing numbers, and gas rarefac-
tions �inverse Knudsen numbers and ACs� on the stability maps
are discussed. Some important results are listed below.

�1� The grooved journal bearing has better stability perfor-
mance to operate at concentric conditions as compared with
plain journal bearings.

�2� The stability region �critical mass parameter� is larger for
smaller eccentricity ratios at low bearing numbers ���1�,
and is slightly larger for larger eccentricity ratios at high
bearing numbers ���1�.

�3� The stability region is larger for smaller groove depth ratios
at low bearing numbers ���30�, and is slightly larger for
larger groove depth ratios at high bearing numbers ��
�30�.

�4� The groove numbers affect the critical mass parameters
slightly.

�5� The stability region increases as the effects of gas rarefac-
tion decrease �lower D0 or smaller ACs�.

�6� The AC on the sliding surface affect the stability more sig-
nificantly as compared with the AC on the stationary sur-
face does.
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Nomenclature
c � concentric clearance �m�

cg � groove depth �m�
e � eccentricity �m�

ex0, ey0 � eccentricities at steady-state �m�
D � inverse Knudsen number �=D0PH�

D0 � reference inverse Knudsen number
dij � damping coefficient of gas film �i=x ,y�

�N m/rad�
Dij � dimensionless damping coefficient of gas film

�=dijc	 / par2; i=x ,y and j=x ,y�
Gn � complex functions �n=x ,y�

h � film thickness of lubricating film �m�
H � dimensionless film thickness �=h /c�

H0 � dimensionless film thickness at steady-state
position


H � dimensionless film thickness variation
kij � stiffness coefficient of gas film �i=x ,y and j

=x ,y� �N m/rad�
Kij � dimensionless stiffness coefficient of gas film

�=kijc / par2; i=x ,y and j=x ,y�
m � mass of the rotor �kg�
M � dimensionless mass parameter

MC � dimensionless critical mass parameter
p � pressure distribution of the gas film
P � dimensionless pressure in the gas film �=p / pa�

P0 � dimensionless pressure in the gas film at
steady-state position

pa � ambient pressure �N /m2�

P � dimensionless pressure variation

r � radius of the rotor �m�
t � time variable

T
 � the dimensionless time �=	rt�
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w � load capacity �N�
W � dimensionless load capacity �=w / par2�


X̄ � perturbed dimensionless displacements in the
x-direction


Ȳ � perturbed dimensionless displacements in the
y-direction

X, Y, Z � rectangular coordinates
�i � tangential momentum accommodation coeffi-

cient of the ith surface �i=1,2�
� � real part of s
� � eccentricity ratio

	r � rotor angular velocity �rad/s�
� � coordinate initiate from the negative x-axis

�rad�
� � squeeze number �=12�	rr

2 / pac2�
� � viscosity of gas �Pa s�
� � groove depth ��=0 on the ridge and �=cg /c

in the groove�
� � mean free path of molecules
� � bearing number �=6�	rr

2 / pac2�
0 � attitude angle at steady-state
� � dimensionless exciting frequency
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