
 

Downloaded From: 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX
                                                                             Proceedings of PVP2008 
2008 ASME Pressure Vessels and Piping Division Conference 

July 27-31, 2008, Chicago, Illinois, USA 

PVP2008-61105

REPETITIVE CONTROL BASED DISTURBANCE CANCELLATION USING 
ITERATIVE BASIS FUNCTION FEEDBACK WITH WAVELET FILTERING 

 
 

Jeng-Wen Lin 
Department of Civil Engineering, Feng Chia 

University, 407 Taichung, Taiwan. 
Email:jwlin@fcu.edu.tw 

Chih-Wei Huang 
Graduate Institute of Civil and Hydraulic 

Engineering, Feng Chia University, 407 Taichung, 
Taiwan. 

 
 

Hao-Ping Wen 
Storage System Division, Samsung Information 

Systems America, 75 West Plumeria Drive, 
San Jose, CA 95134 USA. 
 

 

 

 
ABSTRACT 

This paper presents repetitive control laws in real time 
using matched basis functions.  These laws adjust the 
command given a feedback control system in order to eliminate 
tracking errors, resulting from in general a periodic disturbance 
and a non-periodic disturbance.  The periodic error can be 
reduced by linear basis functions while the non-periodic error 
by the projection algorithm along with the wavelet filtering. 
The control laws do not use a system model, but instead the 
control action is chosen to be a linear combination of chosen 
input basis functions, and the corresponding output basis 
functions are obtained, nominally by experiment.  The 
repetitive control laws use the projection algorithm to compute 
the output components on the output basis functions, and then 
the corresponding input components are adjusted accordingly. 
The output signals are reconstructed via the wavelet filtering 
before they are feedback to the controller.  Numerical 
experiments show that the repetitive controllers are quite 
effective.  In particular, the output tracking errors are further 
reduced because of the introduction of the wavelet filtering 
when compared to the previous work.  In general, the 
repetitive control laws developed here can be used for the 
purpose of precision machinery control. 

INTRODUCTION 

There are many practical situations in which a feedback 
control system is subject to a periodic disturbance, and one 
https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Us
would like to have a method of totally eliminating the influence 
of the disturbance on the output.  Here we present methods of 
canceling tracking errors of feedback controllers to periodic 
commands.  The algorithms are examples of repetitive control. 

This research was motivated by the problem of improving 
the focus of the 4 GeV continuous electron beam accelerator 
running over a 5 mile path, at the Thomas Jefferson National 
Accelerator Facility.  The electromagnets used in accelerating 
and bending the electron beam use DC supply, and this comes 
from rectifying 60 Hz AC.  The rectification is not perfect, and 
residual fluctuations in the DC supply cause fluctuations in the 
beam.  The fundamental at 60 Hz is most important, but one is 
interested in eliminating 11 harmonics as well.  This 
application is similar to the objective of the very early work in 
repetitive control, reference [1]. 

The approach used here is to make use of basis functions in 
formulating the repetitive control law.  Learning control is 
similar to repetitive control, except that the system is restarted 
from the same initial condition at the start of every period.  
Many of the methods used in learning control are appropriate to 
repetitive control, and vice versa [2, 3].  References [4-8] 
apply basis functions in learning control.  The use of basis 
functions in repetitive control, updating in a batch form, is 
discussed in [9], which produces a different kind of bridge 
between learning and repetitive control than in [3, 2].  
References [10, 11] also discuss the use of basis functions in 
repetitive control.  This paper makes use the matched basis 
function concept discussed in [4, 5, 6, 9] which is advantageous 
because it eliminates spillover [9].  We develop repetitive 
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control methods for matched basis functions for application in 
real time.  To do so we need a real time method of finding the 
components of the output on the output basis functions.  We 
investigate the use of the projection algorithm and the wavelet 
filtering.  The wavelet filtering is superimposed on the 
projection algorithm: in each time step the output signal 
computed by the projection algorithm is decomposed and then 
reconstructed via the wavelet filtering.  The effect of the 
wavelet filtering is studied through the comparison of the 
tracking errors of the output signals computed by the projection 
algorithm and by the projection algorithm with wavelet 
filtering.  The addition of the wavelet filtering is used to 
further cancel the non-periodic disturbance for accuracy 
promotion [12].  For on-line applications, the output tracking 
error of the numerical example shown in this study appears 
further reduced at the expenses of slower convergence.  For 
off-line applications, on the other hand, when the machines are 
shutdown for maintenance or software test, the output tracking 
error appears the same result with that computed via the pure 
projection algorithm.  In real-life and on-line applications, the 
superposition of the wavelet filtering on the projection 
algorithm proves quite effective in precision repetitive control. 

THE MATCHED BASIS FUNCTION SYSTEM MODEL 

The repetitive control action aims to find a time function 
which when added to the command to the feedback control 
system eliminates the effects of the periodic disturbance or 
periodic tracking error in responding to a periodic command.  
We agree to limit the adjustments of the command input that to 
ones lying in a space spanned by a chosen set of periodic basis 
functions.  As in [9] we presume that we can perform 
experiments applying these chosen basis functions individually 
to the existing feedback control system.  In these experiments 
we wait until steady state response is reached, record the 
periodic output, and the result is the set of matching output 
basis functions.  When there is a periodic disturbance present, 
we must conduct two experiments with different amplitudes 
multiplying the input basis function, and then take the 
differences of inputs and the differences of outputs, in order to 
eliminate the effect of the disturbance in defining the output 
basis functions.  The mathematics is general for any chosen set 
of basis functions, but an important special case is sinusoidal 
basis functions, as apply to the problem of eliminating 60 Hz 
and harmonics in the electron beam focus problem [13]. 

The Basis Functions and the System Model 

Wen and Longman [13] define uT  as a matrix of p rows, 
each column representing one period of the corresponding 
chosen discrete-time basis function, and its value is 

2 *sin( )f i
p

π  or 2 *cos( )f i
p

π , where 0,1, , 1i p= −L .  The 

yT  is the corresponding matrix of output basis functions, 
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giving the output that would be obtained if there were no 
periodic disturbance.  The matrices α  and β  are defined as 
column matrices of the coefficients of the output and the input 
basis functions, respectively.  If the input is the linear 
combination defined by uu T β= , then the steady state 
response is y yy T Tα β= = .  This makes the steady state 
system response model in basis function space into an identity 
matrix I, 
 

Iα β=  (1)

LINEAR REPETITIVE CONTROL LAWS IN TERMS OF 
COMPONENTS ON MATCHED BASIS FUNCTIONS 

A general linear repetitive control law for real time 
implementation is [13] 
 

β (k +1) = β(k) + Γ(α * − ?α (k)) (2)
 
where Γ  is a square matrix of learning gains, ?α (k)  is the 
column vector of current estimates of the output components on 
the output basis functions, and *α  is the desired trajectory 
written in terms of components on the output basis functions, 
which can be written in terms of the p time step history of one 
period of the desired trajectory, *y , according to * *yT yα += , 

where yT +  is the Moore-Penrose pseudoinverse. 

CHOICES FOR REAL TIME COMPUTATION OF 
COMPONENTS ON BASIS FUNCTIONS 

Here we seek to do real time updates, which recursively 
determine some estimate of the components on the output basis 
functions every time step, ?α (k).  There are various ways to do 
this, including the projection algorithm common in adaptive 
control, and various forms of recursive least squares [14-16].  
In this study, we utilize the projection algorithm, and the ?α (k) 
can be represented as [13] 
 

?α (k) = ?α (k −1) + Φ(k)[y(k) − Ty
T (k) ?α (k −1)] (3)

 
where ( )kΦ  can be determined a prior, and is not a function of 

data.  The ( )T
yT k  is determined from yT  whose columns 

contain one period of the periodic basis functions.  In the 
following, we discuss the form of ( )kΦ  in the projection 
algorithm.  We pay particular attention to, because in this case 
the ( )kΦ  becomes a periodic function of time step, a property 
that facilitates the stability analysis. 
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Projection Algorithm 

The projection algorithm at time step k – 1 has an estimate 
?α (k −1) , and chooses to improve this estimate by finding that 
?α (k)  lying on the hypersurface y(k) − Ty

T (k) ?α (k ) , that is 
closest to ?α (k −1)  in a Euclidean sense.  One can use a 
Lagrange multiplier to minimize J = ?α (k) − ?α (k −1)

2  subject 
to the constraint y(k) − Ty

T (k) ?α (k ) = 0 .  The result is [13] 
 

Φ(k) =
aTy(k )

c + Ty
T (k)Ty(k)

 (4)

 
where 1a =  and 0c = .  These values can be altered.  A 

0c >  is used to eliminate the possibility of dividing by zero 
when this is a possibility, and modifying a  can be used to 
make the trade-off between the rate of convergence and the 
amount of smoothing needed.  The rate of convergence is 
important in time varying situations, which is the case in the 
repetitive control problems here.  The algorithm is attractive 
because of its simplicity.  The fact that it does not fully use all 
of the data, means that its convergence is likely to be slower 
than some algorithm that uses all of the information available. 

There is an alternative formulation which we also consider, 
that writes an individual optimization as above for each pair of 
basis functions associated with a given frequency, i.e. for a sine 
and a cosine input basis function for each frequency, together 
with their matched output basis functions.  So the equations 
(3) are decoupled frequency by frequency.  And then a 
separate decoupled learning equation (2) is also used for each 
frequency.  To increase the accuracy of the repetitive control 
based projection algorithm, the wavelet filtering is introduced.  

WAVELET TRANSFORM 

Many applications use the wavelet decomposition taken as 
a whole.  The common goals concern the signal or image 
clearance and simplification, which are parts of de-noising or 
compression [17]. 

Fourier Transform and Short-Time Fourier Transform 

When analyzing a signal, first understanding its property is 
necessary.  The signal measured in the lab is generally a time 
domain signal, whose property cannot be apprehend until the 
time history of the signal is transformed to the frequency 
domain using the Fourier transform.  However, there is a 
problem in the Fourier spectrum because it shows no 
relationship between frequency and time, i.e. there is no 
information of the corresponding time for a specific frequency 
in the spectrum. 

In order to solve the disadvantage of the Fourier transform, 
Dennis Gabor in 1946 adapted the Fourier transform to analyze 
only a small section of the signal at a time—a technique called 
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windowing the signal.  Gabor’s adaptation, called the 
Short-Time Fourier Transform (STFT), mapped a signal into a 
two-dimensional function of time and frequency [17, 18].  
Although the STFT obtained the mapping of the signal in the 
time domain to the frequency domain, its accuracy was limited 
to the size of the window for the signal.  This limitation was 
not good for the signal containing both the high and low 
frequency.  The wavelet analysis therefore appeared.  

Wavelet Analysis 

The wavelet was proposed by Morlet et al in early 1980’s 
[19, 20].  It improved the STFT by using variable 
sized-regions of windows according to their frequency 
locations.  Yet the representation of the wavelet was not in 
the form of time-frequency but time-scale. 

The wavelet transform can be classified to two categories: 
one is the continuous wavelet transform (CWT) and the other 
is the discrete wavelet transform (DWT).  The CWT is used 
only for property analysis, and the DWT is practically used in 
the digital implementation [21]. 

To introduce the wavelet function, let us first understand 
the definition of the mother wavelet.  The average value of 
the mother wavelet ( )tψ  should be zero, i.e. ( )tψ  oscillates 
and satisfies [22]: 

 

( ) 0t dtψ
∞

−∞
=∫  (5)

 
where t denotes time.  The mother wavelet ( )tψ  in equation 
(5) can be amplified by a scale a and be displaced by a distance 
b to obtain the following wavelet function [22]: 
 

,
1( ) ( )a b

t bt
aa

ψ ψ −
=  , ,  0a b a∈ℜ ≠ (6)

 
where a represents the scale factor and b the translate factor. 
    For many signals, the low-frequency content is the most 
important part.  It is what gives the signal its identity.  The 
high-frequency content, on the other hand, imparts flavor or 
nuance [17].  For the signal of the repetitive control, the 
disturbance is embedded in the low-frequency components.  
Hence, in order to eliminate the non-periodic disturbance, we 
select the high-frequency components of the signal and remove 
the low-frequency parts. 
    Wavelet transform uses the concept of the wavelet function 
and decomposes the original signal, via its filtering, into two 
parts: the approximations and the details, a process which is 
called the wavelet decomposition.  The approximations are the 
high-scale, low-frequency components of the signal while the 
details are the low-scale, high-frequency components [17].  
The parts of the approximations can be further decomposed as 
shown in Fig. 1, in which S represents the original signal, and 
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cAi denotes the coefficient of the approximations at the i-th 
decomposed level while cDi denotes the coefficient of the 
details at the i-th decomposed level, respectively, and 

1 2 i iS=cD +cD + +cD +cAL .  The wavelet reconstruction (or 
wavelet inverse transform) refers to the combination of the 
decomposed components, using either the approximations or 
details or their mixed version with selected level components, to 
reconstruct the original signal via a filter.  In this study, we 
choose all components of the details ( icD ), having the property 
of low-scale and high-frequency, and remove all components of 
the approximations to reconstruct the output signal in order to 
cancel the non-periodic low-frequency disturbance.  
 

 
Fig. 1 Illustration of the wavelet decomposition tree (From 

Matlab: Wavelet Toolbox User's Guide) 

Wavelet Function 

Wavelet filters includes several families, each with its own 
property.  Each family consists of several wavelet functions 
with different numbers of vanishing moments [12].  From the 
literature record, the Haar function [23] was first wavelet 
function proposed by Alfréd Haar in 1909.  Other wavelet 
functions include the Morlet wavelet [24], Meyer wavelet [25], 
Biorthogonal wavelet, Mallat wavelet [26], Daubechies wavelet 
[27], Coiflets wavelet, Symlets wavelet, and Mexican Hat 
wavelet, etc. 

In this study, we utilize the Haar function as the wavelet 
filter.  It is the pioneered wavelet function and the simplest one.  
Haar wavelet is discontinuous, and resembles a step function.  
Based on the on-line test as shown in Fig. 5-3 and 5-4, 
satisfactory results can be obtained using the Haar wavelet with 
the signal decomposition level up to level 5.  In terms of 
wavelet families, the results of the Haar wavelet are similar to 
the Daubechies wavelet but the Haar wavelet has faster 
computation speed.  Thus, the following numerical example 
uses the Haar wavelet with signal decomposition level 5. 

The Haar wavelet’s mother wavelet can be represented as: 
 

11     0 t<
2

1( ) 1  1
2

0    otherwise

t tψ

⎧ ≤⎪
⎪
⎪= − ≤ <⎨
⎪
⎪
⎪⎩

 (7)
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with corresponding scaling function: 
 

1     0 t<1
( )

0    otherwise
tφ

≤⎧
= ⎨

⎩
 (8)

 
and the mother wavelet’s graph: 
 

 
Fig. 2 Haar wavelet’s mother wavelet (From Matlab: Wavelet 

Toolbox User's Guide) 

EXAMPLES 

To study and illustrate the behavior of the repetitive control 
laws developed here, we consider a third order transfer function 
model that was found to represent rather well the input to output 
behavior of feedback controllers for each axis of a Robotics 
Research Corporation robot [13] 
 

2

2 2( )
( )( 2 )

aT s
s a s s

ω
ζω ω

=
+ + +

 (9)

 
where 8.8a =  corresponding to a break frequency of 1.4 Hz, 
and 37ω =  rad/sec, giving the first robot undamped natural 
vibration frequency at 5.9 Hz.  This system is simple, yet it is 
sufficiently complex that it is found to be a good test case for 
studying learning and repetitive control laws.  For the robot the 
damping ratio is 0.5ζ =  which is sufficiently fast that there is 
more than one settling time in a one second period.  In order to 
accentuate the potential difficulties associated with transients 
crossing from one period to the next, we artificially decrease the 
damping to 0.05ζ = .  This makes a time constant of 1.85 
sec, and the setting time is often taken as four time constants or 
7.4 sec.  Thus, transients take nearly seven and a half periods 
to decay, and it is far from being quasi steady state using 
reasonable learning gains.  The sample rate is taken as 64 Hz, 
and the closed loop governing equation for the feedback 
controller is given by the difference equation associated with (9) 
for this sample rate, assuming a zero order hold on the input.  
As is common in repetitive control problems, the desired 
trajectory is zero, and there is a periodic disturbance added to 
the output, i.e. it is a disturbance rejection problem. 
4 Copyright © 2008 by ASME 
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Procedure 

First, we convert the transfer function in equation (9) to the 
state-space form: 
 

1
1 1

1
1 1

1

( )( )
( )

       ( )

n
n n

n
n n

b s b s bB sT s
A s a s a s a

C sI A B D

−
−

−
−

−

+ + +
= =

+ + +

= − +

L

L  (10)

 
where 1n = + order of transfer function, and then in the 
controller canonical form: 
 

x Ax Bu
y Cx Du

= +
= +

& (11)

 
so as to obtain the parameters A, B, C and D for the transfer 
function.  The flow chart can be depicted in Fig. 3. 
 

 
Fig. 3 Flow chart of converting transfer function to state-space 

 
   The following process of the repetitive control is to 
incorporate other parameters into the algorithm, whose 
complete flow chart is illustrated in Fig. 4. 
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Fig. 4 Complete operational flow chart 

 
For the on-line operation, every loop obtains a predicted 

trajectory y and, with the desired trajectory dy , thus the tracking 
error for each time step k.  For the off-line operation, all time 
steps of the parameter value α  are first computed followed by 
computing all time steps’ value for β  using available α , and 
then u and x so as to obtain the predicted output y .  It is 
noteworthy that the Haar wavelet function with signal 
decomposition level 5 is chosen and the signal reconstruction 
uses all the components of the details.  The wavelet analysis 
portion in Fig. 4 refers to “Decomposition and reconstruction 
via wavelet analysis.”   

Disturbance Rejection using the Projection Algorithm 
and the Wavelet Filtering 

Suppose that there is only one disturbance frequency, a sine 
wave at 2 Hz with amplitude of 45 (all disturbances treated in 
the examples are sine waves with this same amplitude).  We 
use input basis functions that are sine and cosine of 2 Hz, and 
the output basis functions are the associated steady state 
responses.  The results using the projection algorithm are 
given in Fig. 5-1 to Fig. 5-4.  Fig. 5-1 and 5-2 are the results of 
the off-line projection algorithm and the off-line wavelet 
5 Copyright © 2008 by ASME 
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analysis.  Fig. 5-3 and 5-4 are the results of the on-line 
projection algorithm and the on-line wavelet analysis.  The 
learning gain Γ  is 0.01 time the identity matrix.  The other 
parameters are 0c = , 1a = , and the initial ?α  and β  are 
set to zero at the time the repetitive control is turned on after 
one period.  These values apply to all of the projection 
algorithm results cited here.  A gain of 0.01 appears to give the 
fastest results.  Using only the off-line projection algorithm, it 
takes about 50 repetitions until zero error is reached (a 
numerical zero).  It appears no difference when introducing the 
off-line wavelet analysis through the comparison of Fig. 5-1 and 
5-2.  However, when introducing the wavelet analysis to the 
projection algorithm in on-line operation, the RMS tracking 
error and the output coefficients error both are more reduced at 
the expenses of slower convergence (about 80 repetitions until 
zero error is reached) as shown in Fig. 5-3 and 5-4.  Fig. 5-2 
and 5-4 give the difference between the current estimate of 
components on the output basis functions, and the desired 
output basis function components.  The plot takes the absolute 
value, and then the logarithm, and changing signs of the errors 
can produce some of the irregularity seen in these curves. 

The off-line repetitive control is used purely for software 
test and in practical machine operation it must be on-line.  
Thus the following example gives the on-line real time 
operation and compares the results of the projection algorithm 
with and without the wavelet analysis. 
 

 
Fig. 5-1 RMS tracking error. A single sine disturbance at 2 Hz. 

Repetitive control using only 2 Hz basis functions. 
(with off-line wavelet analysis) 
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Fig. 5-2 Output coefficients error. A single sine disturbance at 2 

Hz. Repetitive control using only 2 Hz basis functions. 
(with off-line wavelet analysis) 

 

 
Fig. 5-3 RMS tracking error. A single sine disturbance at 2 Hz. 

Repetitive control using only 2 Hz basis functions. 
(with on-line wavelet analysis) 

 

 
Fig. 5-4 Output coefficients error. A single sine disturbance at 2 

Hz. Repetitive control using only 2 Hz basis functions. 
(with on-line wavelet analysis) 
6 Copyright © 2008 by ASME 
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Multiple Learning Gains for Multiple Basis Functions 

Now suppose that there are two sinusoidal disturbances, 
one at 2 Hz and one at 4 Hz.  Fig. 6-1 and 6-2 learns both the 2 
Hz and the 4 Hz signal simultaneously, but it uses separate 
projection algorithm equations for each, and it uses separate 
learning control equations for each.  The learning gains are 
optimized for best performance.  The results show that it is 
quite beneficial to use different learning gains for different basis 
functions.  It appears that if you find the right gains, that there 
is no penalty for learning more than one frequency at a time.  
The convergence is again reached around 60 repetitions.  After 
the addition of the wavelet as shown in Fig. 6-1, the converged 
steady state of the RMS tracking error spears more stable than 
the pure projection algorithm though with slower convergence 
rate (about 80 repetitions).  In addition, the output coefficients 
error is more reduced as shown in Fig. 6-2. 
 

 
Fig. 6-1 RMS tracking error. Disturbances at both 2 and 4 Hz. 

Repetitive control using decoupled projection 
algorithms for both frequencies, with learning gain 
0.01 for 2 Hz and 0.02 for 4 Hz. 

 

 
Fig. 6-2 Output coefficients error. Disturbances at both 2 and 4 

Hz. Repetitive control using decoupled projection 
algorithms for both frequencies, with learning gain 
0.01 for 2 Hz and 0.02 for 4 Hz. 
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CONCLUSIONS 

This paper has presented a set of repetitive control methods 
to eliminate the effects of repetitive disturbances in feedback 
control systems, or to eliminate tracking errors in feedback 
controllers executing periodic commands.  Examples show 
that the methods are effective in eliminating periodic 
disturbances.  And after introducing the wavelet analysis 
on-line, the overall performance improves in terms of accuracy 
at the expenses of slower convergence.  Methods are 
developed to allow one to predict stability of the repetitive 
control process before turning on the system, and to set the 
learning gains and other repetitive control parameters a priori.  
Numerical experience indicates that for fast convergence when 
there are multiple basis functions, it is best to adjust the learning 
gain associated with each basis function differently rather than 
use an overall scalar learning gain.  In the numerical 
experiments these were adjusted separately for disturbances at 
each frequency, and then applied to the system with multiple 
disturbance frequencies.  This adjustment could be done 
experimentally as well, differencing the results from runs to 
eliminate the true disturbances, and trying to eliminate a 
mathematically added disturbance on the output of the 
frequency of interest. 

The use of basis functions in learning control was seen to 
have advantages in preventing problems of long term instability.  
Here we apply it in repetitive control, and do so in real time 
instead of using batch processing.  The resulting repetitive 
control laws make use of matched basis functions, that are 
experimentally determined, and the control law does not need 
any additional information such as a difference equation model.  
One expects these control laws to work when the learning is 
done slowly so that all signals are quasi steady state. 

Concerning the choices of how to find the components of 
the output on the output basis functions in real time, the 
projection algorithm worked well.  The wavelet analysis 
superimposed on the projection algorithm is more effective.  
Possible future research direction is to formulate the signal 
reconstruction in the wavelet filtering when selecting the 
components of the decomposed signal.  The entailed stability 
analysis could be addressed.   
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